

Algorithms for Model Checking (2IW55) Lecture 3 Symbolic Model Checking for CTL Chapter 2, 6.1, 6.2. Also read Chapter 5

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Outline

Specification of Kripke Structures

2 Fixed Points

Symbolic Model Checking

Implementing Symbolic Model Checking

department of mathematics and computing science

Example (GCD)

Consider the following program:

```
repeat

if \chi > y - > \chi := \chi - y;

[]\chi < y - > y := y - \chi;

fi

until false
```

This program uses:

- variables: $\{\chi, y\}$, with an (implicit) domain of variables: \mathbb{N}
- States of this program are functions of type: $\{\chi, y\} \to \mathbb{N}$
- An example state could be: $\{\chi \mapsto 5, y \mapsto 15\}$
- An execution is a sequence of transitions: e.g.

 $\{\chi \mapsto 5, y \mapsto 15\} \rightarrow \{\chi \mapsto 5, y \mapsto 10\} \rightarrow \{\chi \mapsto 5, y \mapsto 5\} \rightarrow \{\chi \mapsto 5, y \mapsto 5\} \rightarrow \dots$

Example (SWAP)

Consider the following program fragment:

$z := \chi;$	% 1
$\chi := y;$	% I2
y := z;	% I3

- Besides variables $\chi, y, z : \mathbb{N}$, this program has a program counter, whose values are labels (line numbers)
- Let $pc: \{l_1, l_2, l_3\}$. Now, a state is a function that gives a value to $\{\chi, y, z, pc\}$
- A possible execution is the following sequence:

$$\begin{cases} \chi \mapsto 5, y \mapsto 15, z \mapsto 500, pc \mapsto l_1 \\ \\ \rightarrow \\ \{\chi \mapsto 5, y \mapsto 15, z \mapsto 5, pc \mapsto l_2 \\ \\ \rightarrow \\ \{\chi \mapsto 15, y \mapsto 15, z \mapsto 5, pc \mapsto l_3 \\ \\ \rightarrow \\ \{\chi \mapsto 15, y \mapsto 5, z \mapsto 5, pc \mapsto l_4 \} \end{cases}$$

Symbolic Representation

- Note: in general, there are infinitely many states and transitions. Even after restricting to MAXINT, the number often still is overwhelming.
- However, many of the states behave very similar (e.g. the start value of z did not matter)
- Idea: the set of states can be represented very concisely by a number of formulae
- for GCD:
 - initial set of states: $\chi < 100 \land y < 100$
 - next state predicate:

$$(\chi > y \land \chi' = \chi - y \land y' = y) \lor (\chi < y \land y' = y - \chi \land \chi' = \chi)$$

- for SWAP:
 - initial states: $\chi = 5 \land y = 15$
 - next state predicate:

$$(pc = l_1 \wedge pc' = l_2 \wedge z' = \chi \wedge \ldots) \vee \ldots$$

The system specification is represented by first-order formulae (later: propositional logic only)

- Let \mathcal{V} be a set of variables v_0, v_1, \ldots, v_n
- Let \mathcal{D} be the domain of these variables
- The states of the Kripke Structure will be functions $v: \mathcal{V} \to \mathcal{D}$
- A formula $S_0(\mathcal{V})$ represents the initial states
- Let \mathcal{V}' be a copy of the variables in \mathcal{V} : v'_0, v'_1, \ldots, v'_n
- A formula $\mathcal{R}(\mathcal{V}, \mathcal{V}')$ represents the transition relation.
 - $\mathcal V$ denotes the value of the variables before the transition
 - $\ensuremath{\mathcal{V}}'$ denotes the value of the variables after the transition.

Example

𝒱' = {𝔅(𝒯a), 𝒯(ohn)},
𝔅 𝔅 = {𝔅(𝒯ayiỷ), 𝔅(uestioni𝑘ỷ), 𝔅(𝑘were𝑌)}
𝔅 𝔅_𝔅(𝔅, 𝔅) := 𝔅 = 𝑘 ∧ 𝔅 = 𝑘
𝔅_𝔅(𝔅, 𝔅, 𝔅, 𝔅) := 𝔅_𝔅 ∨ 𝔅_𝔅 ∨ 𝔅_𝔅 ∨ 𝔅_𝔅 ∨ 𝔅_𝔅 ∨ 𝔅_𝔅, where:
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅 = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 ∧ 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 → 𝔅' = 𝑘 ∧ 𝔅' = 𝔅
𝔅_𝔅 := 𝔅 = 𝑘 → 𝔅' = 𝑘 ∧ 𝔅' = 𝔅

Notes:

- this corresponds to the demanding children Kripke Structure in previous lectures
- a specification for *n* children gives $O(3^n)$ states \Rightarrow State space explosion

