

Algorithms for Model Checking (2IW55)

Lecture 5 Bounded Model Checking Handout: A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded model checking. Advances in Computers 58: 118-149 (2003)

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/∼timw HG 6.81

department of mathematics and computing science

Outline

1 [LTL Model Checking](#page-1-0)

[Bounded Model Checking](#page-5-0)

[Reduction of BMC to SAT](#page-15-0)

[Example](#page-24-0)

department of mathematics and computing science

LTL Model Checking

LTL-based model checking:

- checks temporal operators along single paths
- LTL is claimed to be more intuitive than CTL (see e.g. [1]):
	- in LTL: $X F p \equiv F X p (p$ holds sometimes in the strict future)
	- in CTL: <code>AXAF</code> $p \stackrel{?}{\equiv}$ <code>AFAX</code> $p;$ does at least one of these express "p holds sometimes in the strict future"?
- counter examples are easy: "lasso"
- typical tool: SPIN

[1]. Moshe Vardi, Branching vs. Linear Time: Final Showdown, Proc. of TACAS'01, 2001.

LTL Model Checking

Let $M = \langle S, R, L \rangle$ be a Kripke Structure. Recall the syntax and semantics of LTL: $P ::= true \mid false \mid AP \mid \neg P \mid P \land P \mid P \lor P \mid X \mid P \mid F \mid G \mid P \mid P \cup P \mid \mid P \mid R \mid P \mid$

For a path π , we have:

Checking $M \models f$ requires checking that $\pi \models f$ holds for all initialised paths

LTL Model Checking

LTL has a nice automata-theoretic algorithm (see Chapter 9.2–9.4):

- Complexity of LTL model checking is **PSPACE**-complete.
- \bullet for a state space of size n and a formula of size m, the problem has complexity $n2^{\mathcal{O}(m)}$.
- Hence, checking for $M \models \phi$ is not always feasible.

Alternative: Bounded Model Checking

Outline

[LTL Model Checking](#page-1-0)

² [Bounded Model Checking](#page-5-0)

[Reduction of BMC to SAT](#page-15-0)

department of mathematics and computing science

- Observation: LTL model checking requires checking all initialised paths.
- \bullet On the other hand: a counterexample to an LTL formula f corresponds to the question whether there exists a witness for $\neg f$
	- A counterexample for G f is a finite prefix of a path in which $F \neg f$ holds.
	- A counterexample for F f is a finite prefix of a path that is a lasso in which $G f$ holds.

Idea behind BMC:

- BMC is performed only on the basis of finite, bounded prefixes of paths $\vert [M]\vert^k$ of the system M
- \bullet BMC searches for a witness to an existentially quantified LTL formula f , interpreted over bounded prefixes of paths: $\vert [f]\vert^k.$
- BMC can efficiently be solved using SAT-solvers:
	- If the formula $|[M]|^k \wedge |[f]|^k$ is satisfiable, a counterexample has been found
	- If the formula $\dot |[M]|^k \wedge |\tilde [f]|^k$ is unsatisfiable, no counterexample of length k exists

Let $M = \langle S, R, L \rangle$ be a Kripke Structure.

Consider a k-bounded path π . Such a bounded path can represent

- all its infinite extensions (case a)
- a (k, l) -loop (case b), i.e. if $\pi(k)$ $R \pi(l)$ then π represents an infinite path $\rho = u \, v^{\omega}$, with $u = \pi(0)$... $\pi(l-1)$ and $v = \pi(l)$... $\pi(k)$ for some $l \leq k$.

Definition (k-loops)

If there is an $l \leq k$, such that π is a (k, l) -loop, π is called a k-loop.

Example (k-loops)

Consider the following 4-bounded path π :

- π is actually a $(4, 2)$ -loop.
- We can check whether $\pi \models \phi$ for all formulae ϕ
- For instance: $\phi = F[p \cup q]$ or $\phi = F G \neg (p \land q)$

Example (no loop)

Consider the following 4-bounded path π :

$$
\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow
$$

$$
L(s_i) \{p\} \{p\} \{p,q\} \{p,r\} \{p\}
$$

- \bullet π is not a 4-loop.
- **Observe that we have** $\rho \models F q$ **for all infinite extensions** ρ **of** π
- We do not know $\rho \models G p$ for any infinite extension ρ of π .

- From hereon, restrict to LTL formulae in Normal Form (NF)
- **•** formulae in NF only have negation in front of atomic propositions
- NF is not a restriction: every LTL formula can be translated to an equivalent NF formula.

