
Image Based Flow Visualization for Curved Surfaces

Jarke J. van Wijk
Technische Universiteit Eindhoven

Abstract

A new method for the synthesis of dense, vector-field aligned tex-
tures on curved surfaces is presented, called IBFVS. The method
is based on Image Based Flow Visualization (IBFV). In IBFV two-
dimensional animated textures are produced by defining each frame
of a flow animation as a blend between a warped version of the
previous image and a number of filtered white noise images. We
produce flow aligned texture on arbitrary three-dimensional trian-
gle meshes in the same spirit as the original method: Texture is
generated directly in image space. We show that IBFVS is efficient
and effective. High performance (typically fifty frames or more per
second) is achieved by exploiting graphics hardware. Also, IBFVS

can easily be implemented and a variety of effects can be achieved.
Applications are flow visualization and surface rendering. Specifi-
cally, we show how to visualize the wind field on the earth and how
to render a dirty bronze bunny.

CRCategories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.6.6 [Simulation and Modelling]: Simulation Output Analy-
sis

Keywords: Flow visualization, texture mapping, line integral con-
volution, surface rendering

1 Introduction

Visualization is indispensable to achieve insight in the large data
sets produced by Computational Fluid Dynamics (CFD) simula-
tions. Many methods for flow visualization have been developed,
ranging from arrow plots and streamlines to dense texture methods.
The latter class of methods produces clear visualizations, but its use
in practice has been hampered by a poor efficiency.

Recently we have introduced Image Based Flow Visualization
(IBFV) [26]. This method provides a single framework to generate a
wide variety of visualizations of two-dimensional fluid flow, vary-
ing from moving particles, streamlines, moving textures, to topo-
logical images; it can handle arbitrary grids and unsteady flow; a
high efficiency is achieved by exploiting graphics hardware; and
finally the method is easy to implement.

In this article we present how IBFV can be extended to produce
vector field aligned textures on curved surfaces. We named the new
method IBFVS. The texture mapping is solved in line with the orig-
inal method: Textures are directly generated in image space. As a
result, IBFVS inherits the advantages of IBFV.

The typical application domain is flow visualization, but vector
field aligned textures can also be used for other purposes. We show
how surface details can be depicted realistically by textures derived
from and modulated by local surface curvature.

In the next section related work is discussed, in section 3 the
new method is described and analyzed extensively. In section 4
applications are presented. The implementation and performance
are described in section 5, in section 6 the results are discussed.
Finally, conclusions are drawn.

2 Related work

Many methods have been developed to visualize flow. Arrow plots
are a standard method, but it is hard to reconstruct the flow from
discrete samples. Streamlines and advected particles provide more
insight, but also here important features of the flow can be over-
looked.

The visualization community has spent much effort in the devel-
opment of more effective techniques. Van Wijk [25] introduced the
use of texture to visualize flow with Spot Noise. Cabral and Lee-
dom [1] introduced Line Integral Convolution (LIC),which gives a
much better image quality.

Many extensions to and variations on these original methods, and
especially LIC, have been published. The main issue is improve-
ment of the efficiency. Improved numerical schemes [24], the use
of parallel processing [2, 30, 22], and the use of graphics hardware
have been proposed [3, 18, 8, 12, 13]. A major advancement was
the introduction of Image Based Flow Visualization (IBFV) [26].
IBFV is based on warping and blending images, thereby modeling
the transport, decay, and injection of ink. Moving textures are pro-
duced by insertion of scaled white noise patterns. Van Wijk shows
how artifacts can be prevented by low-pass filtering the input tex-
tures in space and time. IBFV has many advantageous features, but
is limited to two-dimensional fluid flow fields.

How can we use this method to visualize flow on curved sur-
faces? This would drastically enlarge the scope of the method. In
many CFD simulations flow on curved surfaces, such as car and
airplane bodies, plays an important role, and also, flow aligned tex-
tures can be used for other purposes, such as visualization of surface
shape [7].

The obvious approach is to use standard texture mapping: A tex-
ture is defined as a separate image in texture space, mapped on the
surface in 3D in world space, and finally the surface is projected to
image space. This route has been pursued for Spot Noise [25] as
well as LIC [5]. Can we use this path also for IBFV? An exhaustive
treatment of all methods for texture mapping and texture synthesis
is far beyond the scope of this paper. Instead, we mention a few
approaches as an illustration.

