
Algorithms for Model Checking (2IW55)
Lecture 5

Bounded Model Checking
Handout: A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded model

checking. Advances in Computers 58: 118-149 (2003)

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/26

Outline

1 LTL Model Checking

2 Bounded Model Checking

3 Reduction of BMC to SAT

4 Example

2/26

LTL Model Checking

LTL-based model checking:

checks temporal operators along single paths
LTL is claimed to be more intuitive than CTL (see e.g. [1]):

in LTL: X F p ≡ F X p (p holds sometimes in the strict future)

in CTL: A X A F p
?
≡ A F A X p; does at least one of these express “p holds sometimes

in the strict future”?

counter examples are easy: “lasso”

typical tool: SPIN

[1]. Moshe Vardi, Branching vs. Linear Time: Final Showdown, Proc. of TACAS’01, 2001.

3/26

LTL Model Checking

Let M = 〈S,R,L〉 be a Kripke Structure. Recall the syntax and semantics of LTL:

P ::= true | false | AP | ¬P | P ∧ P | P ∨ P | X P | F P | G P | [P U P] | [P R P]

For a path π, we have:

π |= true
π 6|= false
π |= p iff p ∈ L(π(0))
π |= ¬f iff π 6|= f
π |= f ∧ g iff π |= f and π |= g
π |= f ∨ g iff π |= f or π |= g
π |= X f iff π1 |= f
π |= F f iff for some i ≥ 0, πi |= f
π |= G f iff for all i ≥ 0, πi |= f
π |= [f U g] iff ∃i ≥ 0. πi |= g ∧ ∀j < i. πj |= f
π |= [f R g] iff ∀j ≥ 0. ((∀i < j. πi 6|= f)⇒ πj |= g)

Checking M |= f
requires checking that
π |= f holds for all ini-
tialised paths

4/26

LTL Model Checking

LTL has a nice automata-theoretic algorithm (see Chapter 9.2–9.4):

LTL formula φ

Büchi automaton Sφ

Kripke Structure M

Büchi automaton AM

M |= φ iff L(AM) ⊆ L(Sφ)

Complexity of LTL model checking is PSPACE-complete.

for a state space of size n and a formula of size m, the problem has complexity
n2O(m).

Hence, checking for M |= φ is not always feasible.

Alternative: Bounded Model Checking

5/26

Outline

1 LTL Model Checking

2 Bounded Model Checking

3 Reduction of BMC to SAT

4 Example

6/26

Bounded Model Checking

Observation: LTL model checking requires checking all initialised paths.

On the other hand: a counterexample to an LTL formula f corresponds to the
question whether there exists a witness for ¬f

A counterexample for G f is a finite prefix of a path in which F ¬f holds.
A counterexample for F f is a finite prefix of a path that is a lasso in which G ¬f holds.

Idea behind BMC:

BMC is performed only on the basis of finite, bounded prefixes of paths |[M]|k of the
system M

BMC searches for a witness to an existentially quantified LTL formula f , interpreted
over bounded prefixes of paths: |[f]|k.
BMC can efficiently be solved using SAT-solvers:

If the formula |[M]|k ∧ |[f]|k is satisfiable, a counterexample has been found
If the formula |[M]|k ∧ |[f]|k is unsatisfiable, no counterexample of length k exists

7/26

Bounded Model Checking

Let M = 〈S,R,L〉 be a Kripke Structure.

si sk sl si sk

(a) no loop (b) (k, l)-loop

Consider a k-bounded path π. Such a bounded path can represent

all its infinite extensions (case a)

a (k, l)-loop (case b), i.e. if π(k) R π(l) then π represents an infinite path ρ = u vω,
with u = π(0) . . . π(l − 1) and v = π(l) . . . π(k) for some l ≤ k.

Definition (k-loops)

If there is an l ≤ k, such that π is a (k, l)-loop, π is called a k-loop.

8/26

Bounded Model Checking

Example (k-loops)

Consider the following 4-bounded path π:

L(si) {p} {q} {p, q} {p}

π is actually a (4, 2)-loop.

We can check whether π |= φ for all formulae φ

For instance: φ = F [p U q] or φ = F G ¬(p ∧ q)

9/26

Bounded Model Checking

Example (no loop)

Consider the following 4-bounded path π:

L(si) {p} {p} {p, q} {p, r} {p}

π is not a 4-loop.

Observe that we have ρ |= F q for all infinite extensions ρ of π

We do not know ρ |= G p for any infinite extension ρ of π.

10/26

Bounded Model Checking

From hereon, restrict to LTL formulae in Normal Form (NF)

formulae in NF only have negation in front of atomic propositions

NF is not a restriction: every LTL formula can be translated to an equivalent NF
formula.

Formulae in NF are given a Bounded Semantics.

Bounded Semantics approximates the unbounded (i.e. ordinary) semantics

Bounded Semantics is based on k-bounded paths.

