Algorithms for Model Checking (2IW50)

Lecture 8
Equivalences and Pre-orders:
State Space Reduction and Preservation of Properties Chapter 11, 11.1

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

TUle

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

TU/e

Equivalences

Complexity of model checking arises from:

- State space explosion: the state space is usually much larger than the specification
- Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

- equivalence reduction: remove states with identical potentials from a state space
- on-the-fly: integrate the generation and verification phases, to prune the state space
- symbolic model checking: represent sets of states by clever data structures
- partial-order reduction: ignore some executions, because they are covered by others
- abstraction: remove details by working on conservative over-approximation

Equivalences

- A state space reduction reduces model checking complexity.
- Of course, the reduced state space must preserve (an interesting class of) temporal properties.
- This is often characterised by an equivalence relation on Kripke Structures:
- reduction must yield an 'equivalent" model.
- "equivalent" models must satisfy the same properties.
- Different instances of this scheme:
- trace equivalence preserves LTL formulae.
- strong bisimulation preserves CTL* (and μ-calculus) formulae.
- simulation preserves ACTL* (and existential μ-calculus) formulae.
- branching bisimulation preserves CTL*-X formulae.

Equivalences

Let two Kripke Structures over $A P$ be given:

- $M=\left\langle S, R, S_{0}, L\right\rangle$ and
- $M^{\prime}=\left\langle S^{\prime}, R^{\prime}, S_{0}^{\prime}, L^{\prime}\right\rangle$

Definition (Strong Bisimulation)

A relation $B \subseteq S \times S^{\prime}$ is a strong bisimulation relation (also zig-zag relation) iff for every $s \in S$ and $s^{\prime} \in S^{\prime}$ with $s B s^{\prime}$:

- $L(s)=L^{\prime}\left(s^{\prime}\right)$
- for all $s_{1} \in S$, if $s R s_{1}$, then there exists $s_{1}^{\prime} \in S^{\prime}$ such that $s^{\prime} R^{\prime} s_{1}^{\prime}$ and $s_{1} B s_{1}^{\prime}$
- for all $s_{1}^{\prime} \in S^{\prime}$, if $s^{\prime} R^{\prime} s_{1}^{\prime}$, then there exists $s_{1} \in S$ such that $s R s_{1}$ and $s_{1} B s_{1}^{\prime}$

TUle

Equivalences

Example

- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

TU/e

Equivalences

Example

- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

TU/e

Equivalences

Example

- unwinding and duplication preserves bisimulation
- Sensitive to the moment of choice

Equivalences

Let two Kripke Structures over $A P$ be given:

- $M=\left\langle S, R, S_{0}, L\right\rangle$ and
- $M^{\prime}=\left\langle S^{\prime}, R^{\prime}, S_{0}^{\prime}, L^{\prime}\right\rangle$

Definition (bisimilarity)

Two states $s \in S$ and $s^{\prime} \in S^{\prime}$ are bisimilar, if for some bisimulation relation $B, s B s^{\prime}$. The Kripke Structures M and M^{\prime} are bisimilar (notation: $M \equiv M^{\prime}$) iff there exists a bisimulation relation B, "containing initial states", i.e.:

- $\forall s_{0} \in S_{0} \exists s_{0}^{\prime} \in S_{0}^{\prime}: s_{0} B s_{0}^{\prime}$
- $\forall s_{0}^{\prime} \in S_{0}^{\prime} \exists s_{0} \in S_{0}: s_{0} B s_{0}^{\prime}$

Note:

- bisimilarity is an equivalence relation
- the union of bisimulation relations is again a bisimulation relation
- "bisimilarity" itself is the greatest bisimulation relation

TU/e

Equivalences

Strong bisimulation preserves CTL*:

- Recall the CTL* semantics:
- $M, s \models f$: state formula f holds in state s,
- $M, \pi \models f$: path formula f holds along path π.
- Recall that $M \models f$ iff for all $s_{0} \in S_{0}, M, s_{0} \models f$.

Theorem (14)
If $M \equiv M^{\prime}$ (i.e. M and M^{\prime} are bisimilar), then for every CTL* state formula f :

$$
M \models f \quad \text { iff } \quad M^{\prime} \models f
$$

Practical consequence: In order to check $M \models f$, it is safe and sufficient to:

1. Reduce M to M^{\prime} modulo bisimilarity,
2. Check whether $M^{\prime} \models f$.

Equivalences

Proof sketch:
Given a relation B, we define that path π corresponds to path π^{\prime} iff: $\forall i$. $\pi(i) B \pi^{\prime}(i)$
Lemma (31)
If B is a bisimulation relation and s $B s^{\prime}$ (correction to Lemma 31), then for every $\pi \in \operatorname{path}(s)$ there exists a corresponding path $\pi^{\prime} \in \operatorname{path}\left(s^{\prime}\right)$ (and vice versa).

