

Algorithms for Model Checking (2IW55) Lecture 12 Timed Verification: Timed Automata Background material:Chapter 16, 17 and handout R. Alur, "Timed Automata"

Tim Willemse

(timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

department of mathematics and computing science

Outline

- 2 Analysing Semantics
- 3 Reachability Problem
- 4 Clock Equivalence
- 5 Region Automata
- 6 Exercise

Recalling notation:

- A clock valuation ν for a set C of clocks is a function $\nu: C \to \mathbb{R}_{\geq 0}$
- We write $\nu \models \phi$ iff $[\phi]_{\nu} =$ true.
- Clock valuation update: $\nu + d$ is defined as: $(\nu + d)(x) = \nu(x) + d$ for all $d \in \mathbb{R}_{\geq 0}$.
- Clock valuation reset: $[\nu]_R$ is defined as: $[\nu]_R(x) = 0$ if $x \in R$, else $\nu(x)$.
- Let $\mathcal{C}(C)$ be the set of clock constraints over C.

A timed automaton is a tuple $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$

- L is a finite set of locations; $L_0 \subseteq L$ is a non-empty set of initial locations
- Act is the set of actions
- C is a finite set of clock variables
- $\longrightarrow \subseteq L \times C(C) \times Act \times 2^C \times L$ is the set of switches
- $\iota: L \to \mathcal{C}(C)$ is the invariant assignment function

Recalling intuition:

- A switch $l \xrightarrow{g \ a \ R} l'$ means that:
 - action *a* is enabled whenever guard *g* evaluates to true.
 - upon executing the switch, we move from location l to location l^\prime and reset all clocks in R to zero.
 - only locations l' that can be reached with clock values that satisfy the location invariant.
- an invariant $\iota(l)$ limits the time that can be spent in location l.
 - staying in location *l* only is allowed as long as the invariant evaluates to true.
 - before the invariant becomes invalid location *l* must be left.
 - if no switch is enabled when the invariant becomes invalid no further progress is possible: timed deadlock, or time-lock.

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton. Its semantics is defined as a timed transition system: $[\mathcal{T}] = \langle S, S_0, Act, \rightarrow, \mapsto \rangle$

• $S = \{(l, \nu) \in L \times (C \to \mathbb{R}_{\geq 0}) \mid \nu \models \iota(l)\}$, i.e. all combinations of locations and clock valuations that do not violate the location invariant.

•
$$S_0 = \{(l,\nu) \in L_0 \times (C \to \mathbb{R}_{\geq 0}) \mid \nu \models \iota(l) \land \forall x \in C : \nu(x) = 0\}.$$

• $\longrightarrow \subseteq S \times Act \times S$ is defined as follows:

$$\frac{l \xrightarrow{g \ a \ R}}{(l, \nu) \xrightarrow{a} (l', \nu')} \frac{\nu \models g \land \iota(l) \quad \nu' = [\nu]_R \quad \nu' \models \iota(l')}{(l, \nu) \xrightarrow{a} (l', \nu')}$$

• $\mapsto \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is defined as follows:

$$\frac{\nu \models \iota(l) \qquad \nu + d \models \iota(l)}{(l, \nu) \stackrel{d}{\mapsto} (l, \nu + d)}$$

Outline

- Timed Automata
- 2 Analysing Semantics
- 3 Reachability Problem
- 4 Clock Equivalence
- 6 Region Automata
- 6 Exercise

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton.

- Assume $\nu \models \iota(l)$ and $\nu + d \models \iota(l)$ for fixed $d \in \mathbb{R}_{\geq 0}$
- A possible execution fragment starting from the location l is:

$$(l,\nu) \stackrel{d_1}{\mapsto} (l,\nu+d_1) \stackrel{d_2}{\mapsto} (l,\nu+d_1+d_2) \stackrel{d_3}{\mapsto} (l,\nu+d_1+d_2+d_3) \stackrel{d_4}{\mapsto} \dots$$

- where $d_i > 0$ and the infinite sequence $d_1 + d_2 + \ldots$ converges towards d
- such path fragments are called time-convergent, i.e. time advances only up to a certain value.
- Time-convergent execution fragments are unrealistic and ignored
 - compare to unrealistic executions in Kripke Structures and fairness constraints that eliminate these

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton.