11/26

Bounded Model Checking

Definition

Let π = s0 s1 . . . be a bounded path, and let k ≥ 0 be a bound. Then an LTL formula f
is valid along the path π with bound k (denoted π |=k f) iff:

π is a k-loop and π |= f

π is not a k-loop and π |=0
k f , where for non-temporal operators:

π |=i
k true always holds

π |=i
k false is always false

π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p /∈ L(π(i))

π |=i
k f ∧ g iff π |=i

k f and π |=i
k g

π |=i
k f ∨ g iff π |=i

k f or π |=i
k g

12/26

Bounded Model Checking

Definition

Let π = s0 s1 . . . be a bounded path, and let k ≥ 0 be a bound. Then an LTL formula f
is valid along the path π with bound k (denoted π |=k f) iff:

π is a k-loop and π |= f

π is not a k-loop and π |=0
k f , where for temporal operators:

π |=i
k G f is always false

π |=i
k F f iff ∃j.i ≤ j ≤ k ∧ π |=j

k f
π |=i

k X f iff i < k and π |=i+1
k f

π |=i
k [f U g] iff ∃j.i ≤ j ≤ k ∧ π |=j

k g and ∀n.i ≤ n < j ⇒ π |=n
k f

π |=i
k [f R g] iff ∃j.i ≤ j ≤ k ∧ π |=j

k f and ∀n.i ≤ n < j ⇒ π |=n
k g

13/26

Bounded Model Checking

Some properties of |=k:

|=k under-approximates |=:
if f holds for a k-bounded path, it also holds a longer path: if π |=k f then π |=k+1 f .
for all paths π and all k: π |=k f then π |= f .

For each ultimately periodic path π there is a k such that π is a k-loop and thus
π |= f iff π |=k f for some k.

From this, it follows that the existential model checking question M |= E f can be
solved by computing M |=k E f for a sufficiently large k.

14/26

Bounded Model Checking

Example

s00

s01

s02

s10 s20

s11 s21

s12

{EP,JP} {EQ,JP} {EA,JP}

{EP,JQ}

{EP,JA}

{EQ,JQ} {EA,JQ}

{EQ,JA}

Let π = s00 s10 s11 s12 be a bounded path

π is a (3, 1)-loop

π |=3 G (EP ∨ EQ)

π 6|=3 G EP ∨ G EQ

Consider the bounded path ρ = s00 s10 s11 s21

ρ is not a looping path

ρ |=3 F EA

ρ 6|=3 G (¬JA)

15/26

Outline

1 LTL Model Checking

2 Bounded Model Checking

3 Reduction of BMC to SAT

4 Example

16/26

Reduction of BMC to SAT

SAT-problem: given a propositional formula φ, find a valuation for the variables of φ that
make φ true.

Boolean satisfiability is NP-complete.

a SAT-solver computes a valuation (if it exists) or it returns unsatisfiable.

SAT-solvers accept formulae in Conjunctive Normal Form (CNF), i.e. a conjunction
of clauses (disjunctions of literals and negated literals).

turning a formula φ into CNF can be done either:
naively (yields formulae exponential in the size of φ, think of an example), or
cleverly, by introducing O(|φ|) auxiliary variables, where |φ| is the number of sub
expressions in φ.

Typical tools: minisat and zchaff

17/26

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S,R,L〉, a formula f and a bound k.

[[M, f]]k encodes the problem M |=k f as a propositional formula.

The encoding [[_]]k proceeds in three steps:

Compute [[M]]k, encoding all initialised paths of length k.

Compute Lk, encoding the loop condition as a proposition.

Constrain the encoded paths to paths that satisfy f

Note: the size of [[M, f]]k is O(|f | × k × |M |)

18/26

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S,R,L〉 and a bound k.

Represent all states in S uniquely by a state vector s of n Boolean state variables
〈s[0], s[1], . . . , s[n− 1]〉
Take k + 1 copies of the system state vector, denoted by s0, s1, . . . , sk
Let S0(s) be the initial state(s) of the system, and R(s, s′) be the transition relation,
both expressed as propositional formulae.

Definition

The k-unfolding [[M]]k of a Kripke Structure is given by the following propositional formula

[[M]]k := S0(s0) ∧
k̂

i=1

R(si−1, si)

19/26

Reduction of BMC to SAT

Example

s00

s01

s02

s10 s20

s11 s21

s12

{EP,JP} {EQ,JP} {EA,JP}

{EP,JQ}

{EP,JA}

{EQ,JQ} {EA,JQ}

{EQ,JA}

Symbolic representation of M :

S0(s) := s[E] = p ∧ s[J] = p

R(s, s′) := R1 ∨R2 ∨R3 ∨R4 ∨R5 ∨R6,
where:

R1 := s[E] = p∧s′[E] = q∧s[J] = s′[J]
R2 := s[E] = q ∧ s′[E] = a ∧ s′[J] =
s[J] ∧ s[J] 6= a
R3 := s[E] = a∧s′[E] = p∧s′[J] = s[J]
R4 := s[J] = p∧s′[J] = q∧s′[E] = s[E]
R5 := s[J] = q ∧ s′[J] = a ∧ s′[E] =
s[E] ∧ s[E] 6= a
R6 := s[J] = a∧s′[J] = p∧s′[E] = s[E]

Use vectors s0, s1 and s2 to represent the states of the system; use propositional variables
to represent s0[E] = p, etc.
The 2-unfolding of M is given by the following propositional formula :

(s0[E] = p ∧ s0[J] = p) ∧R(s0, s1) ∧R(s1, s2)

20/26

Reduction of BMC to SAT

Recall that the Bounded Semantics for LTL depends on the structure of the path:

for loops, the Bounded Semantics coincides with the ordinary semantics

for loop-free paths, the Bounded Semantics differs.

The propositional formula lLk is true iff there is a transition from state sk to state sl:

lLk := R(sk, sl)

Definition

The loop-condition Lk is given by the following proposition:

Lk :=

k_
l=0

lLk

21/26

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S,R,L〉, a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is a (k, l)-loop:

l[[p]]
i
k := p(si)

l[[¬p]]ik := ¬p(si)
l[[f ∨ g]]ik :=l [[f]]ik ∨l [[g]]ik
l[[f ∧ g]]ik :=l [[f]]ik ∧l [[g]]ik
l[[X f]]ik :=l [[f]]

succ(i)
k

l[[G f]]ik :=l [[f]]ik ∧l [[G f]]
succ(i)
k

l[[F f]]ik :=l [[f]]ik ∨l [[F f]]
succ(i)
k

l[[[f U g]]]ik :=l [[g]]ik ∨ (l[[f]]ik ∧l [[[f U g]]]
succ(i)
k

l[[[f R g]]]ik :=l [[g]]ik ∧ (l[[f]]ik ∨l [[[f R g]]]
succ(i)
k

succ(i) is defined as:
i+ 1 if i < k
l if i = k

Note: i, (i ≤ k) indicates the depth of “unfolding”

22/26

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S,R,L〉, a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is not a loop:

[[p]]ik := p(si)
[[¬p]]ik := ¬p(si)
[[f ∨ g]]ik := [[f]]ik ∨ [[g]]ik
[[f ∧ g]]ik := [[f]]ik ∧ [[g]]ik
[[X f]]ik := [[f]]i+1

k

[[G f]]ik := [[f]]ik ∧ [[G f]]i+1
k

[[F f]]ik := [[f]]ik ∨ [[F f]]i+1
k

[[[f U g]]]ik := [[g]]ik ∨ ([[f]]ik ∧ [[[f U g]]]i+1
k

[[[f R g]]]ik := [[g]]ik ∧ ([[f]]ik ∨ [[[f R g]]]i+1
k

Formulae beyond depth k
never hold:

[[f]]jk := false for j > k

Note: i, (i ≤ k) indicates the depth of “unfolding”

23/26

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S,R,L〉, an LTL formula f and a bound k ≥ 0.

The propositional formula corresponding to the Existential Bounded Model Checking
problem is given by [[M, f]]k:

[[M, f]]k := [[M]]k ∧
„`
¬Lk ∧ [[f]]0k

´
∨

k_
l=0

`
l
Lk ∧l [[f]]0k

´«

The left side of the disjunction represents the case when there is no back-loop in a
path of length k (Lk does not hold)

The right side of the disjunction represents the case when there is a back-loop at
some point between 0 and k (lLk holds for some l)

[[M, f]]k is satisfiable iff M |=k E f .

24/26

Outline

1 LTL Model Checking

2 Bounded Model Checking

3 Reduction of BMC to SAT

4 Example

25/26

Example

s00 s01

s10 s11

p p

q p

Kripke Structure M , represented by:

Initial state proposition: S0(s) = ¬s[0] ∧ ¬s[1].
Transition relation: R(s, s′) =

(s[0]↔ s[1] ∧ (s′[0]↔ ¬s[0]) ∧ (s′[1]↔ s[1]))
∨ (¬s[0] ∧ s[1] ∧ s′[0] ∧ s′[1])
∨ (s[0] ∧ (s′[0]↔ ¬s[0]) ∧ (s′[1]↔ ¬s[1]))

To check: G p

paths starting in s00 have (a.o.) a (2, 0)-loop and a (3, 1)-loop.

[[M,F ¬p]]2 is not satisfiable.

[[M,F ¬p]]3 is satisfiable:8>><>>:
(s0[0], s0[1]) = (false, false)
(s1[0], s1[1]) = (false, true)
(s2[0], s2[1]) = (true, true)
(s3[0], s3[1]) = (true, false)

26/26

	LTL Model Checking
	Bounded Model Checking
	Reduction of BMC to SAT
	Example