Next, with structural induction on CTL* formula f one can show: if s and s^{\prime} are bisimilar and π and π^{\prime} correspond, then:

1. $s \models f$ if and only if $s^{\prime} \models f$
2. $\pi \models f$ if and only if $\pi^{\prime} \models f$

From this, the theorem follows:
for all M, M^{\prime} and CTL* formulae $f:$ if $M \equiv M^{\prime}$ then $M \models f$ iff $M^{\prime} \models f$.

TU/e

Equivalences

Theorem (reverse)
If $M \not \equiv M^{\prime}$ then there exists a formula f in $C T L$, such that $M \models f$ and $M^{\prime} \notin f$.

- Note that both systems have the same paths.
- There is no bisimulation relation between these two systems containing the initial states.
- Indeed, the following CTL formula holds in (the initial state of) the right system, but not on the left: $\mathrm{A} \times(b \wedge E \times d)$
- We will see later that using E is essential.

TUle

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

Pre-orders

- bisimilar models have the same behaviour, so they make true exactly the same properties.
- Idea: If we allow to really forget information, we may:
- reduce the state space further, but:
- preserve only a smaller class of formulae.
- We say that system M^{\prime} simulates system M if M^{\prime} has at least the behaviour of M.

Let two Kripke Structures be given:

- $M=\left\langle A P, S, R, S_{0}, L\right\rangle$ and
- $M^{\prime}=\left\langle A P^{\prime}, S^{\prime}, R^{\prime}, S_{0}^{\prime}, L^{\prime}\right\rangle$, with $A P \subseteq A P^{\prime}$.

Definition (Simulation Relation)

A relation $H \subseteq S \times S^{\prime}$ is a simulation relation iff for every $s \in S$ and $s^{\prime} \in S^{\prime}$ with $s H s^{\prime}$:

- $L(s) \cap A P^{\prime}=L^{\prime}\left(s^{\prime}\right)$
- for all s_{1}, if $s R s_{1}$, then there exists s_{1}^{\prime} such that $s^{\prime} R^{\prime} s_{1}^{\prime}$ and $s_{1} H s_{1}^{\prime}$.

Pre-orders

Definition (Simulation)

M^{\prime} simulates M (written: $M \sqsubseteq M^{\prime}$) iff there exists a simulation relation H, such that

$$
\forall s_{0} \in S_{0} . \exists s_{0}^{\prime} \in S_{0}^{\prime} . s_{0} H s_{0}^{\prime}
$$

This defines an equivalence relation as follows: $M \sim M^{\prime}$ iff $M \sqsubseteq M^{\prime}$ and $M^{\prime} \sqsubseteq M$.
Note:

- \sqsubseteq is a pre-order on Kripke Structures (i.e. it is reflexive and transitive, but not necessarily symmetric).
- Warning:
- it is possible that $M \sim M^{\prime}$ but still $M \not \equiv M^{\prime}$
- In words: if two systems simulate each other, they need not be bisimilar.
- Intuitively: the two simulations may use a different H, while a bisimulation requires one B.

TUle

Pre-orders

- $M \sqsubseteq M^{\prime}$ but not $M^{\prime} \sqsubseteq M$;
- $N \sim N^{\prime}$ but $N \not \equiv N^{\prime}$.

Pre-orders

Definition (ACTL*)

ACTL* (see p.31) is the fragment of CTL* with only universal path quantifiers, no existential path quantifiers.

Note:

- This only makes sense for formulae in positive normal form, i.e. negations only occur directly in front of atomic propositions.
- Examples: A F $G p, \mathbf{A} \mathbf{G}(p \rightarrow \mathbf{A} \mathbf{X} q)$ are in ACTL^{*}, but $\mathrm{A} \mathbf{G}(p \rightarrow \mathbf{E} \mathbf{X} q)$ is not. Careful: $(\mathrm{A} G p) \rightarrow(\mathrm{A} G q)$ is not in ACTL*, because actually:

$$
\begin{aligned}
(\mathrm{A} \mathrm{G} p) \rightarrow(\mathrm{A} \mathrm{G} q) & \equiv \neg(\mathrm{A} \mathrm{G} p) \vee(\mathrm{A} \mathrm{G} q) \\
& \equiv(\mathrm{E} F \neg p) \vee(\mathrm{A} \mathrm{G} q)
\end{aligned}
$$

Pre-orders

Simulation preserves ACTL*:
Theorem
If $M \sqsubseteq M^{\prime}$ (i.e. M^{\prime} simulates M), then for every $A C T L^{*}$ state formula f over $A P^{\prime}$:

$$
\text { if } M^{\prime} \models f \quad \text { then } \quad M \models f
$$

Practical consequence: In order to check $M \models f$, it is safe to find an approximation M^{\prime} with $M \sqsubseteq M^{\prime}$ and check that $M^{\prime} \models f$.
However: if $M^{\prime} \not \models f$, we obtain no information about $M \models f$ - it may or may not hold.