Outline

D Specification of Kripke Structures

Symbolic Model Checking

Implementing Symbolic Model Checking

department of mathematics and computing science

Consider a Kripke Structure $\mathcal{M} = \langle \mathcal{S}, \mathcal{R}, \mathcal{L} \rangle$

- Identify sets of states and predicates on states
- So, two notations are often mixed:
 - subsets: $X \subseteq S$ or $X \in \mathcal{P}(S)$
 - predicates: $\overline{X} \in 2^{S}$ or $X : \overline{S} \to \{0, 1\}$ $s \in X \Leftrightarrow X(s) = 1$ and $s \notin X \Leftrightarrow X(s) = 0$
- Also: CTL formulae are identified with the set of states where they hold: f versus $\{s \mid s \models f\}$
- As a consequence, \lor, \land and \cup, \cap are mixed: compare $\emptyset \cup \mathsf{E} \mathsf{G} f$ and false $\lor \mathsf{E} \mathsf{G} f$

Predicate Transformers and Monotonicity

Consider a Kripke Structure $\mathcal{M} = \langle \mathcal{S}, \mathcal{R}, \mathcal{L} \rangle$

- The set $(\mathcal{P}(\mathcal{S}), \subseteq)$ is a partial order (aka as the complete lattice of state predicates)
- A predicate transformer is a function on predicates. For example, the relations *Pre* and *Post* that lift the transition relation *R* to sets of states:

$$\begin{aligned} & \mathcal{P}re_{\mathcal{R}}(\mathcal{X}) &= \{s \in \mathcal{S} \mid \exists t \in \mathcal{X}. \ s \ \mathcal{R}. \ t\} \\ & \mathcal{P}ost_{\mathcal{R}}(\mathcal{X}) &= \{t \in \mathcal{S} \mid \exists s \in \mathcal{X}. \ s \ \mathcal{R}. \ t\} \end{aligned}$$

- Let $\tau : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$ be an arbitrary predicate transformer.
- τ is monotonic iff $\mathcal{P} \subseteq Q$ implies $\tau(\mathcal{P}) \subseteq \tau(Q)$.
- We write $\tau^i(X)$ for applying τ *i* times to X:

$$\begin{cases} \tau^{0}(X) = X\\ \tau^{i+1}(X) = \tau(\tau^{i}(X)) \end{cases}$$

Let $\tau : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$.

- A fixed point of τ is a set Z such that $\tau(Z) = Z$
- The least fixed point of τ , denoted $\mu X.\tau(X)$ is a set Z such that:
 - $Z = \tau(Z)$ (i.e. Z is a fixed point)
 - for all X, if $\tau(X) = X$, then $Z \subseteq X$
- The greatest fixed point of τ , denoted $\nu X.\tau(X)$ is a set Z such that:
 - $Z = \tau(Z)$ (i.e. Z is a fixed point)
 - for all X, if $\tau(X) = X$, then $X \subseteq Z$

A theorem by Tarski: a monotonic operator on $\mathcal{P}(S)$ always has least and greatest fixed points:

- $\mu Z.\tau(Z) = \bigcap \{ X \mid \tau(X) \subseteq X \}$
- $\nu Z.\tau(Z) = \bigcup \{ X \mid X \subseteq \tau(X) \}$

Assume now that:

- \mathcal{S} (hence also $\mathcal{P}(\mathcal{S})$) is finite, and
- $\tau : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$ is monotonic

Then:

- $\forall i.\tau^i(\emptyset) \subseteq \tau^{i+1}(\emptyset)$ (induction on *i* and monotonicity)
- **3** There exists an *i* such that $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$ (sets become bigger and S is finite)
- If $\tau^{i}(\emptyset) = \tau^{i+1}(\emptyset)$, then $\tau^{i}(\emptyset)$ is a fixed point of τ (by definition)
- **9** If X is a fixed point of τ , then $\forall i.\tau^i(\emptyset) \subseteq X$ (induction on *i* and monotonicity)

So an approximant τ^i can be found such that $\tau^i(\emptyset) = \tau^{i+i}(\emptyset)$, and this set is the least fixed point of τ .

Similarly, the smallest *i* such that $\tau^{i}(S) = \tau^{i+1}(S)$ yields the greatest fixed point.