Both for Spot Noise and for LIC textures are displayed on
parametrized surfaces: The given parametrization of the surface
is used to relate points on the surface with points on the texture.
This requires that the distortion from parametric space to geomet-
ric space is taken into account to achieve a uniform density. Also,
CFD data often have a strongly varying density of the parametriza-
tion. Straightforward use of parameter space as texture space would
then imply a waste of texture memory. Possibly a reparametrization
can be used to compensate for this.

Finite element simulations often do not have a given
parametrization, in which case some parametrization must be de-
rived. This problem has been studied heavily, see for instance
[4, 23, 15, 7]. Irregular topologies introduce complex problems, to
find a parametrization without too much distortion requires much
care. A next source of problems for the standard approach con-
cerns the density of the texture. In an interactive session a user
wants to switch from overviews to close-ups, for instance to study
turbulent flow on different scales. One would prefer here that the
density, i.e. the graininess of the texture is constant in image space:

When zooming in, automatically a more fine grained texture in
world space is shown. The standard approach leads here either to
the use of very fine textures, or to ad hoc generation of texture,
which requires again quite some effort to implement.

In summary, via the standard texture mapping approach ”gen-
eration of texture on arbitrary surfaces in 3D should be feasible”
for IBFV, quoting [26], but it is not an easy route, and it is doubtful
if a similar performance and generality as for the 2D case can be
achieved.

We propose a different approach, based on the following obser-
vations. Firstly, the texture should be dense in image space. Sec-
ondly, the most efficient approach is to produce texture only where
needed: in the image. Finally, image coherence can be exploited,
also when the image shows flow on a curved surface. All these ob-
servations point in the same direction. Entirely in the spirit of the
original method, let us produce the texture directly in image space,
or, in other words, let texture space and image space coincide. In
the next section we elaborate on this.

3 Method

In this section we start with a summary of 2D IBFV, with an em-
phasis on the synthesis of dense textures. More details are given in
the original paper [26]. Next our new method IBFVS is described,
followed by a discussion of various aspects in more detail.

3.1 2D IBFV

Suppose we have an unsteady two-dimensional vector field
v(x; t) ∈ IR2

v(x; t) = [vx (x, y; t), vy(x, y; t)], (1)

defined for t ≥ 0, and for x ∈ �, where � ⊂ IR2. A pathline is the
path of a particle, advected by the flow, which path is the solution
of the differential equation

dp(t)/dt = v(p(t); t) (2)

for a given start position p(0). A first order Euler approximation
gives

pk+1 = pk + v(pk; t)�t (3)

with k ∈ IN and t = k�t . In the remainder we use the frame
number k as parameter of time.

Consider a field F(x; k) that represents some property advected
by the flow. Here F represents an image, hence F(x; k) is typically
an RGB-triplet. The property is advected just like a particle, so a
first order approximation of the transport of F can hence be given
by:

F(pk+1; k + 1) =
{

F(pk; k) if pk ∈ �
0 otherwise (4)

Sooner or later most of F(x; k) will have disappeared, so at each
time step a convex combination of F and another image G is taken:

F(pk; k) = (1 − α)F(pk−1; k − 1) + αG(pk; k), (5)

where the points pk are again defined by equation (3), and where
α = α(x; k) ∈ [0, 1] defines a blending mask. Equation (5) defines
the image generation process. By varying G many different visu-
alization methods can be emulated. To produce dense textures an
interpolated grid with random values is used, i.e.

G(x; k) =
∑
i, j

h(x/s − i)h(y/s − j)Gi, j;k (6)

where s is a parameter that controls the scale of the texture, where
h(x) is a triangular pulse

h(x) =
{

1 − |x | if |x | ≤ 1
0 otherwise (7)

and where the instantaneous grid values Gi, j;k are defined by

Gi, j;k = w(vgk + φi, j). (8)

To each grid point a random phase φi, j is assigned; the value of
Gi, j;k cycles according to some periodic function w(t), for in-
stance a square wave or a saw tooth; vg denotes the rate of image
change.

