Algorithms for Model Checking (2IW50)

ecture 8

Equivalences and Pre-orders: State Space Reduction and Preservation of Properties Chapter 11, 11.1

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

/ department of mathematics and computer science

technische universiteit eindhoven

Equivalences

TU/e

Complexity of model checking arises from:

- State space explosion: the state space is usually much larger than the specification
- Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

- equivalence reduction: remove states with identical potentials from a state space
- on-the-fly: integrate the generation and verification phases, to prune the state space
- symbolic model checking: represent sets of states by clever data structures
- partial-order reduction: ignore some executions, because they are covered by others
- abstraction: remove details by working on conservative over-approximation

Equivalences

TU/e

- A state space reduction reduces model checking complexity.
- Of course, the reduced state space must preserve (an interesting class of) temporal properties.
- This is often characterised by an equivalence relation on Kripke Structures:
 - reduction must yield an 'equivalent" model.
 - "equivalent" models must satisfy the same properties.
- Different instances of this scheme:
 - trace equivalence preserves LTL formulae.
 - strong bisimulation preserves CTL* (and μ-calculus) formulae.
 - simulation preserves ACTL* (and existential μ -calculus) formulae.
 - branching bisimulation preserves CTL*-X formulae.

Equivalences

TU/e

Let two Kripke Structures over AP be given:

- $M = \langle S, R, S_0, L \rangle$ and
- $M' = \langle S', R', S'_0, L' \rangle$

Definition (Strong Bisimulation)

A relation $B \subseteq S \times S'$ is a strong bisimulation relation (also *zig-zag* relation) iff for every $s \in S$ and $s' \in S'$ with *sBs'*:

- ► L(s) = L'(s')
- for all $s_1 \in S$, if sRs_1 , then there exists $s'_1 \in S'$ such that $s'R's'_1$ and $s_1Bs'_1$
- for all $s'_1 \in S'$, if $s'R's'_1$, then there exists $s_1 \in S$ such that sRs_1 and $s_1Bs'_1$

Equivalences

Example

- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

Equivalences

Example

- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

technische universiteit eindhoven

Equivalences

Example

- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

Equivalences

TU/e

Let two Kripke Structures over AP be given:

- $M = \langle S, R, S_0, L \rangle$ and
- $M' = \langle S', R', S'_0, L' \rangle$

Definition (bisimilarity)

Two states $s \in S$ and $s' \in S'$ are bisimilar, if for some bisimulation relation B, sBs'. The Kripke Structures M and M' are bisimilar (notation: $M \equiv M'$) iff there exists a bisimulation relation B, "containing initial states", i.e.:

$$\bullet \ \forall s_0 \in S_0 \ \exists s'_0 \in S'_0 \ : s_0 B s'_0$$

• $\forall s'_0 \in S'_0 \exists s_0 \in S_0 : s_0 Bs'_0$

Note:

- bisimilarity is an equivalence relation
- the union of bisimulation relations is again a bisimulation relation
- "bisimilarity" itself is the greatest bisimulation relation

Equivalences

TU/e

Strong bisimulation preserves CTL*:

- Recall the CTL* semantics:
 - $M, s \models f$: state formula f holds in state s,
 - $M, \pi \models f$: path formula f holds along path π .
- Recall that $M \models f$ iff for all $s_0 \in S_0$, M, $s_0 \models f$.

Theorem (14)

If $M \equiv M'$ (i.e. M and M' are bisimilar), then for every CTL* state formula f:

 $M \models f$ iff $M' \models f$

Practical consequence: In order to check $M \models f$, it is safe and sufficient to:

- 1. Reduce M to M' modulo bisimilarity,
- **2.** Check whether $M' \models f$.

TU/e Equivalences

technische universiteit eindhoven

Proof sketch:

Given a relation *B*, we define that path π corresponds to path π' iff: $\forall i. \pi(i) B \pi'(i)$

Lemma (31)

If B is a bisimulation relation and s B s' (correction to Lemma 31), then for every $\pi \in path(s)$ there exists a corresponding path $\pi' \in path(s')$ (and vice versa).

Next, with structural induction on CTL* formula *f* one can show: if *s* and *s'* are bisimilar and π and π' correspond, then:

- **1.** $s \models f$ if and only if $s' \models f$
- **2.** $\pi \models f$ if and only if $\pi' \models f$

From this, the theorem follows: for all M, M' and CTL^* formulae $f: \text{ if } M \equiv M'$ then $M \models f$ iff $M' \models f$.

TU/e Equivalences

Theorem (reverse)

If $M \neq M'$ then there exists a formula f in **CTL**, such that $M \models f$ and $M' \not\models f$.

- Note that both systems have the same paths.
- There is no bisimulation relation between these two systems containing the initial states.
- Indeed, the following CTL formula holds in (the initial state of) the right system, but not on the left: $A \times (b \land E \times d)$
- We will see later that using E is essential.

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

/ department of mathematics and computer science

technische universiteit eindhoven

Pre-orders

TU/e

- bisimilar models have the same behaviour, so they make true exactly the same properties.
- Idea: If we allow to really forget information, we may:
 - reduce the state space further, but:
 - preserve only a smaller class of formulae.
- ► We say that system M' simulates system M if M' has at least the behaviour of M.

Let two Kripke Structures be given:

- $M = \langle AP, S, R, S_0, L \rangle$ and
- $M' = \langle AP', S', R', S'_0, L' \rangle$, with $AP \subseteq AP'$.

Definition (Simulation Relation)

A relation $H \subseteq S \times S'$ is a simulation relation iff for every $s \in S$ and $s' \in S'$ with s H s':

- $L(s) \cap AP' = L'(s')$
- for all s_1 , if $s R s_1$, then there exists s'_1 such that $s'R's'_1$ and $s_1 H s'_1$.

