
Algorithms for Model Checking (2IW55)
Lecture 12

Timed Verification: Timed Automata
Background material:Chapter 16, 17 and
handout R. Alur, “Timed Automata”

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/35

Outline

1 Timed Automata

2 Analysing Semantics

3 Reachability Problem

4 Clock Equivalence

5 Region Automata

6 Exercise

2/35

Timed Automata

Recalling notation:

A clock valuation ν for a set C of clocks is a function ν : C→ R≥0

We write ν|= φ iff [[φ]]ν = true.

Clock valuation update: ν + d is defined as: (ν + d)(x) = ν(x) + d for all d ∈ R≥0.

Clock valuation reset: [ν]R is defined as: [ν]R(x) = 0 if x ∈ R, else ν(x).
Let C(C) be the set of clock constraints over C.

3/35

Timed Automata

A timed automaton is a tuple T = 〈L, L0, Act, C,−→, ι〉
L is a finite set of locations; L0 ⊆ L is a non-empty set of initial locations

Act is the set of actions

C is a finite set of clock variables

−→⊆ L× C(C)× Act× 2C × L is the set of switches

ι : L→ C(C) is the invariant assignment function

off on
x ≤ 2

on x ≥ 1
{x}

on
{x}

off

4/35

Timed Automata

Recalling intuition:

A switch l
g a R−−−→ l′ means that:

action a is enabled whenever guard g evaluates to true.
upon executing the switch, we move from location l to location l′ and reset all clocks in
R to zero.
only locations l′ that can be reached with clock values that satisfy the location invariant.

an invariant ι(l) limits the time that can be spent in location l.
staying in location l only is allowed as long as the invariant evaluates to true.
before the invariant becomes invalid location l must be left.
if no switch is enabled when the invariant becomes invalid no further progress is
possible: timed deadlock, or time-lock.

5/35

Timed Automata

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton.
Its semantics is defined as a timed transition system: [[T]] = 〈S, S0, Act,→, 7→〉

S = {(l, ν) ∈ L× (C→ R≥0) | ν|= ι(l)}, i.e. all combinations of locations and clock
valuations that do not violate the location invariant.

S0 = {(l, ν) ∈ L0 × (C→ R≥0) | ν|= ι(l) ∧ ∀x ∈ C : ν(x) = 0}.
−→⊆ S× Act× S is defined as follows:

l
g a R−−−→ l′ ν|= g∧ ι(l) ν′ = [ν]R ν′|= ι(l′)

(l, ν) a−→ (l′, ν′)

7→⊆ S×R≥0 × S is defined as follows:

ν|= ι(l) ν + d|= ι(l)

(l, ν) d7→ (l, ν + d)

6/35

Outline

1 Timed Automata

2 Analysing Semantics

3 Reachability Problem

4 Clock Equivalence

5 Region Automata

6 Exercise

7/35

Analysing Semantics

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton.

Assume ν|= ι(l) and ν + d|= ι(l) for fixed d ∈ R≥0

A possible execution fragment starting from the location l is:

(l, ν) d17→ (l, ν + d1)
d27→ (l, ν + d1 + d2)

d37→ (l, ν + d1 + d2 + d3)
d47→ . . .

where di > 0 and the infinite sequence d1 + d2 + . . . converges towards d
such path fragments are called time-convergent, i.e. time advances only up to a certain
value.

Time-convergent execution fragments are unrealistic and ignored
compare to unrealistic executions in Kripke Structures and fairness constraints that
eliminate these

8/35

Analysing Semantics

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton.

Infinite path π is time-divergent if ∆(π) = ∞

The function ∆ : Act∪R≥0 → R≥0 is defined as follows:

∆(τ) =
{

0 if τ ∈ Act
d if τ = τ ∈ R≥0

For infinite execution fragments σ = s0
τ1=⇒ s1

τ2=⇒ s2 . . . in [[T]] (with
=⇒∈ {→, 7→}), let:

∆(σ) =
∞

∑
i=0

∆(τi)

for path fragment π in [[T]] induced by execution fragment σ: ∆(π) = ∆(σ)
For a state s ∈ [[T]]: Pathdiv(s) = {π ∈ path(s) | π is time-divergent}

9/35

Analysing Semantics

Light automaton:
off on

y ≤ 10

push {y}

push, y ≥ 2

The path π ∈ [[Light]] in which on-and off-periods of one/two time units alternate:

π = (off, 0) (off, 1) (on, 0) (on, 1)(on, 2) (off, 2) (off, 3) (on, 0) (on, 1) . . .

is time-divergent as ∆(π) = 1 + 2 + 1 + 2 + . . . = ∞

The path:

π′ = (off, 0) (off,
1
2
) (off,

3
4
) (off,

7
8
) (off,

15
16

) . . .

is time-convergent, since ∆(π′) = ∑
i≥1

(1
2)i = 1 < ∞

10/35

Analysing Semantics

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton.

State s ∈ [[T]] contains a timelock if Pathdiv(s) = ∅
there is no behaviour in s where time can progress ad infinitum

T is timelock-free if no reachable state in [[T]] contains a timelock

Thus, timelocks can only be detected by means of an analysis of the infinite
semantics of T

Timelocks are usually modelling flaws that should be avoided
like deadlocks, we need mechanisms to check their presence

11/35

Analysing Semantics

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton.

If T can perform infinitely many actions in finite time it is Zeno
A path π in [[T]] is Zeno if:

it is time-convergent, and
infinitely many actions a ∈ Act are executed along the execution fragment σ underlying
path π

T is non-Zeno if there is no initial Zeno path in [[T]], i.e., for all paths π:
π ∈ path([[T]]) is time-divergent or
π is time-convergent, with nearly all (except for finitely many) transitions being delay
transitions

Zeno paths are considered modelling flaws that should be avoided
like deadlocks and timelocks, we need mechanisms to check for Zenoness

Zenoness can be checked syntactically

12/35

Analysing Semantics

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton.

Non-Zenoness can be checked directly on the Timed Automaton:

Suppose that for every control cycle:

l0
g1 a1 R1−−−−→ l1

g2 a2 R2−−−−→ . . .
gn an Rn−−−−−→ ln

with l0 = ln, there exists a clock x ∈ C such that:

1 x ∈ Ri for some 0 < i ≤ n, and
2 for all clock evaluations ν:

ν(x) < 1 implies (ν 6 |= gj or ν 6 |= ι(lj)) for some 0 < j ≤ n

Then T is non-Zeno

13/35

Outline

1 Timed Automata

2 Analysing Semantics

3 Reachability Problem

4 Clock Equivalence

5 Region Automata

6 Exercise

14/35

Reachability Problem

Problem Statement

Let T = 〈L, L0, Act, C,−→, ι〉 be a non-Zeno Timed Automaton and LF ⊆ L.
The reachability problem (T , LF) is defined as:

∃π ∈ Pathdiv([[T]]) : π(0) ∈ L0 × (C→ R≥0) ∧ ∃i ∈N : π(i) ∈ LF × (C→ R≥0)

Problem: [[T]] is infinite state, so it cannot be explored exhaustively.

Solution: construct a finite quotient of [[T]] with respect to a bisimulation relation ∼

15/35

Reachability Problem

[[T]] contains infinitely many states; only some information is important

[[T]] contains infinitely many transitions; only some are of importance for the
reachability problem.

Definition (Time-abstract Transition System)

Let T = 〈S, S0, Act, 7→,→〉 be a timed transition system.
The time-abstract transition system of T is defined as Ta = 〈S, S0, Act, =⇒〉, where:

s a=⇒ s′ iff ∃d ∈ R≥0, s′′ ∈ S : s d7→ s′′ a−→ s′

Observation: (s, ν) is reachable in T iff (s, ν) is reachable in Ta.

16/35

Reachability Problem

Definition (Time-abstract bisimulation)

Let Ta = 〈S, S0, Act, =⇒〉 be a time-abstract transition system. Two states s and u are
time abstract bisimilar, denoted s B u iff for all a ∈ Act:

s a=⇒ s′ then there is a state u′ such that u a=⇒ u′ and s′ B u′,
u a=⇒ u′ then there is a state s′ such that s a=⇒ s′ and s′ B u′.

Informally: two states (l, ν) and (l, ν′) have the same behaviour when:
1 Any action transition enabled from ν is also enabled from ν′ and the target states have

the same behaviour
2 For any delay transition d from ν, there is a delay transition d′, such that (l, ν + d) and

(l, ν′ + d′) have the same behaviour

A time-abstract bisimulation relation B is LF sensitive iff whenever (l, ν) B (l′, ν′)
implies both l and l′ in LF or both are not in LF.

The reachability problem (T , LF) can be solved by looking for an LF sensitive
time-abstract bisimulation relation with finitely many equivalence classes.

17/35

Outline

1 Timed Automata

2 Analysing Semantics

3 Reachability Problem

4 Clock Equivalence

5 Region Automata

6 Exercise

18/35

Clock Equivalence

Clock Equivalence (1)

ν|= x < c whenever ν(x) < c
Equivalently: bν(x)c < c (i.e. the greatest integer at most ν(x)

ν|= x ≤ c whenever ν(x) < c or ν(x) = c
Equivalently: bν(x)c < c or bν(x)c = c and frac(ν(x)) = 0

First proposal

Two clock valuations ν and ν′ are equivalent, denoted ν ∼ ν′ iff
1 for any x ∈ C:
bν(x)c = bν′(x)c and frac(ν(x)) = 0 iff frac(ν′(x)) = 0

Decidability of ∼ is guaranteed because clocks are compared to natural numbers.

19/35

Clock Equivalence

Example

Consider the following Timed Automaton:

l k

a, x ≥ 1

b, y > 1

Assume 0 < ν(x) < 1 and 0 < ν(y) < 1

Obviously: (l, ν) 6 a−→ and (l, ν) 6 b−→
Invariant l is true, so time may elapse

The transition that is first enabled depends on x < y or x ≥ y
This is not covered in the clock equivalence

Action a is enabled first if frac(ν(x)) ≥ frac(ν(y))

20/35

Clock Equivalence

Clock Equivalence (2)

Clustering clock valuations with equivalent integer bases is not sufficient.

Ordering of fractional values of clocks is needed.

Second proposal

Two clock valuations ν and ν′ are equivalent, denoted ν ∼ ν′ iff
1 for any x ∈ C:
bν(x)c = bν′(x)c, and frac(ν(x)) = 0 iff frac(ν′(x)) = 0

2 for all x, y ∈ C: frac(ν(x)) ≤ frac(ν(y)) iff frac(ν′(x)) ≤ frac(ν′(y))

21/35

Clock Equivalence

Example

Consider the following Timed Automaton:

l k

a, x ≥ 1

b, y > 1

Problem second proposal: countable, but still infinite: 1 < x < 2, 2 < x < 3,
3 < x < 4, . . .

Observation: only the clock constraints in T are relevant.

22/35

Clock Equivalence

Clock Equivalence (3)

Let cx ∈N be the largest constant to which x is compared in T
If ν(x) > cx, then the exact value of x is of no importance (x only grows)

Final proposal

Two clock valuations ν and ν′ are equivalent, denoted ν ∼ ν′ iff
1 for any x ∈ C: ν(x), ν′(x) > cx or ν(x), ν′(x) ≤ cx

2 for any x ∈ C: if ν(x), ν′(x) ≤ cx then:
bν(x)c = bν′(x)c and frac(ν(x)) = 0 iff frac(ν′(x)) = 0

3 for any x, y ∈ C: if ν(x), ν′(x) ≤ cx and ν(y), ν′(y) ≤ cy, then:
frac(ν(x)) ≤ frac(ν(y)) iff frac(ν′(x)) ≤ frac(ν′(y))

23/35

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1. The clock
regions are shown below:

0 1 2 3

1

2

x

y

Regions:

6 Corner points, e.g. [(0, 0)]

24/35

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1. The clock
regions are shown below:

0 1 2 3

1

2

x

y

Regions:

14 Open line segments: e.g. [0 < x = y < 1]

25/35

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1. The clock
regions are shown below:

x

y

0 1 2 3

1

2

Regions:

8 Open regions: e.g. [0 < x < y < 1]

26/35

Clock Equivalence

The clock region of ν ∈ [C→ R≥0], denoted [ν] is defined by:

[ν] := {ν′ : C→ R≥0 | ν ∼ ν′}

The state region of a state (l, ν) in [[T]] is defined by:

[(l, ν)] := (l, [ν])

