
12

/ department of mathematics and computer science 1/22

Algorithms for Model Checking (2IW50)
Lecture 8

Equivalences and Pre-orders:
State Space Reduction and Preservation of Properties

Chapter 11, 11.1

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

12

/ department of mathematics and computer science 2/22

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

12

/ department of mathematics and computer science 3/22

Equivalences

Complexity of model checking arises from:

I State space explosion: the state space is usually much larger than the
specification

I Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

I equivalence reduction: remove states with identical potentials from a state
space

I on-the-fly: integrate the generation and verification phases, to prune the state
space

I symbolic model checking: represent sets of states by clever data structures
I partial-order reduction: ignore some executions, because they are covered by

others
I abstraction: remove details by working on conservative over-approximation

12

/ department of mathematics and computer science 4/22

Equivalences

I A state space reduction reduces model checking complexity.
I Of course, the reduced state space must preserve (an interesting class of)

temporal properties.
I This is often characterised by an equivalence relation on Kripke Structures:

• reduction must yield an ‘equivalent” model.
• “equivalent” models must satisfy the same properties.

I Different instances of this scheme:
• trace equivalence preserves LTL formulae.
• strong bisimulation preserves CTL∗ (and µ-calculus) formulae.
• simulation preserves ACTL∗ (and existential µ-calculus) formulae.
• branching bisimulation preserves CTL∗-X formulae.

12

/ department of mathematics and computer science 5/22

Equivalences

Let two Kripke Structures over AP be given:
I M = 〈S, R, S0, L〉 and
I M′ = 〈S′, R′, S′0, L′〉

Definition (Strong Bisimulation)
A relation B ⊆ S× S′ is a strong bisimulation relation (also zig-zag relation) iff for
every s ∈ S and s′ ∈ S′ with sBs′:

I L(s) = L′(s′)
I for all s1 ∈ S, if sRs1, then there exists s′1 ∈ S′ such that s′R′s′1 and s1Bs′1
I for all s′1 ∈ S′, if s′R′s′1, then there exists s1 ∈ S such that sRs1 and s1Bs′1

12

/ department of mathematics and computer science 6/22

Equivalences

Example

s0

s1

t0

t1

t2

t3

A

B

A

B

A

B

I unwinding and duplication preserves bisimulation
I Sensitive to the moment of choice

12

/ department of mathematics and computer science 6/22

Equivalences

Example

s0

s1

s2 s3

t0

t1 t2

t3 t4

A

B

C D

A

B B

C D
?

I unwinding and duplication preserves bisimulation
I Sensitive to the moment of choice

12

/ department of mathematics and computer science 6/22

Equivalences

Example

s0

s1 s2

s3 s4 s5

t0

t1 t2

t3 t4 t5

A

B B

C C D

A

B B

C D D

I unwinding and duplication preserves bisimulation
I Sensitive to the moment of choice

12

/ department of mathematics and computer science 7/22

Equivalences

Let two Kripke Structures over AP be given:
I M = 〈S, R, S0, L〉 and
I M′ = 〈S′, R′, S′0, L′〉

Definition (bisimilarity)
Two states s ∈ S and s′ ∈ S′ are bisimilar, if for some bisimulation relation B, sBs′.
The Kripke Structures M and M′ are bisimilar (notation: M ≡ M′) iff there exists a
bisimulation relation B, “containing initial states”, i.e.:

I ∀s0 ∈ S0 ∃s′0 ∈ S′0 : s0Bs′0
I ∀s′0 ∈ S′0 ∃s0 ∈ S0 : s0Bs′0

Note:
I bisimilarity is an equivalence relation
I the union of bisimulation relations is again a bisimulation relation
I “bisimilarity” itself is the greatest bisimulation relation

12

/ department of mathematics and computer science 8/22

Equivalences

Strong bisimulation preserves CTL∗:
I Recall the CTL∗ semantics:

• M, s|= f : state formula f holds in state s,
• M, π|= f : path formula f holds along path π.

