

Bounded Retransmission Protocol

We have the following variables (v_i) with their domains (D_i)

- l : List[Data]
- max : Nat
- state : State (= {Ready, Sending, Waiting})
- status : Status $(= \{OK, NOK, DK\})$
- buf : Data

Example states (for convenience, take Data = Nat):

- $(l \mapsto [3, 4], max \mapsto 5, state \mapsto \mathsf{Sending}, status \mapsto OK, buf \mapsto 3)$
- $(l \mapsto [4], max \mapsto 0, state \mapsto Waiting, status \mapsto NOK, buf \mapsto 4)$

- $Start_new_transmission \lor Send_next_element$
- \lor Get acknowledgement \lor Timeout and retry
- \lor Timeout_and_give_up

department of mathematics and computing science

Bounded Retransmission Protocol

- The Kripke Structure underlying the BRP specification is infinite
- The control-aspects of the system can be studied by model checking by abstracting from the data and the counter (a finite abstraction is needed)
- Abstract domains:
 - $A_{\text{List}} := \{empty, non_empty\}$ $A_{\text{Nat}} := \{\cdot\}$

 - $A_{\mathsf{Data}} := \{\cdot\}$
 - A_{State} := State
 - A_{Status} := Status
- Abstraction mapping:
 - $h(n:Nat) = h(d:Data) = \cdot$
 - $h([]) = empty, h(x \vdash l) = non empty$
 - h(s:State) = s, h(s:Status) = s

Technische Universiteit **Sof Bastroct**nlabels AP: p.g. (Leiwernit_oklath; while = ., state = waiting, etcetera.

• Labels in L':

 $L'((l \mapsto [3, 4], max \mapsto 5, state \mapsto \mathsf{Sending}, status \mapsto OK, buf \mapsto 3))$ = $(\widehat{l} \mapsto non \ empty, \widehat{max} = \cdot, \widehat{state} = \mathsf{Sending}, \widehat{status} = OK, \widehat{buf} = \cdot)$

• So, we can still express properties like:

A G ($\widehat{status} = OK \longrightarrow \widehat{l} = empty$)

Bounded Retransmission Protocol

Abstract specification of the Bounded Retransmission Protocol:

department of mathematics and computing science

- Initial states: $S_0 := (\widehat{state} = \mathsf{Ready})$
- Transitions:
 - Start new transmission := $\widehat{state} = \mathsf{Ready} \land \widehat{state'} = \mathsf{Sending}$
 - Send next element :=
 - $\widehat{state} = \text{Sending} \land \widehat{state'} = \text{Waiting} \land \widehat{l'} = \widehat{l}$
 - 3 Get acknowledgement :=
 - $\widehat{state} = \mathsf{Waiting} \land ((\widehat{l'} = empty \land \widehat{state'} = \mathsf{Ready} \land \widehat{status'} = OK) \lor (\widehat{l'} = OK)$ non $empty \land \widehat{state'} = Sending)$
 - \bigcirc Timeout and retry :=
 - $\widehat{state} = \mathsf{Waiting} \land \widehat{state'} = \mathsf{Sending} \land \widehat{l} = \widehat{l'}$
 - Timeout and give up :=
 - $\widehat{state} = \mathsf{Waiting} \land \widehat{state'} = \mathsf{Ready} \land ((\widehat{status'} = DK \land \widehat{l} = empty) \lor (\widehat{status'} = DK \land \widehat{l} = empty) \lor (\widehat{status'} = DK \land \widehat{l} = empty) \lor (\widehat{status'} = empty) \lor (\widehat{st$ $NOK \wedge l = non \ empty))$
- The full transition relation \mathcal{R} is defined as:
 - $Start \ new \ transmission \lor Send \ next \ element$
 - \lor Get acknowledgement \lor Timeout and retry
 - \lor Timeout and give up

department of mathematics and computing science

Bounded Retransmission Protocol

Informal sketch of the abstract behaviour of the BRP:

