
Algorithms for Model Checking (2IW55)
Lecture 3

Symbolic Model Checking for CTL
Chapter 2, 6.1, 6.2. Also read Chapter 5

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/26

Outline

1 Specification of Kripke Structures

2 Fixed Points

3 Symbolic Model Checking

4 Implementing Symbolic Model Checking

2/26

Specification of Kripke Structures

Example (GCD)

Consider the following program:

repeat
if x > y− > x := x − y;
[]x < y− > y := y − x ;
fi

until false

This program uses:

variables: {x , y}, with an (implicit) domain of variables: N
States of this program are functions of type: {x , y} → N
An example state could be: {x 7→ 5 , y 7→ 15 }
An execution is a sequence of transitions: e.g.

{x 7→ 5 , y 7→ 15 } → {x 7→ 5 , y 7→ 10} → {x 7→ 5 , y 7→ 5 } → {x 7→ 5 , y 7→ 5 } → . . .

3/26

Specification of Kripke Structures

Example (SWAP)

Consider the following program fragment:

z := x ; % l1
x := y; % l2
y := z; % l3

Besides variables x , y, z : N, this program has a program counter, whose values are
labels (line numbers)

Let pc : {l1, l2, l3}. Now, a state is a function that gives a value to {x , y, z, pc}
A possible execution is the following sequence:

{x 7→ 5 , y 7→ 15 , z 7→ 500 , pc 7→ l1}
→ {x 7→ 5 , y 7→ 15 , z 7→ 5 , pc 7→ l2}
→ {x 7→ 15 , y 7→ 15 , z 7→ 5 , pc 7→ l3}
→ {x 7→ 15 , y 7→ 5 , z 7→ 5 , pc 7→ l4}

4/26

Specification of Kripke Structures

Symbolic Representation

Note: in general, there are infinitely many states and transitions. Even after
restricting to MAXINT, the number often still is overwhelming.

However, many of the states behave very similar (e.g. the start value of z did not
matter)

Idea: the set of states can be represented very concisely by a number of formulae
for GCD:

initial set of states: x < 100 ∧ y < 100
next state predicate:

(x > y ∧ x ′ = x − y ∧ y ′ = y) ∨ (x < y ∧ y ′ = y − x ∧ x ′ = x)

for SWAP:
initial states: x = 5 ∧ y = 15
next state predicate:

(pc = l1 ∧ pc′ = l2 ∧ z′ = x ∧ . . .) ∨ . . .

5/26

Specification of Kripke Structures

The system specification is represented by first-order formulae (later: propositional logic
only)

Let V be a set of variables v0 , v1, . . . , vn

Let D be the domain of these variables

The states of the Kripke Structure will be functions v : V → D

A formula S0 (V) represents the initial states

Let V ′ be a copy of the variables in V : v ′
0 , v ′

1 , . . . , v ′
n

A formula R(V ,V ′) represents the transition relation.
V denotes the value of the variables before the transition
V ′ denotes the value of the variables after the transition.

6/26

Specification of Kripke Structures

Example

V = {E(lla), J (ohn)},
D = {p(laying), q(uestioning), a(nswered)}
S0 (E , J) := E = p ∧ J = p

R(E , J ,E ′, J ′) := R1 ∨ R2 ∨ R3 ∨ R4 ∨ R5 ∨ R6 , where:
R1 := E = p ∧ E ′ = q ∧ J ′ = J
R2 := E = q ∧ E ′ = a ∧ J ′ = J ∧ J 6= a
R3 := E = a ∧ E ′ = p ∧ J ′ = J
R4 := J = p ∧ J ′ = q ∧ E ′ = E
R5 := J = q ∧ J ′ = a ∧ E ′ = E ∧ E 6= a
R6 := J = a ∧ J ′ = p ∧ E ′ = E

Notes:

this corresponds to the demanding children Kripke Structure in previous lectures

a specification for n children gives O(3n) states ⇒ State space explosion

7/26

Outline

1 Specification of Kripke Structures

2 Fixed Points

3 Symbolic Model Checking

4 Implementing Symbolic Model Checking

8/26

Fixed Points

Consider a Kripke Structure M = 〈S ,R ,L〉

Identify sets of states and predicates on states
So, two notations are often mixed:

subsets: X ⊆ S or X ∈ P(S)
predicates: X ∈ 2S or X : S → {0 , 1}
s ∈ X ⇔ X (s) = 1 and s /∈ X ⇔ X (s) = 0

Also: CTL formulae are identified with the set of states where they hold: f versus
{s | s |= f }
As a consequence, ∨,∧ and ∪,∩ are mixed: compare ∅ ∪ E G f and false ∨ E G f

9/26

Fixed Points

Predicate Transformers and Monotonicity

Consider a Kripke Structure M = 〈S ,R ,L〉

The set (P(S),⊆) is a partial order (aka as the complete lattice of state predicates)

A predicate transformer is a function on predicates. For example, the relations Pre
and Post that lift the transition relation R to sets of states:

PreR (X) = {s ∈ S | ∃t ∈ X . s R t}
PostR (X) = {t ∈ S | ∃s ∈ X . s R t}

Let τ : P(S)→ P(S) be an arbitrary predicate transformer.

τ is monotonic iff P ⊆ Q implies τ(P) ⊆ τ(Q).

We write τ i (X) for applying τ i times to X :
τ 0 (X) = X
τ i+1(X) = τ(τ i (X))

10/26

Fixed Points

Let τ : P(S)→ P(S).

A fixed point of τ is a set Z such that τ(Z) = Z
The least fixed point of τ , denoted µX .τ(X) is a set Z such that:

Z = τ(Z) (i.e. Z is a fixed point)
for all X , if τ(X) = X , then Z ⊆ X

The greatest fixed point of τ , denoted νX .τ(X) is a set Z such that:
Z = τ(Z) (i.e. Z is a fixed point)
for all X , if τ(X) = X , then X ⊆ Z

A theorem by Tarski: a monotonic operator on P(S) always has least and greatest fixed
points:

µZ.τ(Z) =
T
{X | τ(X) ⊆ X}

νZ.τ(Z) =
S
{X | X ⊆ τ(X)}

11/26

Fixed Points

Assume now that:

S (hence also P(S)) is finite, and

τ : P(S)→ P(S) is monotonic

Then:
1 ∀i .τ i (∅) ⊆ τ i+1(∅) . (induction on i and monotonicity)
2 There exists an i such that τ i (∅) = τ i+1(∅) (sets become bigger and S is finite)
3 If τ i (∅) = τ i+1(∅), then τ i (∅) is a fixed point of τ (by definition)
4 If X is a fixed point of τ , then ∀i .τ i (∅) ⊆ X (induction on i and monotonicity)

So an approximant τ i can be found such that τ i (∅) = τ i+1(∅), and this set is the least
fixed point of τ .

Similarly, the smallest i such that τ i (S) = τ i+1(S) yields the greatest fixed point.

12/26

Fixed Points

Algorithms for computing the least fixed point and the greatest fixed point based on the
observations on the previous slide.

function lfp(τ :P(S)→P(S)) : P(S)
Q := ∅;
Q ′ := τ(Q);
while Q 6= Q ′ do

Q := Q ′;
Q ′ := τ(Q ′);

end while
return Q ;

end function

function Gfp(τ :P(S)→P(S)) : P(S)
Q := S ;
Q ′ := τ(Q);
while Q 6= Q ′ do

Q := Q ′;
Q ′ := τ(Q ′);

end while
return Q ;

end function

13/26

Outline

1 Specification of Kripke Structures

2 Fixed Points

3 Symbolic Model Checking

4 Implementing Symbolic Model Checking

14/26

Symbolic Model Checking

CTL operators can be seen as fixed point operators. Fix a Kripke Structure
M = 〈S ,R ,L〉. Identify a CTL formula f with predicate {s | s |= f }.

A F f = µZ.f ∪ A X Z and E F f = µZ.f ∪ E X Z

A G f = νZ.f ∩ A X Z and E G f = νZ.f ∩ E X Z

E [f U g] = µZ.g ∪ (f ∩ E X Z)

Intuition:
least and greatest fixed points deal differently with loops:

Greatest fixed point: recursion includes loops, so possibly infinitely many “steps”
Least fixed point: finite recursion through loops, so only finitely many “steps”

Eventualities . least fixed points
(a witness of the eventuality is needed in finitely many steps)

Globally . greatest fixed points
(an infinite path without error is OK)

15/26

Symbolic Model Checking

Proof obligations for E G :

1 The transformer Z 7→ f ∧ E X Z is monotonic, so its fixed point can be computed by
iteration, see lfp and gfp
(If Z1 ⊆ Z2 then f ∧ E X Z1 ⊆ f ∧ E X Z2).

2 E G f is a fixed point of Z 7→ f ∧ E X Z
(E G f = f ∧ E X E G f)

3 E G f is the largest such fixed point
(for all Z: if Z = f ∧ E X Z, then Z ⊆ E G f)

For 1,2,3: prove X ⊆ Y by ∀s.s ∈ X ⇒ s ∈ Y .

