Algorithms for Model Checking (2IW55)
 Lecture 12
 Timed Verification: Timed Automata
 Background material:Chapter 16, 17 and handout R. Alur, "Timed Automata"

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

Outline

(1) Timed Automata
(2) Analysing Semantics
(3) Reachability Problem

4 Clock Equivalence
(5) Region Automata

6 Exercise

Timed Automata

Recalling notation:

- A clock valuation v for a set C of clocks is a function $v: C \rightarrow \mathbb{R}_{\geq 0}$
- We write $v=\phi$ iff $[\phi]_{v}=$ true.
- Clock valuation update: $v+d$ is defined as: $(v+d)(x)=v(x)+d$ for all $d \in \mathbb{R}_{\geq 0}$.
- Clock valuation reset: $[v]_{R}$ is defined as: $[v]_{R}(x)=0$ if $x \in R$, else $v(x)$.
- Let $\mathcal{C}(C)$ be the set of clock constraints over C.

Timed Automata

A timed automaton is a tuple $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$

- L is a finite set of locations; $L_{0} \subseteq L$ is a non-empty set of initial locations
- Act is the set of actions
- C is a finite set of clock variables
- $\longrightarrow \subseteq L \times \mathcal{C}(C) \times \operatorname{Act} \times 2^{C} \times L$ is the set of switches
- $\iota: L \rightarrow \mathcal{C}(C)$ is the invariant assignment function

Technische Universiteit

Timed Automata

Recalling intuition:

- A switch $l \xrightarrow{g a R} l^{\prime}$ means that:
- action a is enabled whenever guard g evaluates to true.
- upon executing the switch, we move from location l to location l^{\prime} and reset all clocks in R to zero.
- only locations l^{\prime} that can be reached with clock values that satisfy the location invariant.
- an invariant $l(l)$ limits the time that can be spent in location l.
- staying in location l only is allowed as long as the invariant evaluates to true.
- before the invariant becomes invalid location l must be left.
- if no switch is enabled when the invariant becomes invalid no further progress is possible: timed deadlock, or time-lock.

Timed Automata

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.
Its semantics is defined as a timed transition system: $[\mathcal{T}]=\left\langle S, S_{0}, A c t, \rightarrow, \mapsto\right\rangle$

- $S=\left\{(l, v) \in L \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right) \mid v \vDash \iota(l)\right\}$, i.e. all combinations of locations and clock valuations that do not violate the location invariant.
- $S_{0}=\left\{(l, v) \in L_{0} \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right) \mid v=\iota(l) \wedge \forall x \in C: v(x)=0\right\}$.
- $\longrightarrow \subseteq S \times$ Act $\times S$ is defined as follows:

$$
\frac{l \xrightarrow{g a R} l^{\prime} \quad v \models g \wedge \iota(l) \quad v^{\prime}=[v]_{R} \quad v^{\prime} \models \iota\left(l^{\prime}\right)}{(l, v) \xrightarrow{a}\left(l^{\prime}, v^{\prime}\right)}
$$

- $\mapsto \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is defined as follows:

$$
\frac{v \models \iota(l) \quad v+d \models \iota(l)}{(l, v) \stackrel{d}{\mapsto}(l, v+d)}
$$

Outline
(1) Timed Automata
(2) Analysing Semantics
(3) Reachability Problem
(4) Clock Equivalence
(5) Region Automata
(6) Exercise

Analysing Semantics

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.

- Assume $v \models \iota(l)$ and $v+d \models \iota(l)$ for fixed $d \in \mathbb{R}_{\geq 0}$
- A possible execution fragment starting from the location l is:

$$
(l, v) \stackrel{d_{1}}{\longmapsto}\left(l, v+d_{1}\right) \stackrel{d_{2}}{\longmapsto}\left(l, v+d_{1}+d_{2}\right) \stackrel{d_{3}}{\longmapsto}\left(l, v+d_{1}+d_{2}+d_{3}\right) \stackrel{d_{4}}{\longmapsto} \ldots
$$

- where $d_{i}>0$ and the infinite sequence $d_{1}+d_{2}+\ldots$ converges towards d
- such path fragments are called time-convergent, i.e. time advances only up to a certain value.
- Time-convergent execution fragments are unrealistic and ignored
- compare to unrealistic executions in Kripke Structures and fairness constraints that eliminate these

Technische Universiteit

Analysing Semantics

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.

- Infinite path π is time-divergent if $\Delta(\pi)=\infty$
- The function $\Delta:$ Act $\cup \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is defined as follows:

$$
\Delta(\tau)= \begin{cases}0 & \text { if } \tau \in A c t \\ d & \text { if } \tau=\tau \in \mathbb{R}_{\geq 0}\end{cases}
$$

- For infinite execution fragments $\sigma=s_{0} \xrightarrow{\tau_{1}} s_{1} \xrightarrow{\tau_{2}} s_{2} \ldots$ in [T $]$ (with $\Longrightarrow \in\{\rightarrow, \mapsto\}$), let:

$$
\Delta(\sigma)=\sum_{i=0}^{\infty} \Delta\left(\tau_{i}\right)
$$

- for path fragment π in $[\mathcal{T}]$ induced by execution fragment $\sigma: \Delta(\pi)=\Delta(\sigma)$
- For a state $s \in[\mathcal{T}]: \operatorname{Path}_{\text {div }}(s)=\{\pi \in \operatorname{path}(s) \mid \pi$ is time-divergent $\}$

Analysing Semantics

Light automaton:

- The path $\pi \in[$ Light $]$ in which on-and off-periods of one/two time units alternate:

$$
\pi=(\text { off, } 0)(\mathrm{off}, 1)(\mathrm{on}, 0)(\mathrm{on}, 1)(\mathrm{on}, 2)(\mathrm{off}, 2)(\mathrm{off}, 3)(\mathrm{on}, 0)(\mathrm{on}, 1) \ldots
$$

is time-divergent as $\Delta(\pi)=1+2+1+2+\ldots=\infty$

- The path:

$$
\pi^{\prime}=(\text { off, } 0)\left(\text { off, } \frac{1}{2}\right)\left(\text { off, } \frac{3}{4}\right)\left(\text { off, } \frac{7}{8}\right)\left(\text { off, } \frac{15}{16}\right) \ldots
$$

is time-convergent, since $\Delta\left(\pi^{\prime}\right)=\sum_{i \geq 1}\left(\frac{1}{2}\right)^{i}=1<\infty$

Analysing Semantics

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.

- State $s \in[\mathcal{T}]$ contains a timelock if $\operatorname{Path}_{\text {div }}(s)=\varnothing$
- there is no behaviour in s where time can progress ad infinitum
- \mathcal{T} is timelock-free if no reachable state in $[\mathcal{T}]$ contains a timelock
- Thus, timelocks can only be detected by means of an analysis of the infinite semantics of \mathcal{T}
- Timelocks are usually modelling flaws that should be avoided
- like deadlocks, we need mechanisms to check their presence

Technische Universiteit

Analysing Semantics

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.

- If \mathcal{T} can perform infinitely many actions in finite time it is Zeno
- A path π in $[\mathcal{T}]$ is Zeno if:
- it is time-convergent, and
- infinitely many actions $a \in$ Act are executed along the execution fragment σ underlying path π
- \mathcal{T} is non-Zeno if there is no initial Zeno path in $[\mathcal{T}]$, i.e., for all paths π :
- $\pi \in \operatorname{path}([\mathcal{T}])$ is time-divergent or
- π is time-convergent, with nearly all (except for finitely many) transitions being delay transitions
- Zeno paths are considered modelling flaws that should be avoided
- like deadlocks and timelocks, we need mechanisms to check for Zenoness
- Zenoness can be checked syntactically

Technische Universiteit

Analysing Semantics
Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.
Non-Zenoness can be checked directly on the Timed Automaton:
Suppose that for every control cycle:

$$
l_{0} \xrightarrow{g_{1} a_{1} R_{1}} l_{1} \xrightarrow{g_{2} a_{2} R_{2}} \ldots \xrightarrow{g_{n} a_{n} R_{n}} l_{n}
$$

with $l_{0}=l_{n}$, there exists a clock $x \in C$ such that:
(1) $x \in R_{i}$ for some $0<i \leq n$, and
(2) for all clock evaluations v :

$$
v(x)<1 \text { implies }\left(v \not \models=g_{j} \text { or } v \quad \neq \iota\left(l_{j}\right)\right) \text { for some } 0<j \leq n
$$

Then \mathcal{T} is non-Zeno

Outline
(1) Timed Automata
(2) Analysing Semantics
(3) Reachability Problem

4 Clock Equivalence
(5) Region Automata
(6) Exercise

Technische Universiteit

Reachability Problem

Problem Statement

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a non-Zeno Timed Automaton and $L_{F} \subseteq L$. The reachability problem $\left(\mathcal{T}, L^{F}\right)$ is defined as:

$$
\exists \pi \in \operatorname{Path}_{\operatorname{div}}([\mathcal{T}]): \pi(0) \in L^{0} \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right) \wedge \exists i \in \mathbb{N}: \pi(i) \in L^{F} \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right)
$$

- Problem: $[\mathcal{T}]$ is infinite state, so it cannot be explored exhaustively.
- Solution: construct a finite quotient of $[\mathcal{T}]$ with respect to a bisimulation relation \sim

Technische Universiteit Eindhoven
 University of Technology

Reachability Problem

- $[\mathcal{T}]$ contains infinitely many states; only some information is important
- $[\mathcal{T}]$ contains infinitely many transitions; only some are of importance for the reachability problem.

Definition (Time-abstract Transition System)

Let $T=\left\langle S, S_{0}, A c t, \mapsto, \rightarrow\right\rangle$ be a timed transition system.
The time-abstract transition system of T is defined as $T_{a}=\left\langle S, S_{0}, A c t, \Longrightarrow\right\rangle$, where:

$$
s \xrightarrow{a} s^{\prime} \text { iff } \exists d \in \mathbb{R}_{\geq 0}, s^{\prime \prime} \in S: s \stackrel{d}{\longrightarrow} s^{\prime \prime} \xrightarrow{a} s^{\prime}
$$

Observation: (s, v) is reachable in T iff (s, v) is reachable in T_{a}.

Technische Universiteit Eindhoven
 University of Technology

Reachability Problem

Definition (Time-abstract bisimulation)

Let $T_{a}=\left\langle S, S_{0}, A c t, \Longrightarrow\right\rangle$ be a time-abstract transition system. Two states s and u are time abstract bisimilar, denoted s $B u$ iff for all $a \in A c t$:

- $s \xlongequal{a} s^{\prime}$ then there is a state u^{\prime} such that $u \xlongequal{a} u^{\prime}$ and $s^{\prime} B u^{\prime}$,
- $u \xlongequal{a} u^{\prime}$ then there is a state s^{\prime} such that $s \xlongequal{a} s^{\prime}$ and $s^{\prime} B u^{\prime}$.
- Informally: two states (l, v) and $\left(l, v^{\prime}\right)$ have the same behaviour when:
(1) Any action transition enabled from v is also enabled from v^{\prime} and the target states have the same behaviour
(2) For any delay transition d from v, there is a delay transition d^{\prime}, such that $(l, v+d)$ and ($l, v^{\prime}+d^{\prime}$) have the same behaviour
- A time-abstract bisimulation relation B is L^{F} sensitive iff whenever $(l, v) B\left(l^{\prime}, v^{\prime}\right)$ implies both l and l^{\prime} in L^{F} or both are not in L^{F}.
- The reachability problem $\left(\mathcal{T}, L^{F}\right)$ can be solved by looking for an L^{F} sensitive time-abstract bisimulation relation with finitely many equivalence classes.

Outline
(1) Timed Automata
(2) Analysing Semantics
(3) Reachability Problem

4 Clock Equivalence
(5) Region Automata
(6) Exercise

Technische Universiteit

Clock Equivalence

Clock Equivalence (1)

- $v \models x<c$ whenever $v(x)<c$
- Equivalently: $\lfloor v(x)\rfloor<c$ (i.e. the greatest integer at most $v(x)$
- $v=x \leq c$ whenever $v(x)<c$ or $v(x)=c$
- Equivalently: $\lfloor v(x)\rfloor<c$ or $\lfloor v(x)\rfloor=c$ and $\operatorname{frac}(v(x))=0$

First proposal

Two clock valuations v and v^{\prime} are equivalent, denoted $v \sim v^{\prime}$ iff
(1) for any $x \in C$:

$$
\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor \text { and } \operatorname{frac}(v(x))=0 \text { iff frac }\left(v^{\prime}(x)\right)=0
$$

- Decidability of \sim is guaranteed because clocks are compared to natural numbers.

Clock Equivalence

Example

Consider the following Timed Automaton:

- Assume $0<v(x)<1$ and $0<v(y)<1$
- Obviously: $(l, v) \xrightarrow{q}$ and $(l, v) \xrightarrow{b}$
- Invariant l is true, so time may elapse
- The transition that is first enabled depends on $x<y$ or $x \geq y$
- This is not covered in the clock equivalence
- Action a is enabled first if $\operatorname{frac}(v(x)) \geq \operatorname{frac}(v(y))$

Technische Universiteit

Clock Equivalence

Clock Equivalence (2)

- Clustering clock valuations with equivalent integer bases is not sufficient.
- Ordering of fractional values of clocks is needed.

Second proposal

Two clock valuations v and v^{\prime} are equivalent, denoted $v \sim v^{\prime}$ iff
(1) for any $x \in C$:

$$
\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor \text {, and } \operatorname{frac}(v(x))=0 \text { iff } \operatorname{frac}\left(v^{\prime}(x)\right)=0
$$

(3) for all $x, y \in C$: $\operatorname{frac}(v(x)) \leq \operatorname{frac}(v(y))$ iff $\operatorname{frac}\left(v^{\prime}(x)\right) \leq \operatorname{frac}\left(v^{\prime}(y)\right)$

Technische Universiteit

Clock Equivalence

Example

Consider the following Timed Automaton:

- Problem second proposal: countable, but still infinite: $1<x<2,2<x<3$, $3<x<4, \ldots$
- Observation: only the clock constraints in \mathcal{T} are relevant.

Technische Universiteit

Clock Equivalence

Clock Equivalence (3)

- Let $c_{x} \in \mathbb{N}$ be the largest constant to which x is compared in \mathcal{T}
- If $v(x)>c_{x}$, then the exact value of x is of no importance (x only grows)

Final proposal

Two clock valuations v and v^{\prime} are equivalent, denoted $v \sim v^{\prime}$ iff
(1) for any $x \in C: v(x), v^{\prime}(x)>c_{x}$ or $v(x), v^{\prime}(x) \leq c_{x}$
(3) for any $x \in C$: if $v(x), v^{\prime}(x) \leq c_{x}$ then: $\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor$ and $\operatorname{frac}(v(x))=0$ iff $\operatorname{frac}\left(v^{\prime}(x)\right)=0$
(0) for any $x, y \in C$: if $v(x), v^{\prime}(x) \leq c_{x}$ and $v(y), v^{\prime}(y) \leq c_{y}$, then:
$\operatorname{frac}(v(x)) \leq \operatorname{frac}(v(y))$ iff $\operatorname{frac}\left(v^{\prime}(x)\right) \leq \operatorname{frac}\left(v^{\prime}(y)\right)$

Technische Universiteit

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$. The clock regions are shown below:

Regions:

- 6 Corner points, e.g. $[(0,0)]$

Technische Universiteit

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$. The clock regions are shown below:

Regions:

- 14 Open line segments: e.g. $[0<x=y<1]$

Technische Universiteit

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$. The clock regions are shown below:

Regions:

- 8 Open regions: e.g. $[0<x<y<1]$

Technische Universiteit

Clock Equivalence

- The clock region of $v \in\left[C \rightarrow \mathbb{R}_{\geq 0}\right]$, denoted $[v]$ is defined by:

$$
[v]:=\left\{v^{\prime}: C \rightarrow \mathbb{R}_{\geq 0} \mid v \sim v^{\prime}\right\}
$$

- The state region of a state (l, v) in $[\mathcal{T}]$ is defined by:

$$
[(l, v)]:=(l,[v])
$$

- The number of clock regions is bounded from below by:

$$
\text { if for all } x \in C: c_{x} \geq 1 \text { then } R_{l}:=|C|!\times \prod_{x \in C} c_{x}
$$

- The number of clock regions is bounded from above by:

$$
\text { if for all } x \in C: c_{x} \geq 1 \text { then } R_{u}:=|C|!\times 2^{|C|-1} \times \prod_{x \in C}\left(2\left(c_{x}+1\right)\right)
$$

- The number of state regions in $[\mathcal{T}] / \sim$ is finite:

$$
|L| \times R_{l} \leq S / \sim \leq|L| \times R_{u}
$$

Clock Equivalence

Property

Let C be a set of clocks and let $\phi \in \mathcal{C}(C)$. For $v, v^{\prime}: C \rightarrow \mathbb{R}_{\geq 0}$ such that $[v]=\left[\nu^{\prime}\right]$

$$
v \models \phi \quad \text { iff } \quad v^{\prime} \models \phi
$$

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$.

$$
\left\{\begin{array} { l }
{ v (x) = 0 . 5 } \\
{ v (y) = 0 . 7 5 }
\end{array} \quad \left\{\begin{array}{l}
v^{\prime}(x)=0.5 \\
v^{\prime}(y)=0.95
\end{array}\right.\right.
$$

- $v, v^{\prime} \in[0<x<y<1]$
- $v \models x<2$ iff $v^{\prime}=x<2$
- $v \models y>1$ iff $v^{\prime}=y>1$

Outline
(1) Timed Automata
(2) Analysing Semantics
(3) Reachability Problem

4 Clock Equivalence
(5) Region Automata
(6) Exercise

Technische Universiteit

Region Automata

Let $\mathcal{T}=\left\langle L, l_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ be a Timed Automaton.

- Clock region $r_{\infty}=\left\{v \in\left[C \rightarrow \mathbb{R}_{\geq 0}\right] \mid \forall x \in C: v(x)>c_{x}\right\}$ is unbounded
- r^{\prime} is the successor clock region of r, denoted $r^{\prime}=\operatorname{succ}(r)$, if either:
(1) $r=r_{\infty}$ and $r=r^{\prime}$, or
(3) $r \neq r_{\infty}, r \neq r^{\prime}$ and for all $v \in r$:

$$
\exists d \in \mathbb{R}_{\geq 0}:\left(v+d \in r^{\prime} \quad \text { and } \quad \forall 0 \leq d^{\prime} \leq d: v+d^{\prime} \in r \cup r^{\prime}\right)
$$

- The successor region: $\operatorname{succ}((l, v)):=(l, \operatorname{succ}(v))$
- Resetting a region: $r[R:=0]:=\left\{v \in\left[C \rightarrow \mathbb{R}_{\geq 0}\right] \mid \exists v^{\prime} \in r: v=\left[v^{\prime}\right]_{R}\right\}$

Technische Universiteit

Region Automata

Clock regions and their successor regions.

\square diagonal line regions
\square horiz/vert line regions
\square lower open regions

Representation of regions:
(1) for every clock x, one clock constraint from the set

$$
\left\{x=c \mid c=0,1, \ldots, c_{x}\right\} \cup\left\{c-1<x<c \mid c=1, \ldots, c_{x}\right\} \cup\left\{x>c_{x}\right\}
$$

(2) for every pair of clocks x and y for which $c-1<x<c$ and $d-1<y<d$ appear in (1), whether $\operatorname{frac}(x)$ is less than, equal to, or greater than $\operatorname{frac}(y)$.

Technische Universiteit

Region Automata

Definition (Region Automaton)

The Region Automaton $R(\mathcal{T})$ of a non-Zeno $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota\right\rangle$ is defined as:

$$
R(\mathcal{T})=\left\langle S, S_{0}, A c t \cup\{\tau\}, \rightarrow^{\prime}\right\rangle
$$

- $S=\left(L \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right)\right) / \sim=\left\{[s] \mid s \in S_{[T]}\right\}$
- $S_{0}=\left\{[s] \mid s \in S_{0[T]}\right\}$
- \rightarrow ' $\subseteq S \times(A c t \cup\{\tau\}) \times S$ is defined as:

$$
\frac{l \xrightarrow{g a R} l^{\prime} \quad r \vDash g \wedge \iota(l) \quad r[R:=0] \models \iota\left(l^{\prime}\right)}{(l, r) \xrightarrow{a}\left(l^{\prime}, r[R:=0]\right)}
$$

$$
\frac{r \models \iota(l) \quad \operatorname{succ}(r) \models \iota(l)}{(l, r) \xrightarrow{\tau}(l, \operatorname{succ}(r))}
$$

Region Automata

- Location l in \mathcal{T} is reachable iff a state region (l, r) is reachable in $R(\mathcal{T})$.
- Safety properties can be translated to reachability problems
- Absence of time-lock in TA \mathcal{T} iff $R(\mathcal{T})$ does not deadlock.
- Extension to model checking for TCTL follows basically the same recipe.

Outline
(1) Timed Automata
(2) Analysing Semantics
(3) Reachability Problem

4 Clock Equivalence
(5) Region Automata
(6) Exercise

Exercise

Is the Timed Automaton Non-Zeno when:

- $R=\{x\}$
- $R=\{y\}$
- $R=\{x, y\}$

Is the Timed Automaton Timelock-free when:

- $R=\{x\}$
- $R=\{y\}$
- $R=\{x, y\}$

Explain and motivate your answers.

