Technische Universiteit
Eindhoven
University of Technology

Algorithms for Model Checking (2IW55)

Lecture 5
Bounded Model Checking
Handout: A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded model
checking. Advances in Computers 58: 118-149 (2003)

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© LTL Model Checking

department of m ics and computing science

Technische Universiteit
Eindhoven
University of Technology

LTL Model Checking

LTL-based model checking:

checks temporal operators along single paths
@ LTL is claimed to be more intuitive than CTL (see e.g. [1]):
e in LTL: X F p =F X p (p holds sometimes in the strict future)

?
o inCTL: AXAF p=AF A X p; does at least one of these express “p holds sometimes
in the strict future’?

@ counter examples are easy: “lasso”

typical tool: SPIN
[1]. Moshe Vardi, Branching vs. Linear Time: Final Showdown, Proc. of TACAS'01, 2001.

department of tics and computing science

Technische Universiteit

Eindhoven

University of Technology
LTL Model Checking

Let M = (S, R, L) be a Kripke Structure. Recall the syntax and semantics of LTL:
P :=true |false | AP| =P | PAP|PVP|XP|FP|GP|[PUP]|[PRP]

For a path 7, we have:

™ = true

m £~ false

TED iff pe L(n(0))

T E-f iff whf

TEfAg iff rEfand7mlg - .
. requires checking that

: E{(\}g :g lez':ffor T 7 = f holds for all ini-

xl=Ff iff forsomei> 0,7 = f tialised paths

TEGf iff foralli>0,n" = f

T[fUgl iff 3i>0.7'gAVi<inl=f

T [f R ff V>0 ((Vi<jm)= = g)

department of mathematics and computing science 4/26

Checking M E f

Technische Universiteit
Eindhoven
University of Technology

LTL Model Checking

LTL has a nice automata-theoretic algorithm (see Chapter 9.2-9.4):

’ LTL formula ¢ ‘ ’ Kripke Structure M ‘
’ Biichi automaton Sy ‘ ’ Biichi automaton Ay ‘

’ M = 6 iff £(Anr) C L(Sy)

o Complexity of LTL model checking is PSPACE-complete.

o for a state space of size n and a formula of size m, the problem has complexity
O(m)
n2 .

@ Hence, checking for M = ¢ is not always feasible.
Alternative: Bounded Model Checking

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Bounded Model Checking

department of m ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

@ Observation: LTL model checking requires checking all initialised paths.
@ On the other hand: a counterexample to an LTL formula f corresponds to the
question whether there exists a witness for = f
o A counterexample for G f is a finite prefix of a path in which F —f holds.
o A counterexample for F f is a finite prefix of a path that is a lasso in which G —f holds.

Idea behind BMC:

@ BMC is performed only on the basis of finite, bounded prefixes of paths |[M]|* of the
system M

@ BMC searches for a witness to an existentially quantified LTL formula f, interpreted
over bounded prefixes of paths: |[f]|*.
@ BMC can efficiently be solved using SAT-solvers:

o If the formula |[M]|* A |[f]|* is satisfiable, a counterexample has been found
o If the formula |[M]|* A |[f]|* is unsatisfiable, no counterexample of length k exists

department of tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Let M = (S, R, L) be a Kripke Structure.

O—0O—0—0 O—O—0O—0—0

Si Sk Sy i Sk
(a) no loop (b) (k,1)-loop

Consider a k-bounded path 7. Such a bounded path can represent
@ all its infinite extensions (case a)

@ a (k,l)-loop (case b), i.e. if w(k) R w(l) then 7 represents an infinite path p = u v“,
withu =7(0) ... 7(l—1) and v ==(l) ... 7(k) for some | < k.

Definition (k-loops)

If there is an | < k, such that 7 is a (k,)-loop, 7 is called a k-loop.

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Example (k-loops)

Consider the following 4-bounded path :

mr'\r\O

N\ N /
L(s:) {r} {gt {pa} {p}
o 7 is actually a (4,2)-loop.
@ We can check whether 7 |= ¢ for all formulae ¢
@ For instance: ¢ =F [pU gl or ¢ =F G =(pAq)

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Example (no loop)

Consider the following 4-bounded path :

O—0—0—O0—0 -~

L(si) {r} {p} {p.a} {p,r} {p}
@ 7 is not a 4-loop.
@ Observe that we have p = F ¢ for all infinite extensions p of 7

@ We do not know p = G p for any infinite extension p of 7.