For 2: prove ⊆ and ⊇.
For 2,3: use the semantics of CTL-formulae

Proof obligations for E [U] are similar (see for yourself)

16/26

Symbolic Model Checking

CTL model checking with Fixed Points

Function check(f) takes a formula f and returns the set of states where f holds:
{s | s |= f } (given a fixed Kripke Structure M = 〈S ,R ,L〉).

check(p) {s | p ∈ L(s)}
check(¬f) S \ check(f)
check(f ∨ g) check(f)∪ check(g)
check(E X f) PreR (check(f))
check(E [f U g]) lfp

`
Z 7→ check(g) ∪ (check(f) ∩ PreR (Z)))

´
check(E G f) gfp

`
Z 7→ check(f) ∩ PreR (Z)

´
Recall: PreR (Z) = {s ∈ S | ∃t ∈ Z.s R t}

17/26

Symbolic Model Checking

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

To check: E G p

Compute: νZ.p ∧ E X Z (with gfp)

Z0 = true = {si | 1 ≤ i ≤ 8}
Z1 = p ∧ E X Z0 = {s1, s2, s3, s6 , s7 , s8}
Z2 = p ∧ E X Z1 = {s1, s2, s3, s7}
Z3 = p ∧ E X Z2 = {s1, s2, s3, s7}

Z2 = Z3, so this is the greatest fixed point.

18/26

Symbolic Model Checking

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

To check: E [p U q]

Compute: µZ.q ∨ (p ∧ E X Z) (with lfp)

Z0 = false = ∅
Z1 = q ∨ (p ∧ E X Z0) = {s5 }
Z2 = q ∨ (p ∧ E X Z1) = {s5 , s6}
Z3 = q ∨ (p ∧ E X Z2) = {s5 , s6 , s7}
Z4 = q ∨ (p ∧ E X Z3) = {s2, s5 , s6 , s7}
Z5 = q ∨ (p ∧ E X Z4) = {s1, s2, s3, s5 , s6 , s7}
Z6 = q ∨ (p ∧ E X Z5) = {s1, s2, s3, s5 , s6 , s7}

Z5 = Z6 , so this is the least fixed point.

19/26

Outline

1 Specification of Kripke Structures

2 Fixed Points

3 Symbolic Model Checking

4 Implementing Symbolic Model Checking

20/26

Implementing Symbolic Model Checking

We wish to avoid representing the state space and its subsets explicitly. To efficiently
implement symbolic model checking, we need:

A concise representation of sets of states
Quick operations for:

Boolean operators ∧,∨,¬
Existential quantification (for the relational composition)
Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)

21/26

Implementing Symbolic Model Checking

Symbolic model checking is restricted to finite Kripke Structures

All finite data can be encoded in “bits”

Boolean functions can be represented concisely as (Ordered) Binary Decision
Diagrams

Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:

1 0

p

A B

True False if p then A else B

22/26

Implementing Symbolic Model Checking

BDD representation of (p1 ∧ p2) ∨ (¬q1 ∧ q2):

p1

p2

q1

q2

1 0

In ordered BDDs, tests along a path occur in a
fixed order (e.g. p1 < p2 < q1 < q2).

Theorem[Bryant’86]: OBDDs are a unique
representation for Boolean Functions.

Claim: many practical formulae have a concise
OBDD representation due to maximal sharing

Disclaimer 1: some small formulae have only
exponentially large BDDs. (multiplier)

Disclaimer 2: the size of an OBDD can crucially
depend on the ordering of the variables

23/26

Implementing Symbolic Model Checking

More on OBDDs:

OBDDs are implemented as maximally shared pointer structures in memory.

The order of variables is fixed (some implementations feature dynamic reordering)

Equivalence test can be performed in constant time, in particular, also checking for
satisfiability and tautology.

Boolean operations can be performed efficiently. Let B1 and B2 be OBDDs with m
and n nodes, respectively, then:

OBDDs for B1 ∧ B2 and B1 ∨ B2 can be computed in O(m · n) time.
OBDDs for ¬B1 can be computed in O(m) time.
the OBDD of ∃x .B1 can be computed in O(m2) time.

Note: still a formula of size O(n) may have a BDD of size O(2n).

24/26

Implementing Symbolic Model Checking

The implementation of a symbolic model checking relies on a representation of all
sets in check, lfp and gfp by OBDDs.

Hence, in summary, symbolic model checking:
Recursively processes subformulae
Represent the set of states satisfying a subformula by OBDDs
Treats temporal operators by fixed point computations
Relies on efficient implementation of equivalence test, and ∧,∨,¬ and ∃ connectives on
OBDDs.

25/26

Exercise
Consider the following Kripke Structure:

s0 s1

s2

s3

{p}

{p}

{q}

{p}

Consider the following formulae, where p and q are atomic propositions:

(A) A(F (q))
(B) A[q R p]

1 Determine the set of states where (A) and (B) hold using the standard CTL model
checking algorithm, based on graph algorithms .

2 Determine the set of states where (A) and (B) hold using the symbolic model
checking algorithm for CTL . Use explicit set notation to represents states.

26/26

	Specification of Kripke Structures
	Fixed Points
	Symbolic Model Checking
	Implementing Symbolic Model Checking