In the previous example, we had: $N \sim N^{\prime}$ but $N \not \equiv N^{\prime}$. Hence:

- N and N^{\prime} satisfy the same ACTL* formulae
- N and N^{\prime} do not satisfy the same CTL formulae
- They can only be distinguished using operator E.

TUle

Pre-orders

Example

- Observe that $M \sqsubseteq M^{\prime}$ with H indicated left.
- Note that $M^{\prime} \models \mathrm{A} \mathrm{G} \neg d$ and hence $M \vDash \mathrm{~A} G \neg d$.
- Note that $M^{\prime} \not \models \in \mathrm{AF}(b \vee c)$, but actually $M \vDash \mathrm{AF}(b \vee c)$. This shows that some information is really lost.
- Note: $M \models \mathrm{AX}$ a but $M^{\prime} \not \models=\mathrm{AX} a$ (wrong direction) conclusion: $M^{\prime} \nsubseteq M$.
- Note: $M^{\prime} \models \mathrm{EX} b$, but $M \nless E \times b$ (not in ACTL*).

TUle

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

Bisimulation Reduction

Computing Bisimulation Equivalence:
Let two Kripke Structures be given:

- $M=\left\langle A P, S, R, S_{0}, L\right\rangle$ and
- $M^{\prime}=\left\langle A P, S^{\prime}, R, S_{0}^{\prime}, L^{\prime}\right\rangle$.

Define a sequence of relations $s B_{i}^{*} s^{\prime}$ iff s and s^{\prime} cannot be distinguished within i steps:

- $s B_{0}^{*} s^{\prime}$ if and only if $L(s)=L^{\prime}(s)$.
- $s B_{n+1}^{*} s^{\prime}$ if and only if:

1. $s B_{n}^{*} s^{\prime}$, and
2. $\forall s_{1}$ with $R\left(s, s_{1}\right), \exists s_{1}^{\prime}$ with $s^{\prime} R^{\prime} s_{1}^{\prime}$ and $s_{1} B_{n}^{*} s_{1}^{\prime}$.
3. $\forall s_{1}^{\prime}$ with $R^{\prime}\left(s^{\prime}, s_{1}^{\prime}\right), \exists s_{1}$ with $s R s_{1}$ and $s_{1} B_{n}^{*} s_{1}^{\prime}$.

- Let $B^{*}:=\bigcap_{i} B_{i}^{*}$

Clearly, $B_{i}^{*} \supseteq B_{i+1}^{*}$, so B^{*} can be computed by fixed point iteration.
Actually, this can be implemented symbolically by OBDDs

Bisimulation Reduction

- Actually: B^{*} is the largest bisimulation between M and M^{\prime}.
- So: if s and s^{\prime} are bisimilar, then $s B^{*} s^{\prime}$.
- To test if $M \equiv M^{\prime}$: check if for each $s_{0} \in S_{0}$ there exists an $s_{0}^{\prime} \in S_{0}^{\prime}$ such that $s_{0} B^{*} s_{0}^{\prime}$.
- By carefully splitting equivalence classes, the procedure can run in $\mathcal{O}(|R| \times \log (|S|))$ time (Paige-Tarjan).
- Similar ideas apply to checking $M \sqsubseteq M^{\prime}$.

The algorithm can be modified for state space reduction as follows:

- The equivalence classes of B^{*} form the states of the reduced state space (minimal modulo bisimulation).
- The transitions between two classes are derived from the transitions between elements of these classes.

TUle

Outline

Equivalences

Pre-orders

Bisimulation Reduction

Summarising

Summarising

- Bisimulation is an equivalence relation.
- Bisimulation preserves CTL* formulae.
- Simulation is a pre-order.
- Simulation preserves ACTL* formulae only, and only in one direction.
- Simulation allows for more reduction but sometimes crucial information is lost.
- Bisimulation and Simulation reduction can be computed in polynomial time.

Possible improvement: Instead of:

1. generating state space
2. reducing state space
3. model checking reduced state space,
it would be better to generate a smaller state space immediately.