Formulae in NF are given a Bounded Semantics.

- Bounded Semantics approximates the unbounded (i.e. ordinary) semantics
- \bullet Bounded Semantics is based on k -bounded paths.

Definition

Let $\pi = s_0 \, s_1 \, \dots$ be a bounded path, and let $k \geq 0$ be a bound. Then an LTL formula f is valid along the path π with bound k (denoted $\pi \models_k f$) iff:

 \mathfrak{g}

```
• \pi is a k-loop and \pi \models f
```
 π is not a k -loop and $\pi \models^0_k f$, where for non-temporal operators:

Definition

Let $\pi = s_0 \, s_1 \, \dots$ be a bounded path, and let $k \geq 0$ be a bound. Then an LTL formula f is valid along the path π with bound k (denoted $\pi \models_k f$) iff:

•
$$
\pi
$$
 is a k-loop and $\pi \models f$

 π is not a k -loop and $\pi \models^0_k f$, where for temporal operators:

Some properties of \models_k :

- $\bullet \models_k$ under-approximates \models :
	- **i** if f holds for a k-bounded path, it also holds a longer path: if $\pi \models_k f$ then $\pi \models_{k+1} f$.
	- for all paths π and all $k: \pi \models_k f$ then $\pi \models f$.
- For each ultimately periodic path π there is a k such that π is a k-loop and thus $\pi \models f$ iff $\pi \models_k f$ for some k.
- From this, it follows that the existential model checking question $M \models E f$ can be solved by computing $M \models_k E f$ for a sufficiently large k.

Example

Let $\pi = s_{00} s_{10} s_{11} s_{12}$ be a bounded path

 $\bullet \pi$ is a $(3,1)$ -loop

$$
\bullet \ \pi \models_3 \mathsf{G} \ (EP \lor EQ)
$$

$$
\bullet\ \pi \not\models_3 \mathsf{G}\ EP\vee \mathsf{G}\ EQ
$$

Consider the bounded path $\rho = s_{00} s_{10} s_{11} s_{21}$

 \bullet ρ is not a looping path

$$
\bullet \ \rho \models_3 \mathsf{F}\ EA
$$

 \bullet $\rho \not\models_3 \mathsf{G} (\neg JA)$

Outline

[LTL Model Checking](#page-1-0)

[Bounded Model Checking](#page-5-0)

3 [Reduction of BMC to SAT](#page-15-0)

SAT-problem: given a propositional formula ϕ , find a valuation for the variables of ϕ that make ϕ true.

- Boolean satisfiability is NP-complete.
- a SAT-solver computes a valuation (if it exists) or it returns unsatisfiable.
- SAT-solvers accept formulae in Conjunctive Normal Form (CNF), i.e. a conjunction of clauses (disjunctions of literals and negated literals).
- turning a formula ϕ into CNF can be done either:
	- naively (yields formulae exponential in the size of ϕ , think of an example), or
	- cleverly, by introducing $\mathcal{O}(|\phi|)$ auxiliary variables, where $|\phi|$ is the number of sub expressions in ϕ .
- Typical tools: minisat and zchaff

Given a Kripke Structure $M = \langle S, R, L \rangle$, a formula f and a bound k.

 $[M, f]_k$ encodes the problem $M \models_k f$ as a propositional formula.

The encoding $\left[\begin{array}{c}k\end{array}\right]$ proceeds in three steps:

- Compute $[M]_k$, encoding all initialised paths of length k.
- Compute L_k , encoding the loop condition as a proposition.
- \bullet Constrain the encoded paths to paths that satisfy f

Note: the size of $[M, f]_k$ is $\mathcal{O}(|f| \times k \times |M|)$

Given a Kripke Structure $M = \langle S, R, L \rangle$ and a bound k.

- Represent all states in S uniquely by a state vector s of n Boolean state variables $\langle s[0], s[1], \ldots, s[n-1] \rangle$
- Take $k + 1$ copies of the system state vector, denoted by s_0, s_1, \ldots, s_k
- Let $S_0(s)$ be the initial state(s) of the system, and $R(s, s^{\prime})$ be the transition relation, both expressed as propositional formulae.