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

@ From hereon, restrict to LTL formulae in Normal Form (NF)
o formulae in NF only have negation in front of atomic propositions

@ NF is not a restriction: every LTL formula can be translated to an equivalent NF
formula.

Formulae in NF are given a Bounded Semantics.
o Bounded Semantics approximates the unbounded (i.e. ordinary) semantics

@ Bounded Semantics is based on k-bounded paths.

ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Definition

Let m = so s1 ... be a bounded path, and let £ > 0 be a bound. Then an LTL formula f
is valid along the path 7 with bound & (denoted 7 =, f) iff:

@ mis a k-loop and 7 = f

@ 7 is not a k-loop and 7 =% f, where for non-temporal operators:

™ |:}c true always holds
T =, false is always false
TP iff pe L(n(4))

mErp iff pgL(n(d)
T fAg iff TEL fand T g
Ty fVg iff mELformEg

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Definition

Let m = so s1 ... be a bounded path, and let £ > 0 be a bound. Then an LTL formula f
is valid along the path 7 with bound & (denoted 7 =, f) iff:

@ mis a k-loop and 7 = f

@ 7 is not a k-loop and 7 = f, where for temporal operators:

TELG f is always false

Tl F f iff i<j<kAarmplf

TELX f iff i<kandnm " f

Ty [fUg] iff Fji<j<kAmllgandVni<n<j=nmkEpf
mEL[fRg] iff Fi<j<kATE.LfandVni<n<j=>nkElg

department of mat i ing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Some properties of |=x:

@ 4 under-approximates =:
o if f holds for a k-bounded path, it also holds a longer path: if 7 =5 f then 7 =41 f.
o for all paths 7 and all k: 7 =, f then 7 |= f.
@ For each ultimately periodic path 7 there is a k such that 7 is a k-loop and thus
w = fiff 7 |z f for some k.
o From this, it follows that the existential model checking question M = E f can be
solved by computing M =i E f for a sufficiently large .

atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Bounded Model Checking

Example

Let ™ = so0 S10 S11 S12 be a bounded path
e misa (3,1)-loop
o 73 G (EPV EQ)
o T3 G EPVG EQ

Consider the bounded path p = s00 S10 S11 $21

@ p is not a looping path
o p ':3 F EA
o pls G (-JA)

department of ma tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

© Reduction of BMC to SAT

department of m ics and computing science

Technische Universiteit
Eindhoven
University of Technology

Reduction of BMC to SAT

SAT-problem: given a propositional formula ¢, find a valuation for the variables of ¢ that
make ¢ true.

Boolean satisfiability is NP-complete.

a SAT-solver computes a valuation (if it exists) or it returns unsatisfiable.

@ SAT-solvers accept formulae in Conjunctive Normal Form (CNF), i.e. a conjunction
of clauses (disjunctions of literals and negated literals).

turning a formula ¢ into CNF can be done either:

o naively (yields formulae exponential in the size of ¢, think of an example), or
o cleverly, by introducing O(|¢|) auxiliary variables, where |¢| is the number of sub
expressions in ¢.

Typical tools: minisat and zchaff

ics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Reduction of BMC to SAT
Given a Kripke Structure M = (S, R, L), a formula f and a bound k.

[M, f]x encodes the problem M [=i f as a propositional formula.

The encoding [_]x proceeds in three steps:
o Compute [M]x, encoding all initialised paths of length k.
o Compute Lg, encoding the loop condition as a proposition.

o Constrain the encoded paths to paths that satisfy f

Note: the size of [M, f]x is O(|f| x k x |M|)

tics and computing science

Technische Universiteit
Eindhoven
University of Technology

Reduction of BMC to SAT

Given a Kripke Structure M = (S, R, L) and a bound k.

@ Represent all states in S uniquely by a state vector s of n Boolean state variables
<S[O]a 5[1]7 CER 5[” - 1]>
o Take k + 1 copies of the system state vector, denoted by s, s1,. .., sk

@ Let Sy(s) be the initial state(s) of the system, and R(s, s’) be the transition relation,
both expressed as propositional formulae.