The preceding equations can be mapped directly to standard
graphics operations, leading to a fast algorithm. The flow field
is covered with a rectangular or triangular mesh. First, a mesh is
distorted and rendered, using the preceding image as a texture map;
second, fresh ink is added by blending in a polygon, texture mapped
with a scaled, interpolated, pre-computed pattern; third, the image
is stored in texture memory for the next round; and finally addi-
tional graphics is drawn and the image is shown on the screen.

3.2 IBFV for curved surfaces

We next consider the visualization of flow on surfaces. We use a
triangular mesh as the geometric model for surfaces. Triangular
meshes are a generic format, in the sense that almost all surface
representations can be converted to triangular meshes, and by using
more triangles an arbitrary level of detail can be achieved. Hence
we claim that the following is applicable to arbitrary surfaces. An-
other advantage is obviously that triangles are a basic primitive for
graphics hardware.

Suppose that for each vertex i its position ri = (ri x , riy, ri z), a
normal vector ni and a velocity vector vi = (vi x , viy , vi z) is given.
Typically, this velocity is a sample of a 3D flow field. We assume
that this velocity is confined to the surface (possibly by projection),
i.e. vi · ni = 0, later on we will discuss the more general case.

Given a composite modeling, viewing, and perspective transfor-
mation, the mesh can be projected on the screen. We denote this
by x′ = T (x), where x′ = (xs , ys) is a 2D point on the screen and
where T denotes the transformation. We use apostrophes to denote
projected quantities. The key to IBFVS is the simple observation
that when some property is defined and advected on a surface in 3D
space, equation 4 also holds after projection of this surface, i.e.

F(p′
k+1; k + 1) =

{
F(p′

k; k) if p′
k ∈ �′

0 otherwise
(9)

where �′ is the projection of the surface on the image F , and where
we assume that the path line p is visible.

We use this to define a process for the synthesis of flow aligned
texture on curved surfaces. Two further aspects must be taken care
of. Firstly, fresh ink has to be added only to the projection of
the surface and not to the background. Secondly, as an additional
cue for the shape of the surface, a shaded image Fs(., k) has to be
blended in. We use a separate texture image Ft (., k), which is de-
fined on exactly the same space as the image F itself, i.e. texture
space coincides with image space. The process can now be defined
as follows:

Ft (p′
k; k) = (1 − γ (p′

k))Ft (p
′
k−1; k − 1) +

γ (p′
k)G(p′

k; k), (10)

F(x′; k) = βFt (x′; k) + (1 − β)Fs(x′; k), (11)

where β denotes the strength of the texture with respect to the shad-
ing, and where γ is introduced to constrain the fresh ink G to the
projected surface. Its value is defined by

γ (x′) =
{

α(x′) if x′ ∈ �′
0 otherwise (12)

where α has the same meaning as in standard IBFV.

3.3 Algorithm

Just as with standard IBFV, the preceding equations can be translated
into a fast algorithm that exploits graphics hardware. The steps are
as follows:

1. Initialize the texture image Ft with a background color B;

2. Initialize the image F with B;

3. Calculate texture coordinates ti = (ti x , tiy) for all vertices;

4. Render the mesh, texture mapped with Ft , without shading;

5. Blend in fresh noise G on the surface;

6. Store the result in Ft ;

7. Render the mesh shaded, and blend it with the image F ;

8. Draw additional graphics;

9. Show the image on the screen;

10. Update state and go back to step 2.

Figure 1 shows the main steps (4-7) of the algorithm schemat-
ically. In the following we consider the algorithm in more detail.
Step 1 is an initialization. In step 2 the image F is cleared. This is
different from standard IBFV, Van Wijk stated that he obtained the
best results with respect to boundary artifacts if the image was not
cleared in between. However, in his case the complete image was
filled, whereas here the image is only partially filled with a pro-
jection of the mesh. Hence, we must clear the image per frame to
prevent ghost images when for instance the view point is changed.