Algorithms for computing the least fixed point and the greatest fixed point based on the observations on the previous slide.

function lfp
$$(\tau:\mathcal{P}(S) \rightarrow \mathcal{P}(S))$$
 : $\mathcal{P}(S)$
 $Q := \emptyset;$
 $Q' := \tau(Q);$
while $Q \neq Q'$ do
 $Q := Q';$
 $Q' := \tau(Q');$
end while
return $Q;$
end function

function $Gfp(\tau:\mathcal{P}(S) \rightarrow \mathcal{P}(S)) : \mathcal{P}(S)$ Q := S; $Q' := \tau(Q);$ while $Q \neq Q'$ do Q := Q'; $Q' := \tau(Q');$ end while return Q;end function

Outline

Specification of Kripke Structures

Symbolic Model Checking

Implementing Symbolic Model Checking

department of mathematics and computing science

CTL operators can be seen as fixed point operators. Fix a Kripke Structure $\mathcal{M} = \langle S, \mathcal{R}, \mathcal{L} \rangle$. Identify a CTL formula f with predicate $\{s \mid s \models f\}$.

- A F $f = \mu Z.f \cup$ A X Z and E F $f = \mu Z.f \cup$ E X Z
- A G $f = \nu Z.f \cap A X Z$ and E G $f = \nu Z.f \cap E X Z$

• E
$$[f \cup g] = \mu Z.g \cup (f \cap E X Z)$$

Intuition:

- least and greatest fixed points deal differently with loops:
 - Greatest fixed point: recursion includes loops, so possibly infinitely many "steps"
 - Least fixed point: finite recursion through loops, so only finitely many "steps"
- Eventualities least fixed points (a witness of the eventuality is needed in finitely many steps)
- Globally greatest fixed points (an infinite path without error is OK)

Proof obligations for E G :

- The transformer Z → f ∧ E X Z is monotonic, so its fixed point can be computed by iteration, see Ifp and gfp (If Z₁ ⊆ Z₂ then f ∧ E X Z₁ ⊆ f ∧ E X Z₂).
- **e** E G f is a fixed point of $Z \mapsto f \land E X Z$ (E G $f = f \land E X E G f$)
- E G f is the largest such fixed point (for all Z: if Z = f ∧ E X Z, then Z ⊆ E G f)
- For 1,2,3: prove $X \subseteq \mathcal{Y}$ by $\forall s.s \in X \Rightarrow s \in \mathcal{Y}$.
- For 2: prove \subseteq and \supseteq .
- For 2,3: use the semantics of CTL-formulae

Proof obligations for E [U] are similar (see for yourself)

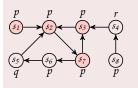
CTL model checking with Fixed Points

Function check(f) takes a formula f and returns the set of states where f holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $\mathcal{M} = \langle S, \mathcal{R}, \mathcal{L} \rangle$).

$$\begin{array}{lll} \mathsf{check}(p) & \{s \mid p \in \mathcal{L}(s)\} \\ \mathsf{check}(\neg f) & \mathcal{S} \setminus \mathsf{check}(f) \\ \mathsf{check}(f \lor g) & \mathsf{check}(f) \cup \mathsf{check}(g) \\ \mathsf{check}(\mathsf{E} \mathsf{X} f) & \mathcal{P}re_{\mathcal{R}}(\mathsf{check}(f)) \\ \mathsf{check}(\mathsf{E} \left[f \ \mathsf{U} \ g\right]) & \mathsf{lfp}(\mathcal{Z} \mapsto \mathsf{check}(g) \cup (\mathsf{check}(f) \cap \mathcal{P}re_{\mathcal{R}}(\mathcal{Z})))) \\ \mathsf{check}(\mathsf{E} \ \mathsf{G} f) & \mathsf{gfp}(\mathcal{Z} \mapsto \mathsf{check}(f) \cap \mathcal{P}re_{\mathcal{R}}(\mathcal{Z})) \end{array}$$

Recall: $Pre_{\mathcal{R}}(\mathcal{Z}) = \{s \in \mathcal{S} \mid \exists t \in \mathcal{Z}.s \ \mathcal{R} \ t\}$

Example



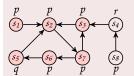
- To check: E G p
- Compute: $\nu Z.p \wedge \mathsf{E} \mathsf{X} Z$ (with gfp)

$$\begin{array}{ll} \mathcal{Z}_{0} &= \mathsf{true} = \{s_{i} \mid 1 \leq i \leq 8\} \\ \mathcal{Z}_{1} &= p \land \mathsf{E} \mathsf{X} \ \mathcal{Z}_{0} = \{s_{1}, s_{2}, s_{3}, s_{6}, s_{7}, s_{8}\} \\ \mathcal{Z}_{2} &= p \land \mathsf{E} \mathsf{X} \ \mathcal{Z}_{1} = \{s_{1}, s_{2}, s_{3}, s_{7}\} \\ \mathcal{Z}_{3} &= p \land \mathsf{E} \mathsf{X} \ \mathcal{Z}_{2} = \{s_{1}, s_{2}, s_{3}, s_{7}\} \end{array}$$

 $Z_2 = Z_3$, so this is the greatest fixed point.