- Infinite path π is time-divergent if $\Delta(\pi) = \infty$
- The function $\Delta:\textit{Act} \cup \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is defined as follows:

$$\Delta(\tau) = \begin{cases} 0 & \text{if } \tau \in Act \\ d & \text{if } \tau = \tau \in \mathbb{R}_{\geq 0} \end{cases}$$

• For infinite execution fragments $\sigma = s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \dots$ in $[\mathcal{T}]$ (with $\Longrightarrow \in \{\rightarrow, \mapsto\}$), let:

$$\Delta(\sigma) = \sum_{i=0}^{\infty} \Delta(\tau_i)$$

- for path fragment π in $[\mathcal{T}]$ induced by execution fragment σ : $\Delta(\pi) = \Delta(\sigma)$
- For a state $s \in [\mathcal{T}]$: $\mathsf{Path}_{\mathsf{div}}(s) = \{\pi \in \mathsf{path}(s) \mid \pi \text{ is time-divergent}\}$

• The path $\pi \in [\mathsf{Light}]$ in which on-and off-periods of one/two time units alternate:

 $\pi = (\mathsf{off}, 0) ~(\mathsf{off}, 1) ~(\mathsf{on}, 0) ~(\mathsf{on}, 1) (\mathsf{on}, 2) ~(\mathsf{off}, 2) ~(\mathsf{off}, 3) ~(\mathsf{on}, 0) ~(\mathsf{on}, 1) \dots$

is time-divergent as $\Delta(\pi) = 1 + 2 + 1 + 2 + \ldots = \infty$

• The path:

$$\pi' = (\text{off}, 0) \ (\text{off}, \frac{1}{2}) \ (\text{off}, \frac{3}{4}) \ (\text{off}, \frac{7}{8}) \ (\text{off}, \frac{15}{16}) \ \dots$$

is time-convergent, since $\Delta(\pi') = \sum\limits_{i \geq 1} (\frac{1}{2})^i = 1 < \infty$

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton.

- State $s \in [\mathcal{T}]$ contains a timelock if $\mathsf{Path}_{\mathsf{div}}(s) = \emptyset$
 - there is no behaviour in s where time can progress ad infinitum
- \mathcal{T} is timelock-free if no reachable state in $[\mathcal{T}]$ contains a timelock
- $\bullet\,$ Thus, timelocks can only be detected by means of an analysis of the infinite semantics of ${\cal T}\,$
- Timelocks are usually modelling flaws that should be avoided
 - like deadlocks, we need mechanisms to check their presence

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton.

- If \mathcal{T} can perform infinitely many actions in finite time it is Zeno
- A path π in $[\mathcal{T}]$ is Zeno if:
 - it is time-convergent, and
 - infinitely many actions $a \in \mathit{Act}$ are executed along the execution fragment σ underlying path π
- T is non-Zeno if there is no initial Zeno path in [T], i.e., for all paths π :
 - $\pi \in \mathsf{path}([\mathcal{T}])$ is time-divergent or
 - π is time-convergent, with nearly all (except for finitely many) transitions being delay transitions
- Zeno paths are considered modelling flaws that should be avoided
 - like deadlocks and timelocks, we need mechanisms to check for Zenoness
- Zenoness can be checked syntactically

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton.