I Recall that M|= f iff for all s0 ∈ S0, M, s0|= f .

Theorem (14)
If M ≡ M′ (i.e. M and M′ are bisimilar), then for every CTL∗ state formula f :

M|= f iff M′|= f

Practical consequence: In order to check M|= f , it is safe and sufficient to:

1. Reduce M to M′ modulo bisimilarity,

2. Check whether M′|= f .

12

/ department of mathematics and computer science 9/22

Equivalences

Proof sketch:

Given a relation B, we define that path π corresponds to path π′ iff: ∀i. π(i) B π′(i)

Lemma (31)
If B is a bisimulation relation and s B s′ (correction to Lemma 31), then for every
π ∈ path(s) there exists a corresponding path π′ ∈ path(s′) (and vice versa).

Next, with structural induction on CTL∗ formula f one can show: if s and s′ are
bisimilar and π and π′ correspond, then:

1. s|= f if and only if s′|= f
2. π|= f if and only if π′|= f

From this, the theorem follows:
for all M, M′ and CTL∗ formulae f : if M ≡ M′ then M|= f iff M′|= f .

12

/ department of mathematics and computer science 10/22

Equivalences

Theorem (reverse)
If M 6≡ M′ then there exists a formula f in CTL , such that M|= f and M′ 6 |= f .

s0

s1 s2

s3 s4 s5

t0

t1 t2

t3 t4 t5

A

B B

C D C

A

B B

D C D

?

I Note that both systems have the same paths.
I There is no bisimulation relation between these two systems containing the

initial states.
I Indeed, the following CTL formula holds in (the initial state of) the right system,

but not on the left: A X (b ∧ E X d)
I We will see later that using E is essential.

12

/ department of mathematics and computer science 11/22

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

12

/ department of mathematics and computer science 12/22

Pre-orders

I bisimilar models have the same behaviour, so they make true exactly the same
properties.

I Idea: If we allow to really forget information, we may:
• reduce the state space further, but:
• preserve only a smaller class of formulae.

I We say that system M′ simulates system M if M′ has at least the behaviour of
M.

Let two Kripke Structures be given:
I M = 〈AP, S, R, S0, L〉 and
I M′ = 〈AP′, S′, R′, S′0, L′〉, with AP ⊆ AP′.

Definition (Simulation Relation)
A relation H ⊆ S× S′ is a simulation relation iff for every s ∈ S and s′ ∈ S′ with
s H s′:

I L(s) ∩AP′ = L′(s′)
I for all s1, if s R s1, then there exists s′1 such that s′R′s′1 and s1 H s′1.

12

/ department of mathematics and computer science 13/22

Pre-orders

Definition (Simulation)
M′ simulates M (written: M v M′) iff there exists a simulation relation H, such that

∀s0 ∈ S0. ∃s′0 ∈ S′0. s0 H s′0

This defines an equivalence relation as follows: M ∼ M′ iff M v M′ and M′ v M.

Note:
I v is a pre-order on Kripke Structures (i.e. it is reflexive and transitive, but not

necessarily symmetric).
I Warning:

• it is possible that M ∼ M′ but still M 6≡ M′
• In words: if two systems simulate each other, they need not be bisimilar.
• Intuitively: the two simulations may use a different H, while a bisimulation requires

one B.

12

/ department of mathematics and computer science 14/22

Pre-orders

M′ M

A

B

C D

A

B B

C D

?

M M′

A

B

C D

A

B B

C D

N N′

A

B B

C D C

A

BB

DC D

I M v M′ but not M′ v M;
I N ∼ N′ but N 6≡ N′.

12

/ department of mathematics and computer science 15/22

Pre-orders

Definition (ACTL∗)
ACTL∗ (see p.31) is the fragment of CTL∗ with only universal path quantifiers, no
existential path quantifiers.

Note:
I This only makes sense for formulae in positive normal form, i.e. negations only

occur directly in front of atomic propositions.
I Examples: A F Gp, A G (p → A X q) are in ACTL∗, but A G (p → E X q) is not.