Example

- To check: E [p U q]
- Compute: $\mu Z.q \lor (p \land \mathsf{E} \mathsf{X} Z)$ (with lfp)



$$\begin{array}{ll} \mathcal{Z}_{0} &= \mathsf{false} = \emptyset \\ \mathcal{Z}_{1} &= q \lor (p \land \mathsf{E} \lor \mathcal{Z}_{0}) = \{s_{5}\} \\ \mathcal{Z}_{2} &= q \lor (p \land \mathsf{E} \lor \mathcal{Z}_{1}) = \{s_{5}, s_{6}\} \\ \mathcal{Z}_{3} &= q \lor (p \land \mathsf{E} \leftthreetimes \mathcal{Z}_{2}) = \{s_{5}, s_{6}, s_{7}\} \\ \mathcal{Z}_{4} &= q \lor (p \land \mathsf{E} \leftthreetimes \mathcal{Z}_{3}) = \{s_{2}, s_{5}, s_{6}, s_{7}\} \\ \mathcal{Z}_{5} &= q \lor (p \land \mathsf{E} \leftthreetimes \mathcal{Z}_{4}) = \{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{7}\} \\ \mathcal{Z}_{6} &= q \lor (p \land \mathsf{E} \leftthreetimes \mathcal{Z}_{5}) = \{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{7}\} \end{array}$$

 $Z_5 = Z_6$, so this is the least fixed point.

Outline

Specification of Kripke Structures

2 Fixed Points

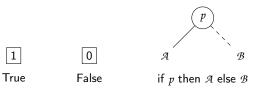
Symbolic Model Checking

We wish to avoid representing the state space and its subsets explicitly. To efficiently implement symbolic model checking, we need:

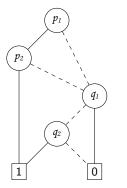
- A concise representation of sets of states
- Quick operations for:
 - Boolean operators \land, \lor, \neg
 - Existential quantification (for the relational composition)
 - Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)

- Symbolic model checking is restricted to finite Kripke Structures
- All finite data can be encoded in "bits"
- Boolean functions can be represented concisely as (Ordered) Binary Decision Diagrams
- Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:



BDD representation of $(p_1 \wedge p_2) \vee (\neg q_1 \wedge q_2)$:



- In ordered BDDs, tests along a path occur in a fixed order (e.g. p₁ < p₂ < q₁ < q₂).
- Theorem[Bryant'86]: OBDDs are a unique representation for Boolean Functions.
- Claim: many practical formulae have a concise OBDD representation due to maximal sharing
- Disclaimer 1: some small formulae have only exponentially large BDDs. (multiplier)
- Disclaimer 2: the size of an OBDD can crucially depend on the ordering of the variables

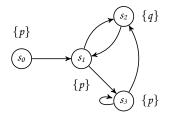
More on OBDDs:

- OBDDs are implemented as maximally shared pointer structures in memory.
- The order of variables is fixed (some implementations feature dynamic reordering)
- Equivalence test can be performed in constant time, in particular, also checking for satisfiability and tautology.
- Boolean operations can be performed efficiently. Let \mathcal{B}_1 and \mathcal{B}_2 be OBDDs with m and n nodes, respectively, then:
 - OBDDs for $\mathcal{B}_1 \wedge \mathcal{B}_2$ and $\mathcal{B}_1 \vee \mathcal{B}_2$ can be computed in $\mathcal{O}(m \cdot n)$ time.
 - OBDDs for $\neg B_1$ can be computed in $\mathcal{O}(m)$ time.
 - the OBDD of $\exists \chi. \mathcal{B}_1$ can be computed in $\mathcal{O}(m^2)$ time.
- Note: still a formula of size $\mathcal{O}(n)$ may have a BDD of size $\mathcal{O}(2^n)$.

- The implementation of a symbolic model checking relies on a representation of all sets in check, Ifp and gfp by OBDDs.
- Hence, in summary, symbolic model checking:
 - Recursively processes subformulae
 - Represent the set of states satisfying a subformula by OBDDs
 - Treats temporal operators by fixed point computations
 - Relies on efficient implementation of equivalence test, and \wedge,\vee,\neg and \exists connectives on OBDDs.

Exercise

Consider the following Kripke Structure:



Consider the following formulae, where p and q are atomic propositions:

- $\begin{array}{ll} (\mathcal{A}) & \mathcal{A}(\mathcal{F}(q)) \\ (\mathcal{B}) & \mathcal{A}[q \ \mathcal{R}, p] \end{array}$
- **O** Determine the set of states where (\mathcal{A}) and (\mathcal{B}) hold using the standard CTL model checking algorithm, based on graph algorithms .
- **2** Determine the set of states where (\mathcal{A}) and (\mathcal{B}) hold using the symbolic model checking algorithm for CTL . Use explicit set notation to represents states.