Definition

The k-unfolding [M] of a Kripke Structure is given by the following propositional formula

k
[M]k = 50(80) A\ /\ R(Si—h Si)

p=il

Technische Universiteit
I U Eindhoven

University of Technology
Reduction of BMC to SAT

Example

Symbolic representation of M:
e So(s) = s[E]=pAs[J]=p
(-] R(S,Sl) = RiVRsVR3VRsVR5V Rs,

where:
o Ry := s[E] =pAS'[E] = qAs[J] = §'[J]
o Ry := s[E]=qASs[El=aAs'[J]=
s[JIAs[J] # a
o R3:= s[E] = aAs'[E] = pASs'[J] = s[J]
o Ry := s[J] = pAs'[J] = gASs'[E] = s[E]
o R5:= s[J]=qASs[J]=aAns[E]=

S[E] A S[E] # a
o Rg := s[J] = aNs'[J] = pAs'[E] = s[E]

Use vectors sp, s1 and s2 to represent the states of the system; use propositional variables
to represent so[E] = p, etc.
The 2-unfolding of M is given by the following propositional formula :

(so[E] = p A so[J] = p) A R(so0, s1) A R(s1, s2)

department or matnematics and computing science U

Technische Universiteit
Eindhoven
University of Technology

Reduction of BMC to SAT

Recall that the Bounded Semantics for LTL depends on the structure of the path:
@ for loops, the Bounded Semantics coincides with the ordinary semantics

o for loop-free paths, the Bounded Semantics differs.

The propositional formula ; Ly is true iff there is a transition from state s, to state s;:

1L := R(sk, 1)

Definition

The loop-condition Ly is given by the following proposition:

department of

Technische Universiteit
Eindhoven
University of Technology

Reduction of BMC to SAT

Given a Kripke Structure M = (S, R, L), a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is a (k,[)-loop:

[l = p(si)

=l =op(s)
AfFvale = lf1 Valdli
fAngle = lfe Ak

XA = R
() AR V) Y (Y
IF T = UV F e

l[[f U g]]}c = [g];bC ([f]k Al [[f U g]]succ(')
LS Rl =1 lglic A LT Ve IIf R gl

Note: 4, (¢ < k) indicates the depth of “unfolding”

department of mathematics and computing science

succ(?) is defined as:
i+1 ifi<k
l ifi=k

Technische Universiteit
Eindhoven
University of Technology

Reduction of BMC to SAT

Given a Kripke Structure M = (S, R, L), a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is not a loop:

[P]}c) = p(si)
[=plk) = —'P_(Si))
[fval — =I[flk VI

K i A gl Formulae beyond depth k
[Fade =1 Aldls ormulae beyond dep

X 11 = [fo never hold:
i 1 i1 ‘
{g Jj:l]: - B‘c{: C {E jJ:]];f“ (/1 := false for j > k

(fUgli =gV M Alf Vgl
[f Ralli :=Igli AU VIR

Note: 4, (¢ < k) indicates the depth of “unfolding”

department of mathematics and computing science 23/26

Technische Universiteit
I U Eindhoven
University of Technology
Reduction of BMC to SAT

Given a Kripke Structure M = (S, R, L), an LTL formula f and a bound k£ > 0.

The propositional formula corresponding to the Existential Bounded Model Checking
problem is given by [M, f]i:

M, fli == [M]x A <(ﬁLk/\[f]k \/ (L AR)

@ The left side of the disjunction represents the case when there is no back-loop in a
path of length k (L does not hold)

@ The right side of the disjunction represents the case when there is a back-loop at
some point between 0 and k (; L holds for some 1)

o [M, f]i is satisfiable iff M = E f.

department of m atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Outline

@ Example

department of i puting science

Technische Universiteit
Eindhoven
University of Technology

Example

Kripke Structure M, represented by:

P P o Initial state proposition: Sp(s) = —s[0] A —s[1].

®'@ Transition relation: R(s,s’) =
“ (510] = s[1] A (+'[0] < ~s0]) A (s/[1] = s[1))
@ @ Vv (=s[0] A s[1] A S'[0] A S'[1])
V- (s[0] A (s"[0] = —s[0]) A (s'[1] < —s[1]))

o To check: G p

q p

@ paths starting in sgo have (a.0.) a (2,0)-loop and a (3,1)-loop.
@ [M,F —p]s is not satisfiable.
o [M,F —p]s is satisfiable:

(so[0], so[1]) = (false, false)
(s1[0], s1[1]) = (false, true)
(s2[0], s2[1]) = (true, true)
(s3[0], s3[1]) = (true, false)

department of mathematics and computing science

	LTL Model Checking
	Bounded Model Checking
	Reduction of BMC to SAT
	Example