Step 3 and 4 are crucial. Here the pattern is advected in screen
space by warping the texture. The texture coordinates are

ti = T (ri − vi�t), (13)

in other words, as texture coordinates we use the projected posi-
tion of the previous point on the path line through the vertex ri .
These texture coordinates are computed in software by the central
processor. As a result, the texture is slightly warped. Just like in
standard IBFV, care has to be taken that the displacement in image
space is below a threshold to prevent artifacts. In contrast to stan-
dard IBFV, here we prefer to warp the texture, instead of warping the
mesh. We found that for time dependent flow a warped mesh gives
a distracting motion of silhouette edges and extra textures on the
surface. More specific, in an example that we present in a follow-
ing section, we found that Iceland moved around when the mesh is
warped. New texture coordinates only have to be calculated when
the viewing transformation changes or when the flow field is dy-
namic, hence step 3 can be skipped for stationary flow, observed
from a static viewpoint. In step 4 no shading is used, just the tex-
ture itself to maintain a high contrast and to prevent advection of
shade.

In step 5 fresh noise is blended in. For this the same approach
as in standard IBFV is used. A sequence of small patterns is pre-
computed and stored in texture memory, next these patterns are tex-
ture mapped on a rectangle that covers the screen, using scaling and

6. Store

5. Blend noise

4. Warp

7. Blend shade

Fs

Ft

F

G

Figure 1: Pipeline IBFVS

interpolation to prevent high frequencies. The texture has to be put
only on the (projection of the) surface, noise on the background is
very distracting. Fortunately, at this stage we already have exact in-
formation available which parts of the image are covered and which
are not: in the z-buffer. We exploit this by rendering the rectangle
at a great depth, just in front of the back clipping plane, and using
a reversed z-buffer test: Only where the current z-value is smaller
than the new value, the fresh noise has to be blended in. An alter-
native could be to use a stencil buffer for this purpose, but we have
not explored this further.

In step 6 the intermediate image, which only contains the texture,
is stored for step 4 in the next round. This intermediate image is vi-
sually not attractive, hence we enhance it in step 7 and 8. In step
7 a shaded version of the mesh is blended in. Many options can be
used for this. In the simplest way, just a shaded version is used, but
also a texture mapped mesh can be used, with color representing
some scalar value, or by showing for instance a geographical map.
Also, β (the strength of the texture relative to shading) can be var-
ied over the surface, for instance to show only texture where some
variable is above a certain limit. In step 8 extra imagery can be su-
perimposed: grids, vectors, markers, etc. When the image is ready,
we show it on the screen in step 9. Finally, the state of the process
is updated (user input is processed, possibly a new view transform
is derived, new flow field data are obtained, etc.), and we can start
with the next image.

This completes our algorithm, which produces flow aligned tex-
ture for arbitrary surfaces and arbitrary flow fields at a high speed.
Can we get away with this simple approach? Aren’t there many arti-
facts that spoil the result? In the following subsections we consider
various aspects in more detail. In general, the method described so
far is indeed effective and efficient; only in section 3.7 do we de-
scribe a problem for which an additional measure has to be taken.

3.4 Contrast

Lack of contrast was mentioned as a problem for standard IBFV. In
2D, the texture is all that can be seen, and hence a high contrast is
attractive. For flow on surfaces, the situation is somewhat differ-

Figure 2: Boundary inflow

ent. Here also the shape of the surface itself is important, depicted
by shading, and a high contrast texture disturbs the spatial effect.
We found that the use of β = 0.5 usually gives a good compromise
between surface shade and flow texture, and that the decreased con-
trast is not a big problem here, a subtle texture can still be perceived
well on the screen, especially when a moving texture is used. Sub-
tle textures however sometimes do not survive printing or video
recording, but here the contrast can be improved separately. For
none of the images shown in this paper was extra contrast enhance-
ment used.

3.5 Boundaries and silhouettes

Another problem of standard IBFV is boundary artifacts. In areas
near the boundary, no texture is present to be advected, and the
background color blends in. A partial solution for standard IBFV

was to refrain from clearing the screen in between, such that areas
outside the mesh are filled with texture, but, as mentioned earlier,
here this solution cannot be used. Surprisingly however, we found
for IBFV on surfaces these artifacts to be less disturbing, and even
often absent. Several reasons can be given for this. Firstly, the
contrast of the texture is less than with standard IBFV and hence
also errors show up less clearly. Secondly, near boundaries and
silhouette edges often high gradients occur in the shading, which
draw the attention of the viewer. Thirdly, when the flow is confined
to the surface, and not normalized to a maximum displacement, a
strong inflow perpendicular to the boundary does not occur. Finally,
by default we use a grey background color instead of black. As this
color is closer to the average value of the texture, artifacts are less
visible.