Non-Zenoness can be checked directly on the Timed Automaton:

Suppose that for every control cycle:

$$l_0 \xrightarrow{g_1 \ a_1 \ R_1} l_1 \xrightarrow{g_2 \ a_2 \ R_2} \dots \xrightarrow{g_n \ a_n \ R_n} l_n$$

with $l_0 = l_n$, there exists a clock $x \in C$ such that:

- $x \in R_i$ for some $0 < i \le n$, and
- 2) for all clock evaluations v:

$$\nu(x) < 1 \text{ implies } (\nu \not\models g_j \text{ or } \nu \not\models \iota(l_j)) \text{ for some } 0 < j \leq n$$

Then ${\mathcal T}$ is non-Zeno

Outline

- Timed Automata
- 2 Analysing Semantics
- 3 Reachability Problem
- 4 Clock Equivalence
- 6 Region Automata
- 6 Exercise

Reachability Problem

Problem Statement

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a non-Zeno Timed Automaton and $L_F \subseteq L$. The reachability problem (\mathcal{T}, L^F) is defined as:

 $\exists \pi \in \mathsf{Path}_\mathsf{div}([\mathcal{T}]): \ \pi(0) \in L^0 \times (C \to \mathbb{R}_{\geq 0}) \land \exists i \in \mathbb{N}: \pi(i) \in L^F \times (C \to \mathbb{R}_{\geq 0})$

- Problem: $[\mathcal{T}]$ is infinite state, so it cannot be explored exhaustively.
- \bullet Solution: construct a finite quotient of $[{\cal T}]$ with respect to a bisimulation relation \sim

Reachability Problem

5

- $[\mathcal{T}]$ contains infinitely many states; only some information is important
- $[\mathcal{T}]$ contains infinitely many transitions; only some are of importance for the reachability problem.

Definition (Time-abstract Transition System)

Let $T = \langle S, S_0, Act, \mapsto, \rightarrow \rangle$ be a timed transition system. The time-abstract transition system of T is defined as $T_a = \langle S, S_0, Act, \Longrightarrow \rangle$, where:

$$s \stackrel{a}{\Longrightarrow} s' \quad \text{iff} \quad \exists d \in \mathbb{R}_{>0}, s'' \in S : \ s \stackrel{d}{\mapsto} s'' \stackrel{a}{\to} s'$$

Observation: (s, v) is reachable in T iff (s, v) is reachable in T_a .

Reachability Problem

Definition (Time-abstract bisimulation)

Let $T_a = \langle S, S_0, Act, \Longrightarrow \rangle$ be a time-abstract transition system. Two states s and u are time abstract bisimilar, denoted s B u iff for all $a \in Act$:

- $s \stackrel{a}{\Longrightarrow} s'$ then there is a state u' such that $u \stackrel{a}{\Longrightarrow} u'$ and s' B u',
- $u \stackrel{a}{\Longrightarrow} u'$ then there is a state s' such that $s \stackrel{a}{\Longrightarrow} s'$ and s' B u'.
- Informally: two states (l, ν) and (l, ν') have the same behaviour when:
 - () Any action transition enabled from ν is also enabled from ν' and the target states have the same behaviour
 - **②** For any delay transition d from ν , there is a delay transition d', such that $(l,\nu+d)$ and $(l,\nu'+d')$ have the same behaviour
- A time-abstract bisimulation relation *B* is L^F sensitive iff whenever $(l, \nu) B(l', \nu')$ implies both *l* and *l'* in L^F or both are not in L^F .
- The reachability problem (\mathcal{T}, L^F) can be solved by looking for an L^F sensitive time-abstract bisimulation relation with finitely many equivalence classes.

Outline

- Timed Automata
- 2 Analysing Semantics
- 3 Reachability Problem
- 4 Clock Equivalence
- 5 Region Automata
- 6 Exercise

Clock Equivalence (1)

- $\nu \models x < c$ whenever $\nu(x) < c$
- Equivalently: $\lfloor \nu(x) \rfloor < c$ (i.e. the greatest integer at most $\nu(x)$
- $\nu \models x \le c$ whenever $\nu(x) < c$ or $\nu(x) = c$
- Equivalently: $\lfloor \nu(x) \rfloor < c \text{ or } \lfloor \nu(x) \rfloor = c \text{ and } \operatorname{frac}(\nu(x)) = 0$

First proposal

Two clock valuations ν and ν' are equivalent, denoted $\nu\sim\nu'$ iff

• for any $x \in C$: $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$ and $\operatorname{frac}(\nu(x)) = 0$ iff $\operatorname{frac}(\nu'(x)) = 0$

ullet Decidability of \sim is guaranteed because clocks are compared to natural numbers.