The number of clock regions is bounded from below by:

if for all x ∈ C : cx ≥ 1 then Rl := |C|!×∏
x∈C

cx

The number of clock regions is bounded from above by:

if for all x ∈ C : cx ≥ 1 then Ru := |C|!× 2|C|−1 ×∏
x∈C

(2(cx + 1))

The number of state regions in [[T]]/∼ is finite:

|L| × Rl ≤ S/∼ ≤ |L| × Ru

27/35

Clock Equivalence

Property

Let C be a set of clocks and let φ ∈ C(C). For ν, ν′ : C→ R≥0 such that [ν] = [ν′]

ν|= φ iff ν′|= φ

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1.

0 1 2 3

1

2 {
ν(x) = 0.5
ν(y) = 0.75

{
ν′(x) = 0.5
ν′(y) = 0.95

ν, ν′ ∈ [0 < x < y < 1]
ν|= x < 2 iff ν′|= x < 2

ν|= y > 1 iff ν′|= y > 1

28/35

Outline

1 Timed Automata

2 Analysing Semantics

3 Reachability Problem

4 Clock Equivalence

5 Region Automata

6 Exercise

29/35

Region Automata

Let T = 〈L, l0, Act, C,−→, ι〉 be a Timed Automaton.

Clock region r∞ = {ν ∈ [C→ R≥0] | ∀x ∈ C : ν(x) > cx} is unbounded

r′ is the successor clock region of r, denoted r′ = succ(r), if either:
1 r = r∞ and r = r′, or
2 r 6= r∞, r 6= r′ and for all ν ∈ r:

∃d ∈ R≥0 : (ν + d ∈ r′ and ∀0 ≤ d′ ≤ d : ν + d′ ∈ r∪ r′)

The successor region: succ((l, ν)) := (l, succ(ν))

Resetting a region: r[R := 0] := {ν ∈ [C→ R≥0] | ∃ν′ ∈ r : ν = [ν′]R}

30/35

Region Automata
Clock regions and their successor regions.

infinite regions

diagonal line regions

horiz/vert line regions

lower open regions

upper open regions

Representation of regions:
1 for every clock x, one clock constraint from the set

{x = c | c = 0, 1, . . . , cx} ∪ {c− 1 < x < c | c = 1, . . . , cx} ∪ {x > cx}

2 for every pair of clocks x and y for which c− 1 < x < c and d− 1 < y < d appear in
(1), whether frac(x) is less than, equal to, or greater than frac(y).

31/35

Region Automata

Definition (Region Automaton)

The Region Automaton R(T) of a non-Zeno T = 〈L, L0, Act, C,−→, ι〉 is defined as:

R(T) = 〈S, S0, Act∪ {τ},→′〉

S = (L× (C→ R≥0))/∼= {[s] | s ∈ S[[T]]}
S0 = {[s] | s ∈ S0 [[T]]}
→′⊆ S× (Act∪ {τ})× S is defined as:

l
g a R−−−→ l′ r|= g∧ ι(l) r[R := 0]|= ι(l′)

(l, r) a−→′(l′, r[R := 0])

r|= ι(l) succ(r)|= ι(l)

(l, r) τ−→′(l, succ(r))

32/35

Region Automata

Location l in T is reachable iff a state region (l, r) is reachable in R(T).
Safety properties can be translated to reachability problems

Absence of time-lock in TA T iff R(T) does not deadlock.

Extension to model checking for TCTL follows basically the same recipe.

33/35

Outline

1 Timed Automata

2 Analysing Semantics

3 Reachability Problem

4 Clock Equivalence

5 Region Automata

6 Exercise

34/35

Exercise

A
x < 5

C
y < 15

D
y ≤ 10

B

5 ≤ y, {x}

x < 3, R

10 ≤ y∨ 1 ≤ x, {y}x < 6, {x}

10 ≤ xy ≤ 18∨ 1 ≤ x, {y}

Is the Timed Automaton
Non-Zeno when:

R = {x}
R = {y}
R = {x, y}

Is the Timed Automaton
Timelock-free when:

R = {x}
R = {y}
R = {x, y}

Explain and motivate your
answers.

35/35

	Timed Automata
	Analysing Semantics
	Reachability Problem
	Clock Equivalence