Definition

The k-unfolding $[M]_k$ of a Kripke Structure is given by the following propositional formula

$$
[M]_k := S_0(s_0) \ \wedge \ \bigwedge_{i=1}^k R(s_{i-1}, s_i)
$$

Example

Symbolic representation of M:

- $\bullet S_0(s) := s[E] = p \wedge s[J] = p$
- $\mathcal{R}(s, s') := R_1 \vee R_2 \vee R_3 \vee R_4 \vee R_5 \vee R_6,$ where:

\n- \n
$$
R_1 := s[E] = p \wedge s'[E] = q \wedge s[J] = s'[J]
$$
\n
\n- \n $R_2 := s[E] = q \wedge s'[E] = a \wedge s'[J] = s[J] \wedge s[B] \neq a$ \n
\n- \n $R_3 := s[E] = a \wedge s'[E] = p \wedge s'[J] = s[J]$ \n
\n- \n $R_4 := s[J] = p \wedge s'[J] = q \wedge s'[E] = s[E]$ \n
\n- \n $R_5 := s[J] = q \wedge s'[J] = a \wedge s'[E] = s[E] \wedge s[E] \neq a$ \n
\n- \n $R_6 := s[J] = a \wedge s'[J] = p \wedge s'[E] = s[E]$ \n
\n

Use vectors s_0, s_1 and s_2 to represent the states of the system; use propositional variables to represent $s_0[E] = p$, etc.

The 2-unfolding of M is given by the following propositional formula:

$$
(s_0[E] = p \land s_0[J] = p) \land \mathcal{R}(s_0, s_1) \land \mathcal{R}(s_1, s_2)
$$

Recall that the Bounded Semantics for LTL depends on the structure of the path:

- for loops, the Bounded Semantics coincides with the ordinary semantics
- for loop-free paths, the Bounded Semantics differs.

The propositional formula iL_k is true iff there is a transition from state s_k to state s_l :

 $l_{th} := R(s_k, s_l)$

Definition

The loop-condition L_k is given by the following proposition:

$$
L_k := \bigvee_{l=0}^k \, l \, L_k
$$

Given a Kripke Structure $M = \langle S, R, L \rangle$, a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is a (k, l) -loop:

Note: $i, (i \leq k)$ indicates the depth of "unfolding"

as:

Given a Kripke Structure $M = \langle S, R, L \rangle$, a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is not a loop:

Formulae beyond depth k never hold:

 $[f]^j_k := \mathsf{false}$ for $j > k$

Note: i, $(i \leq k)$ indicates the depth of "unfolding"

Given a Kripke Structure $M = \langle S, R, L \rangle$, an LTL formula f and a bound $k \geq 0$.

The propositional formula corresponding to the Existential Bounded Model Checking problem is given by $[M, f]_k$:

$$
[M, f]_k := [M]_k \wedge \left(\left(\neg L_k \wedge [f]_k^0 \right) \vee \bigvee_{l=0}^k \left({}_l L_k \wedge_l [f]_k^0 \right) \right)
$$

- The left side of the disjunction represents the case when there is no back-loop in a path of length k (L_k does not hold)
- The right side of the disjunction represents the case when there is a back-loop at some point between 0 and k (L_k holds for some l)
- $[M, f]_k$ is satisfiable iff $M \models_k E f$.

Outline

[LTL Model Checking](#page-1-0)

[Bounded Model Checking](#page-5-0)

[Reduction of BMC to SAT](#page-15-0)

Example

- Kripke Structure M , represented by:
- Initial state proposition: $S_0(s) = \neg s[0] \land \neg s[1]$.
- Transition relation: $\mathcal{R}(s, s') =$ $(s[0] \leftrightarrow s[1] \land (s'[0] \leftrightarrow \neg s[0]) \land (s'[1] \leftrightarrow s[1]))$ \vee (¬s[0] \wedge s[1] \wedge s'[0] \wedge s'[1]) \vee $(s[0] \wedge (s'[0] \leftrightarrow \neg s[0]) \wedge (s'[1] \leftrightarrow \neg s[1]))$
- \bullet To check: G p
- paths starting in s_{00} have (a.o.) a $(2,0)$ -loop and a $(3,1)$ -loop.
- $[M, F \neg p]_2$ is not satisfiable.
- $[M, F \neg p]_3$ is satisfiable:

$$
\left\{\begin{array}{ll} (s_0[0],s_0[1])&=(\text{false},\text{false})\\ (s_1[0],s_1[1])&=(\text{false},\text{true})\\ (s_2[0],s_2[1])&=(\text{true},\text{true})\\ (s_3[0],s_3[1])&=(\text{true},\text{false}) \end{array}\right.
$$