Examination Algorithms for Model Checking (2IW55)
7 January, 2009, 14:00 — 17:00

Important notes:
- The exam consists of four questions.
- Weighting: 1: 20, 2: 20, 3: 30, 4: 30.

- Carefully read and answer the questions. The book, the course notes and other
written material may be used during this examination.

1. Consider the following Kripke Structure, where {p, q,r} is the set of atomic proposi-
tions. Assume as fairness constraint the set of states satisfying r.

{g,r} (59) {r}

{r} {rt A{p,¢}

Use the labelling algorithm for CTL to compute the set of states that fairly satisfy
EGE[pUg. fEGE[pU g] holds fairly in state sy compute a witness from this
state. Show the intermediate steps in all your computations.

Answer (sketch only).

The fairness constraint r translates to F = {{s2,s4}}; so, any path hitting either
So or sy infinitely often is a fair path (it is not required to hit both states infinitely
often). With that in mind, it is easy to see that E G E [p U q] holds in so,s; and
so. This can be substantiated by means of a computation. For this, the below steps,
in the presented order, are required. Fach step is worth 5 points; the witness (with a
formal argument) yields another 5 points.

1. label all states in the KS that satisfy E G true fairly with the proposition fair;
technically, this requires a decomposition into SCCs (trivial SCC {s¢}, non-
trivial SCCs {s1, 2} and {s3, s4}); results in labelling all states with fair;

2. label each state for which E [p U (gAfair)] holds; perform a backwards reachability
for states satisfying p, starting in states satisfying q N\ fair. Results in labelling
all states except for sy;

3. label each state for which E G E [p U (g A fair)] holds; first restrict the KS to
those states satisfying E [p U (qA fair)]; compute the SCCs in the restricted graph
(trivial SCC {so}, non-trivial SCC {s1, s2}); perform a backwards reachability
for states satisfying E [p U (g A fair)]. This results in labelling states {sq, s1, S2}-

(a) Since the property holds in sg, one has to provide a witness. Two options:
i. use the witness calculation scheme based on fized points (for that, the orig-
inal formula must be rephrased to a fixed point formula).
i1. use the labels added to the states in computing E G E [p U ¢q|. Construct an
infinite path through states satisfying that have this label.

Both routes should yield either so s1 (8%) or so (81 s2); both are fine.

2. Consider the following four Kripke Structures (I through IV), where {p, ¢, r, s} is the
set of atomic propositions and — marks the initial state.

II1 IV

O !

(a) Determine whether the following properties hold for graphs I, IT and III. If so,
give the simulation relation that supports your answer. If not, give a formula
in CTL* that witnesses this fact.

i. I simulates IT (i.e., II C I)
ii. II simulates I (i.e., I C II)
iii. I simulates III (i.e., IIT C I)
iv. IIT simulates I (i.e., I C III)

(b) Compute the bisimulation relation B* between III and IV. Show the interme-
diate approximations B} for B*. Use explicit set notation instead of BDDs.

Answer (sketch only).

Fach correctly motivated answer in (a) is worth 4 points; observations of (non-
)simulation are worth only 1 point; (b) is worth another 4 points.

Question (a). We have: II C I, IITI C I and I C III, which follows immediately
from applying the definition of a simulation. We do not have I C II. A counterex-
ample must be taken from the CTL* subset ACTL*, or —by duality— the subset ECTL*
(analogous to ACTL" but with E path quantifiers only). We have:

2

e IEEX(EXrAEXs) andIIFEX (EXrAEXs), or
e ILAX(AXrVAXs) andIIl=AX (AX7rVAXs).

Question (b). Obviously, III and IV are strong bisimilar. The computation stabilises
immediately: By = BY, and, hence, B* = Bj. Give each state a unique name, e.g.,
label each state with their proposition and KS name, and in case of doubles (e.g.,
proposition q), introduce a tagging ¢* and ¢*. We then have:

By = {(pIH,Plv), (Q}H: QIV)7 (Q?Hv CJIV), (7“111, TIV), (SIH: SIV)}
B = {(pHIapIV)> (Q}ID CIIV)> (Q%Ib CIIV)> (7“111, TIV), (8111, SIV)}

. Consider the LPE description of a lossy channel system, where actions r,s and [
represent receiving, sending and losing, respectively.
C(b:Bool,m:Nat) = Y. b—r(k)-C(false, k)
k:Nat
+ b — s(m) - C(true,m)
+ —b—1-C(true,m)

Let ¢ be first-order modal p-calculus formula vX. pY.(() X Vv (-1)Y).

(a) Verify whether the PBES given below can be the result (up to logical equiva-
lence) of the transformation E ¢ applied to C'. Clearly relate the (sub)expressions
in the PBES to the (sub)expressions in ¢, or mark the (sub)expression(s) of ¢
that demonstrate(s) an error in the transformation and correct it.

vX(b:Bool,m:Nat) = Y(b, m))

pY (b:Bool,m:Nat) = (=bA X(true,m))

V' (=b A Y (true,m)

V. (3k:Nat. b A Y (false, k)))

(b) If possible, compute and solve a Boolean Equation System from the above PBES
that answers whether X (true,0) = true, or clearly indicate why this cannot be
done.