As an example, figure 2 shows a landscape with the flow aligned
downward with the gradient. The flow is normalized in image
space, and α = 0.1 and β = 0.4 were used. When red is used as
background color, some inflow across the horizon is visible, when
grey is used, no artifacts are visible.

3.6 Non-uniform density

The density of the texture, i.e. the average frequency of strokes
on the surface, is constant in image space. One can object that
this is unnatural, a constant density in world space seems more ap-
propriate. There are three situations where this is visible. Firstly,
the density does not depend on the orientation of the surface, i.e.
when viewed under an oblique angle the density is the same as
when viewed perpendicular. Secondly, the density is independent
of the perspective, i.e. surfaces close to the viewer have the same
density as surfaces far away. Consider now figure 3. Two textured
cylinders are shown with flow along the axis, on the left with a uni-
form density in image space (produced by IBFVS), on the right with
a uniform density in surface space (produced by texture mapping a

Figure 3: Uniform density in screen (left) and in world space (right)

noise pattern). The difference between these images is small, and
the left image does not appear unnatural. Note that the direction of
the texture follows the perspective.

The third situation where this is visible, related to the previous
one, is when we zoom in on an object. With image based texture,
the density of the texture remains constant in image space. This is
highly advantageous for visualization purposes, but unnatural from
a physical point of view. In the real world texture is scaled when we
approach an object, and other higher frequency details become vis-
ible. With computer generated imagery however, a uniform density
in geometric space often leads to unnatural effects. When a textured
surface is close to the viewer, the texture is scaled strongly and ap-
pears blurred, whereas surface parts far away have a high density
and appear sharp. This is opposite to the natural cue that objects in
front should appear sharp and with much detail, whereas objects far
away should appear dimmed.

The image on the left does show another small problem. At the
front edge of the cylinder, the interior texture makes a smooth tran-
sition to the exterior texture. In practice, this is a rare situation that
only occurs when the flow in front of and behind a silhouette edge
have the same direction.

3.7 Projected texture

Another way to describe our algorithm is that we project noise pat-
terns on the surface, which are advected by subsequent warping.
When the view is changed or when the object is moved, the projec-
tion of the patterns is unaltered in viewing space, hence the viewer
can observe that the texture patterns are not fixed to the surface, but
are fixed in image space.

This effect is indeed visible. For moving textures the effect is
less strong however, the viewer tends to follow the moving texture
instead of fixing the view to a point in screen space. Furthermore,
several measures can be taken to decrease this effect. Consider an
interactive setting, where the user can drag, rotate, and scale the
object by dragging the mouse.

First, when the user changes the view, the projection of the tex-
ture can be changed as well. We provide the option that both Ft and
G are translated according to the motion of the mouse pointer. This
improves the perceived imagery strongly for translation, reasonably
for rotation, but not for scaling. Secondly, the update of the texture
image can be stopped. If we skip step 3 (calculation of new texture
coordinates) and step 6 (saving the new texture), the algorithm re-
duces to standard texture mapping, using the last generated noise
pattern as a fixed texture map. When the user stops the manipu-
lation, step 3 and 6 are enabled again, and the last pattern is used
as a start for a new animation. This method works well for scaling
and dragging, but is less effective for rotation. When the object is
rotated, new parts of the object appear for which not yet a sensible
texture has been generated.

Figure 4: Velocity projected on surface (left) and in 3D (right)

This last method, freezing the texture, can also be used for other
purposes, for instance to produce texture maps that have to be pro-
cessed in a standard way. The method gives both the texture map
and the texture coordinates, but is limited to objects where the com-
plete surface is visible in one view and where the variation in depth
is not too strong. Later on we will give an example.