Careful: (A G p) → (A G q) is not in ACTL∗, because actually:

(A G p) → (A G q) ≡ ¬(A G p) ∨ (A G q)
≡ (E F ¬p) ∨ (A G q)

12

/ department of mathematics and computer science 16/22

Pre-orders

Simulation preserves ACTL∗:

Theorem
If M v M′ (i.e. M′ simulates M), then for every ACTL∗ state formula f over AP’:

if M′|= f then M|= f

Practical consequence: In order to check M|= f , it is safe to find an approximation
M′ with M v M′ and check that M′|= f .

However: if M′ 6 |= f , we obtain no information about M|= f — it may or may not
hold.

In the previous example, we had: N ∼ N′ but N 6≡ N′. Hence:
I N and N′ satisfy the same ACTL∗ formulae
I N and N′ do not satisfy the same CTL formulae
I They can only be distinguished using operator E .

12

/ department of mathematics and computer science 17/22

Pre-orders

Example
M

M′

A

A

A

A

C B

A

C B

I Observe that M v M′ with H indicated
left.

I Note that M′|= A G ¬d and hence
M|= A G ¬d.

I Note that M′ 6 |= A F (b ∨ c), but actually
M|= A F (b ∨ c). This shows that some
information is really lost.

I Note: M|= A X a but M′ 6 |= A X a (wrong
direction) conclusion: M′ 6v M.

I Note: M′|= E X b, but M 6 |= E X b (not in
ACTL∗).

12

/ department of mathematics and computer science 18/22

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

12

/ department of mathematics and computer science 19/22

Bisimulation Reduction

Computing Bisimulation Equivalence:

Let two Kripke Structures be given:
I M = 〈AP, S, R, S0, L〉 and
I M′ = 〈AP, S′, R, S′0, L′〉.

Define a sequence of relations s B∗i s′ iff s and s′ cannot be distinguished within i
steps:

I s B∗0 s′ if and only if L(s) = L′(s).
I s B∗n+1s′ if and only if:

1. s B∗n s′, and
2. ∀s1 with R(s, s1), ∃s′1 with s′ R′ s′1 and s1 B∗n s′1.
3. ∀s′1 with R′(s′, s′1), ∃s1 with s R s1 and s1 B∗n s′1.

I Let B∗ :=
⋂

i B∗i
Clearly, B∗i ⊇ B∗i+1, so B∗ can be computed by fixed point iteration.

Actually, this can be implemented symbolically by OBDDs

12

/ department of mathematics and computer science 20/22

Bisimulation Reduction

I Actually: B∗ is the largest bisimulation between M and M′.
I So: if s and s′ are bisimilar, then s B∗ s′.
I To test if M ≡ M′: check if for each s0 ∈ S0 there exists an s′0 ∈ S′0 such that

s0 B∗ s′0.
I By carefully splitting equivalence classes, the procedure can run in
O(|R| × log(|S|)) time (Paige-Tarjan).

I Similar ideas apply to checking M v M′.

The algorithm can be modified for state space reduction as follows:

I The equivalence classes of B∗ form the states of the reduced state space
(minimal modulo bisimulation).

I The transitions between two classes are derived from the transitions between
elements of these classes.

12

/ department of mathematics and computer science 21/22

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

12

/ department of mathematics and computer science 22/22

Summarising

I Bisimulation is an equivalence relation.
I Bisimulation preserves CTL∗ formulae.
I Simulation is a pre-order.
I Simulation preserves ACTL∗ formulae only, and only in one direction.
I Simulation allows for more reduction but sometimes crucial information is lost.
I Bisimulation and Simulation reduction can be computed in polynomial time.

Possible improvement: Instead of:

1. generating state space

2. reducing state space

3. model checking reduced state space,

it would be better to generate a smaller state space immediately.

	Equivalences
	Pre-orders
	Bisimulation Reduction
	Summarising