Answer (sketch only).

Building the carcas using E will give you 5 points; doing the same for the RHS op-
erator will earn you another 10 points. Showing your skills in instantiation, and
observing that it will not terminate on the original PBES will give you &5 points;
observing that parameter m is redundant in X and Y will give you 5 points; trans-
forming the PBES to one without natural numbers, applying the right theorem and
instantiating the resulting PBES is worth another 5 points.

Question (a). Apply the following steps in the following order:

3

~

. Apply E to ¢, which gives rise to the equation for X and Y .

2. Observe that RHS(pY.((HX V (=1)Y)) = Y (b, m);

3. Observe that RHS({) X Vv (=1)Y) = RHS({[)X) V RHS({(—) X);

4. Observe that RHS(([)X) = (=b A X (true,m));

5. Observe that RHS((=1)Y') = ((=b A Y (true,m)) V (3k:Nat. b AY (false, k)));

Question (b). Observe that a straightforward instantiation of the given PBES will
not terminate; the existential quantifier cannot be removed. However, we find that
variable m is redundant in both X and Y, so, we can find an equivalent PBES in
which only Booleans occur. To prove that this is the case, proceed as follows:

1. Construct the marked influence graph, using the notions of significant variables
and the dependency set:
o Vertices: {(X,0), (X,m), (V,b), (Y, m)};
e Fdges: (X,b) — (Y,b), (X,m) — (Y,m), (Y,m) — (X,m), (Y,m) —
(Y, m);
e Markings: (Y,b)
2. Perform a reachability analysis, finding out from which vertices vertex (Y,b) is

reachable (only (X,b) and (Y,b));

3. This implies that variable m can be removed from X andY .

The resulting PBES after elimination of m and logical simplification is:

vX (b:Bool) = ?(b))

pY (b:Bool) = (=b A X(true)) V (=b A Y (true) vV (b A ?(false)))

Observe that there is no longer an existential quantification over natural numbers in
this equivalent PBES, and all data types occurring in the PBES are of finite cardi-
nality. This means that instantiation 1s guaranteed to terminate. Instantiation of the
PBES starting from X (true) yields the following BES:

pXxtrue _ ytrue
uytrue _y false
% false _ ytrue,, ytrue

which leads to the answer true for Xtrue} and, hence, for any m € Nat, we have
X (true,m) = true; in particular, we have X (true,0) = true.

. Consider the Timed Automaton with three locations A, B and C, two clocks z, y and
one action a. Location A is the initial location.

a, x> 1, {z}

% Q ° W} @:ja W)
w y<2 1<y ’

(a) Is the Timed Automaton non-Zeno? If so, give a proof. If not, give a Zeno path.

(b) Can the Timed Automaton timelock? Substantiate your answer using a trans-
formation to the region automaton of the Timed Automaton.

Answer (sketch only).

Observing that the TA is non-Zeno is worth 5 points; proving this leads to an ad-
ditional 5 points. Observing that there is a time-lock in the TA 1is worth 5 points;
constructing a Region Automaton from the TA, yields between 5 and 15 points, de-
pending on the correctness and the appropriateness of the fragment of the RA which
is displayed (15 points for the full RA, slightly less for partial RAs that still explain
the time-lock).

Question (a). The TA is non-Zeno. To substantiate this bold claim, it suffices to
show that both control cycles in the TA increase time by at least 1 time-unit each
time the loop is run. We have:

1. Cycle (A B)“: clock x is reset; there is a guard x > 1 in this cycle;

2. Cycle C¥: clock y is reset; there is an invariant y > 1 immediately after the
reset of y.

The above analysis also reveals that once location C' is reached, there is no way to
ensure progress. A closer look at the TA indicates that location C' is not reachable,
so it suffices to further study the TA with locations A and B only.

Question (b). The TA can time-lock. The sequence of events that leads to this time-
lock are for instance waiting for 1 sec in A, execute a, wait 1 sec in B, execute a, and
immediately execute a again. This chain of events can be found by studying the RA of
the TA. The construction of the RA follows the recipe given in the TA handout (also
on the slides). The entire RA is depicted on the next page; the encoding is as follows:
clocks are compared against integers, and, in case of inequalities of both x and y
(other than against c, or c,, i.e., the largest values to which clocks are compared),
an extra constraint tells whether the fraction of x is smaller, equal or greater than
the fraction of y. The 4 different deadlocking states represent the different the /
situations in which the TA can time-lock.

0<z<1

O0<y<1
rT=1y

O0<z<l1
O0<y<1
rT=1y

0<z<l1
2<y

r=1
2<y

l1<x<?2

2<y

2<y
0<z<l1

2<y
1<z <2