Example

Consider the following Timed Automaton: $a, x \ge 1$ b, y > 1

- Assume $0 < \nu(x) < 1$ and $0 < \nu(y) < 1$
- Obviously: $(l, \nu) \xrightarrow{q}$ and $(l, \nu) \xrightarrow{b}$
- Invariant l is true, so time may elapse
- The transition that is first enabled depends on x < y or $x \ge y$
- This is not covered in the clock equivalence
- Action a is enabled first if $\operatorname{frac}(\nu(x)) \ge \operatorname{frac}(\nu(y))$

Clock Equivalence (2)

- Clustering clock valuations with equivalent integer bases is not sufficient.
- Ordering of fractional values of clocks is needed.

Second proposal

Two clock valuations ν and ν' are equivalent, denoted $\nu\sim\nu'$ iff

• for any
$$x \in C$$
:
 $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$, and $\operatorname{frac}(\nu(x)) = 0$ iff $\operatorname{frac}(\nu'(x)) = 0$

② for all $x, y \in C$: frac($\nu(x)$) ≤ frac($\nu(y)$) iff frac($\nu'(x)$) ≤ frac($\nu'(y)$)

Example

Consider the following Timed Automaton:

- Problem second proposal: countable, but still infinite: 1 < x < 2, 2 < x < 3, 3 < x < 4, ...
- \bullet Observation: only the clock constraints in ${\cal T}$ are relevant.

Clock Equivalence (3)

- Let $c_x \in \mathbb{N}$ be the largest constant to which x is compared in \mathcal{T}
- If $\nu(x) > c_x$, then the exact value of x is of no importance (x only grows)

Final proposal

Two clock valuations ν and ν' are equivalent, denoted $\nu\sim\nu'$ iff

- for any $x \in C$: $\nu(x), \nu'(x) > c_x$ or $\nu(x), \nu'(x) \le c_x$
- **a** for any $x \in C$: if $\nu(x), \nu'(x) \le c_x$ then: $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$ and frac $(\nu(x)) = 0$ iff frac $(\nu'(x)) = 0$
- for any $x, y \in C$: if $\nu(x), \nu'(x) \leq c_x$ and $\nu(y), \nu'(y) \leq c_y$, then: frac $(\nu(x)) \leq$ frac $(\nu(y))$ iff frac $(\nu'(x)) \leq$ frac $(\nu'(y))$

Example

Consider a Timed Automaton with clocks x and y, with $c_x = 2$ and $c_y = 1$. The clock regions are shown below:

Regions:

 \bullet 6 Corner points, e.g. $\left[(0,0)\right]$

Example

Consider a Timed Automaton with clocks x and y, with $c_x = 2$ and $c_y = 1$. The clock regions are shown below:

Regions:

• 14 Open line segments: e.g. [0 < x = y < 1]

Example

Consider a Timed Automaton with clocks x and y, with $c_x = 2$ and $c_y = 1$. The clock regions are shown below:

Regions:

• 8 Open regions: e.g. [0 < x < y < 1]

• The clock region of $\nu \in [C \to \mathbb{R}_{\geq 0}]$, denoted $[\nu]$ is defined by:

$$[\nu] := \{\nu': C \to \mathbb{R}_{\geq 0} \mid \nu \sim \nu'\}$$

• The state region of a state (l,ν) in $[\mathcal{T}]$ is defined by:

 $[(l,\nu)] := (l,[\nu])$

• The number of clock regions is bounded from below by:

if for all $x \in C$: $c_x \ge 1$ then $R_l := |C|! \times \prod_{x \in C} c_x$

• The number of clock regions is bounded from above by:

