
Algorithms for Model Checking (2IW55)
Lecture 9

Data Abstraction
Chapter 13

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/9

Bounded Retransmission Protocol

The Bounded Retransmission Protocol:
It sends elements from a list l one by one over an unreliable channel
On time-out, it will resend elements, at most max times
The status indicates if the list arrived correctly

Informal sketch of the behaviour of the BRP:

Ready

Waiting Sending

start new
?l, ?max

send next elt

buf := head(l)
max := max− 1

acknowledge/cont

l := tail(l) 6= nil

timeout & retry

max > 0

timeout & giveup
max = 0
status := NOK/DK

acknowledge/finished
l := tail(l) = nil
status := OK

3/9

Bounded Retransmission Protocol

We have the following variables (vi) with their domains (Di)

l : List[Data]

max : Nat

state : State (= {Ready, Sending, Waiting})
status : Status (= {OK, NOK, DK})
buf : Data

Example states (for convenience, take Data = Nat):

(l 7→ [3, 4], max 7→ 5, state 7→ Sending, status 7→ OK, buf 7→ 3)

(l 7→ [4], max 7→ 0, state 7→Waiting, status 7→ NOK, buf 7→ 4)

4/9

Bounded Retransmission Protocol

Specification of the Bounded Retransmission Protocol:

Initial states: S0 := (state = Ready)
Transitions:

1 Start_new_transmission :=
state = Ready ∧ state′ = Sending

2 Send_next_element :=
state = Sending ∧ state′ = Waiting ∧max = max′ + 1 ∧ buf ′ = head(l) ∧ l = l′

3 Get_acknowledgement :=
state = Waiting ∧ l′ = tail(l) ∧ ((l′ = [] ∧ state′ = Ready ∧ status′ = OK) ∨ (l′ 6=
[] ∧ state′ = Sending ∧max′ = max))

4 T imeout_and_retry :=
state = Waiting ∧max > 0 ∧ state′ = Sending ∧ l = l′ ∧max = max′

5 T imeout_and_give_up :=
state = Waiting ∧max = 0 ∧ state′ = Ready ∧ ((status′ = DK ∧ l = []) ∨ (status′ =
NOK ∧ l 6= []))

The full transition relation R is defined as:

Start_new_transmission ∨ Send_next_element
∨ Get_acknowledgement ∨ T imeout_and_retry
∨ T imeout_and_give_up

5/9



Bounded Retransmission Protocol

The Kripke Structure underlying the BRP specification is infinite

The control-aspects of the system can be studied by model checking by abstracting
from the data and the counter (a finite abstraction is needed)

Abstract domains:
AList := {empty, non_empty}
ANat := {·}
AData := {·}
AState := State
AStatus := Status

Abstraction mapping:
h(n:Nat) = h(d:Data) = ·
h([]) = empty, h(x ` l) = non_empty
h(s:State) = s, h(s:Status) = s

6/9

Examples of abstract labels cAP:bl = empty,bl = non_empty, dmax = ·, ŝtate = waiting, etcetera.

Labels in L′:

L′((l 7→ [3, 4], max 7→ 5, state 7→ Sending, status 7→ OK, buf 7→ 3))
=

(bl 7→ non_empty, dmax = ·, ŝtate = Sending, ŝtatus = OK, dbuf = ·)

So, we can still express properties like:

A G (ŝtatus = OK −→ bl = empty)

7/9

Bounded Retransmission Protocol

Abstract specification of the Bounded Retransmission Protocol:
Initial states: S0 := (ŝtate = Ready)
Transitions:

1 Start_new_transmission :=

ŝtate = Ready ∧ ŝtate′ = Sending
2 Send_next_element :=

ŝtate = Sending ∧ ŝtate′ = Waiting ∧ bl′ = bl
3 Get_acknowledgement :=

ŝtate = Waiting ∧ ((bl′ = empty ∧ ŝtate′ = Ready ∧ ŝtatus′ = OK) ∨ (bl′ =
non_empty ∧ ŝtate′ = Sending))

4 T imeout_and_retry :=

ŝtate = Waiting ∧ ŝtate′ = Sending ∧ bl = bl′
5 T imeout_and_give_up :=

ŝtate = Waiting ∧ ŝtate′ = Ready ∧ ((ŝtatus′ = DK ∧ bl = empty) ∨ (ŝtatus′ =
NOK ∧ l = non_empty))

The full transition relation R is defined as:
Start_new_transmission ∨ Send_next_element

∨ Get_acknowledgement ∨ T imeout_and_retry
∨ T imeout_and_give_up

8/9

Bounded Retransmission Protocol

Informal sketch of the abstract behaviour of the BRP:

Ready

Waiting Sending

start new
?l

send next elt

acknowledge/cont

l := non_empty

timeout & retry

timeout & giveup

status := NOK/DK

acknowledge/finished
l := empty
status := OK

9/9


	Bounded Retransmission Protocol