When the view is changed, it takes some time before the image
or animation stabilizes again. For animations (vg �= 0) this happens
faster than for still images (vg = 0). Consider the worst case, a still
image, where the intensity of a pixel has to change from 0 to 1 (the
maximum value of Gi, j). The change ε in intensity for the N th

step is than equal to α(1−α)N . Hence, N = log(ε/α)/ log(1−α).
For ε = 0.01 and α = 0.1 we find N ≈ 22, hence with a frame
rate of 50 frames per second, the image stabilizes after about half a
second.

3.8 Non surface-aligned flow

We so far assumed that the flow was aligned with the surface. How
to deal with velocities that have a component perpendicular to the
surface? A simple approach is just to use exactly the same formula
(eq. 13) for this. Figure 4 shows the result. Both images depict a
torus in a vertical flow field, on the left the velocity is projected on
the surface, whereas on the right it is not. Which image is correct?

The image on the left shows the surface shape clearly, at the top
of the torus the separation line is clearly visible. On the other hand,
the image on the right does show the flow field better: The message
that this is a simple and uniform flow field is conveyed effectively.
We can consider this visualization as the result of using a wire mesh
as a flow probe, where the mesh contains a lot of little hairs that all
are aligned with the 3D flow. In summary, also non surface-aligned
flow can be visualized, but its interpretation is somewhat less easy
than for surface-aligned flow.

3.9 Texture interpolation

A final problem to be mentioned concerns texture interpolation.
The scan conversion of a triangle involves interpolation of edges,
colors, and also texture coordinates. Nowadays hardware offers by
default the option to interpolate texture coordinates perspectively
correct. Unfortunately, this causes artifacts here. The texture syn-
thesis process works completely in 2D, assuming a linear interpo-
lation of texture coordinates. One solution could be simply to turn
off perspectively correct texture interpolation, but this hint is ig-
nored by the drivers and hardware we used. Artifacts become vis-
ible when large triangles are rendered in perspective with a high
variation in depth. Solutions are therefore to use only small trian-
gles, and/or to switch to isometric projection when close-up views
are made.

Figure 5: Potential flow field on bunny

4 Applications

Now that we can produce texture aligned with vector fields on
curved surfaces, we consider various applications. We start with
flow visualization, the original impetus for this work, followed by
a discussion how the perception of surfaces can be enhanced by
adding texture. More examples, animations, and demo software
can be found on the web [27].

4.1 Flow visualization

For testing purposes we have implemented potential flow fields, in
line with [29]. A flow field is defined by the superposition of a lin-
ear flow field and a number of fields defined by flow elements. A
flow element is defined as a line. The user can interactively position
these flow elements, and specify how much rotational, tangential,
and repelling or attracting flow is desired. Meanwhile, the result-
ing flow on the surface is shown in real time. Figure 5 shows an
example using the Stanford bunny. The flow field is defined by two
sources, a repelling and rotating line source through the eyes and
an attracting and rotating line source through the legs. When we
zoom in, automatically a more detailed texture is produced. An-
other application is shown in figure 6. Here the average wind stress
field on the earth is shown for January [9]. In the left image a map
of the world is shown, and the strength of the texture is modulated
with the magnitude of the stress; in the right image the magnitude
is visualized via color. Various features, especially vortices, show
up clearly. The user can rotate and zoom in on the globe, and view
the variation of the flow over the year. In the accompanying video
we show that features like the monsoon in India and the circulation
around Antarctica are clearly visible.

An example of topological decomposition is shown in figure 7.
The geometry is a height field, defined as a B-spline surface; and
a flow field aligned downward with the gradient is defined. If we

Figure 6: Average wind stress in January

Figure 7: Topological decomposition

view the surface from top, set α = 0, and initialize Ft with ran-
dom colors, the colors are transported downhill from local maxima.
After about 30-50 steps, each pixel is assigned a color that is the
same as the local maximum that is reached by walking upwards as
steeply as possible. Finally, we can lock the generated texture (see
section 3.7) and view the surface from oblique angles. The bound-
aries between the areas are so-called topographic valley lines [20].
If the direction of the flow is reversed, ridge lines are produced, the
use of other flow fields can be used to produce for instance Voronoi
diagrams.