Pre-orders

Definition (Simulation)

M' simulates M (written: $M \sqsubseteq M'$) iff there exists a simulation relation H, such that

technische universiteit eindhoven

 $\forall s_0 \in S_0. \exists s'_0 \in S'_0. s_0 H s'_0$

This defines an equivalence relation as follows: $M \sim M'$ iff $M \sqsubseteq M'$ and $M' \sqsubseteq M$. Note:

- ► ⊑ is a pre-order on Kripke Structures (i.e. it is reflexive and transitive, but not necessarily symmetric).
- Warning:
 - it is possible that $M \sim M'$ but still $M \neq M'$
 - In words: if two systems simulate each other, they need not be bisimilar.
 - Intuitively: the two simulations may use a different *H*, while a bisimulation requires one *B*.

Pre-orders

- $M \sqsubseteq M'$ but not $M' \sqsubseteq M$;
- $N \sim N'$ but $N \not\equiv N'$.

Pre-orders

Definition (ACTL*)

ACTL* (see p.31) is the fragment of CTL* with only universal path quantifiers, no existential path quantifiers.

Note:

- This only makes sense for formulae in positive normal form, i.e. negations only occur directly in front of atomic propositions.
- ► Examples: $A \models Gp, A \models (p \rightarrow A \land q)$ are in ACTL^{*}, but $A \models (p \rightarrow E \land q)$ is not. Careful: $(A \models p) \rightarrow (A \models q)$ is not in ACTL^{*}, because actually:

$$(\mathsf{A} \mathsf{G} p) \to (\mathsf{A} \mathsf{G} q) \equiv \neg (\mathsf{A} \mathsf{G} p) \lor (\mathsf{A} \mathsf{G} q) \\ \equiv (\mathsf{E} \mathsf{F} \neg p) \lor (\mathsf{A} \mathsf{G} q)$$

Pre-orders

Simulation preserves ACTL*:

Theorem

If $M \sqsubseteq M'$ (i.e. M' simulates M), then for every $ACTL^*$ state formula f over AP':

if
$$M' \models f$$
 then $M \models f$

Practical consequence: In order to check $M \models f$, it is safe to find an approximation M' with $M \sqsubseteq M'$ and check that $M' \models f$.

However: if $M' \not\models f$, we obtain no information about $M \models f$ — it may or may not hold.

In the previous example, we had: $N \sim N'$ but $N \neq N'$. Hence:

- ► *N* and *N*′ satisfy the same ACTL* formulae
- N and N' do not satisfy the same CTL formulae
- They can only be distinguished using operator E.

Pre-orders

TU/e

- Observe that $M \sqsubseteq M'$ with *H* indicated left.
- Note that $M' \models A G \neg d$ and hence $M \models A G \neg d$.
- Note that M' ⊭ A F (b ∨ c), but actually M⊨ A F (b ∨ c). This shows that some information is really lost.
- ▶ Note: $M \models A X a$ but $M' \not\models A X a$ (wrong direction) conclusion: $M' \not\sqsubseteq M$.
- Note: $M' \models \mathsf{E} \mathsf{X} b$, but $M \not\models \mathsf{E} \mathsf{X} b$ (not in ACTL*).

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

/ department of mathematics and computer science

technische universiteit eindhoven

Bisimulation Reduction

TU/e

Computing Bisimulation Equivalence:

Let two Kripke Structures be given:

- \blacktriangleright $M = \langle AP, S, R, S_0, L \rangle$ and
- $M' = \langle AP, S', R, S'_0, L' \rangle$.

Define a sequence of relations $s B_i^* s'$ iff s and s' cannot be distinguished within isteps:

- $s B_0^* s'$ if and only if L(s) = L'(s).
- $s B_{n+1}^* s'$ if and only if:
 - 1. $s B_n^* s'$, and
 - 2. $\forall s_1 \text{ with } R(s,s_1), \exists s'_1 \text{ with } s' R' s'_1 \text{ and } s_1 B_n^* s'_1.$ 3. $\forall s'_1 \text{ with } R'(s',s'_1), \exists s_1 \text{ with } s R s_1 \text{ and } s_1 B_n^* s'_1.$
- Let $B^* := \bigcap_i B_i^*$

Clearly, $B_i^* \supseteq B_{i+1}^*$, so B^* can be computed by fixed point iteration.

Actually, this can be implemented symbolically by OBDDs

Bisimulation Reduction

TU/e

- Actually: B^* is the largest bisimulation between M and M'.
- So: if *s* and *s'* are bisimilar, then *s* B^* *s'*.
- To test if $M \equiv M'$: check if for each $s_0 \in S_0$ there exists an $s'_0 \in S'_0$ such that $s_0 B^* s'_0$.
- By carefully splitting equivalence classes, the procedure can run in $\mathcal{O}(|R| \times \log(|S|))$ time (Paige-Tarjan).
- Similar ideas apply to checking $M \sqsubseteq M'$.
- The algorithm can be modified for state space reduction as follows:
 - ► The equivalence classes of *B*^{*} form the states of the reduced state space (minimal modulo bisimulation).
 - The transitions between two classes are derived from the transitions between elements of these classes.

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

/ department of mathematics and computer science

technische universiteit eindhoven

Summarising

TU/e

- Bisimulation is an equivalence relation.
- ► Bisimulation preserves CTL* formulae.
- Simulation is a pre-order.
- ► Simulation preserves ACTL* formulae only, and only in one direction.
- Simulation allows for more reduction but sometimes crucial information is lost.
- Bisimulation and Simulation reduction can be computed in polynomial time.

Possible improvement: Instead of:

- 1. generating state space
- 2. reducing state space
- 3. model checking reduced state space,

it would be better to generate a smaller state space immediately.