 $\text{if for all } x \in C: \ c_x \geq 1 \ \text{then} \ R_u := |C|! \times 2^{|C|-1} \times \prod_{x \in C} (2(c_x+1))$

• The number of state regions in $[\mathcal{T}]/{\sim}$ is finite:

$$|L| \times R_l \leq S/\sim \leq |L| \times R_u$$

Property

Let C be a set of clocks and let $\phi \in C(C)$. For $\nu, \nu' : C \to \mathbb{R}_{\geq 0}$ such that $[\nu] = [\nu']$

$$\nu \models \phi$$
 iff $\nu' \models \phi$

Example

Consider a Timed Automaton with clocks x and y, with $c_x = 2$ and $c_y = 1$.

Outline

- Timed Automata
- 2 Analysing Semantics
- 3 Reachability Problem
- 4 Clock Equivalence
- 5 Region Automata

Let $\mathcal{T} = \langle L, l_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton.

- Clock region $r_{\infty} = \{ \nu \in [C \to \mathbb{R}_{\geq 0}] \mid \forall x \in C : \nu(x) > c_x \}$ is unbounded
- r' is the successor clock region of r, denoted $r' = \operatorname{succ}(r)$, if either: • $r = r_{\infty}$ and r = r', or • $r \neq r_{\infty}, r \neq r'$ and for all $v \in r$: $\exists d \in \mathbb{R}_{\geq 0}: (v + d \in r' \text{ and } \forall 0 \leq d' \leq d: v + d' \in r \cup r')$
- The successor region: $succ((l, \nu)) := (l, succ(\nu))$
- Resetting a region: $r[R := 0] := \{ \nu \in [C \to \mathbb{R}_{\geq 0}] \mid \exists \nu' \in r : \nu = [\nu']_R \}$

Clock regions and their successor regions.

Representation of regions:

If or every clock x, one clock constraint from the set

$$\{x = c \mid c = 0, 1, \dots, c_x\} \cup \{c - 1 < x < c \mid c = 1, \dots, c_x\} \cup \{x > c_x\}$$

for every pair of clocks x and y for which c - 1 < x < c and d - 1 < y < d appear in (1), whether frac(x) is less than, equal to, or greater than frac(y).

Definition (Region Automaton)

The Region Automaton $R(\mathcal{T})$ of a non-Zeno $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ is defined as:

 $R(\mathcal{T}) = \langle S, S_0, Act \cup \{\tau\}, \rightarrow' \rangle$

•
$$S = (L \times (C \rightarrow \mathbb{R}_{\geq 0})) / \sim = \{[s] \mid s \in S_{[\mathcal{T}]}\}$$

•
$$S_0 = \{ [s] \mid s \in S_0 [T] \}$$

• $\rightarrow' \subseteq S \times (Act \cup \{\tau\}) \times S$ is defined as:

$$\frac{l \stackrel{g \ a \ K}{\longrightarrow} l' \quad r \models g \land \iota(l) \quad r[R := 0] \models \iota(l')}{(l, r) \stackrel{a}{\rightarrow} (l', r[R := 0])} \qquad \frac{r \models \iota(l) \quad \operatorname{succ}(r) \models \iota(l)}{(l, r) \stackrel{\tau}{\rightarrow} (l, \operatorname{succ}(r))}$$

- Location l in T is reachable iff a state region (l, r) is reachable in R(T).
- Safety properties can be translated to reachability problems
- Absence of time-lock in TA ${\mathcal T}$ iff $R({\mathcal T})$ does not deadlock.
- Extension to model checking for TCTL follows basically the same recipe.

Outline

- Timed Automata
- 2 Analysing Semantics
- 3 Reachability Problem
- 4 Clock Equivalence
- 5 Region Automata

Exercise

Is the Timed Automaton Non-Zeno when:

R = {*x*} *R* = {*y*}

•
$$R = \{x, y\}$$

Is the Timed Automaton Timelock-free when:

- R = {x}
 R = {y}
- $R = \{x, y\}$

Explain and motivate your answers.