4.2 Surface visualization

The rendering of surfaces can be considered as a visualization prob-
lem. How can we add cues such that we can easily understand a
shape and its features? This requires first that we are able to de-
tect the structure and features on the surface. This topic has been
studied intensively in differential geometry. We give a very brief
summary. A local first-order approximation of a surface is a tan-
gent plane. A local second-order approximation is given by two
orthogonal principal directions. Along these principal directions
the curvature (1/radius) of a line on the surface through the tangent
point is either minimal or maximal.

Interrante and her co-workers have presented a variety of meth-
ods to visualize surface shape based on differential geometry. They
have shown how valleys and ridges on the surface can be detected
and emphasized by lines [11, 10], and they have studied how tex-
ture, aligned with principal directions, can aid in understanding sur-
face shape [7]. Another approach to visualize surface features is to
drop particles on the surface and let them move according to a prin-
cipal direction [17].

Inspired by these results, we have studied if IBFVS can be used for
this purpose as well. Moving particles can be generated by using
a special setting of the input noise G. Figure 8a shows a result.
We used a sequence of short spikes for w(t), such that only a small
fraction of the grid values Gi, j;k is bright white. Furthermore, to
achieve a higher brightness we added the texture here instead of
blending it. The flow field is aligned with the direction of κmin.

A more standard setting of G produces a dense texture, aligned
with the principal directions (fig. 8b). One problem here is that
differential geometry only gives an orientation, and not a signed
direction for the principal directions. We have experimented with
several solutions for this. The best results were obtained by align-
ing the principal directions with a user defined vector (typically a
coordinate axis), followed by a rotation over 90 degrees around the
normal. However, a globally optimal perfect solution can by defi-
nition not be achieved, and for instance on the breast a separation
line can be seen.

For smooth surfaces such as the torso, good results can be ob-
tained, for more irregular surfaces the results are somewhat disap-

Figure 8: Moving particles (left) and a dense texture (right)

pointing. However, an improved result is obtained when we mod-
ulate the strength β of the texture with respect to the shading by
κmax, and use κmax also to modulate the color of the surface. In
other words, we use a combination of two methods of Interrante et
al. The images give the impression that a dirty surface has superfi-
cially been cleaned (fig. 9a and b). It can be shown that this effect is
similar to local accessibility shading [19]. An effect of eroded stone
is obtained when parametrization with respect to κmin is used. Note
that the input consists only of a triangular mesh: All detail is gen-
erated automatically. We found that default settings for colors and
bounds for the parametrization can be defined that give good results
for a variety of geometries.

5 Implementation

We have implemented IBFVS in an interactive visualization system,
which is freely available ([27]). The application was implemented
in Delphi 5, using ObjectPascal. It consists of about 5,000 lines of
code. All images shown are produced with this system. As input
geometry we use triangular meshes: coordinates of vertices and
the vertex numbers of triangles. Furthermore, time-dependent flow
fields can be read in.

The geometry is processed in various ways after it has been read
in. Normals, curvatures and principal directions are calculated us-
ing the recommendations and method of Goldfeather [6]. Option-
ally, the mesh can be refined by application of Loop subdivision
[16]. For coarse meshes such as the cow (5800 triangles) or the
torso (1400 triangles) this considerably improves the result. Fur-
thermore, triangle strips are constructed to speed up the rendering.
For meshes in the order of 100K triangles this preprocessing typi-
cally takes a few seconds.

A variety of parameters can be adjusted: colors, scales, map-
pings, etc. to achieve different effects. We found tuning the visual-
ization to be relatively easy. All parameters have a natural meaning,
and the effect of changes is visible immediately. Furthermore, for
standard cases, such as shown in figure 8, 9 and ??, we have defined
default settings. A wide range of geometries can be visualized in
these styles with a single button press.

To access the graphics hardware we used OpenGL1.1. No ex-
tensions are needed. We optimized the rendering for the static case,
with a constant flow field and constant projection. All rendering
bulk data can be put in display lists and named textures, and hence
generation of animations can be done at high speed. Table 1 shows
performance results for the static case, and between parentheses
for the dynamic case (rotating object). We varied image resolution
(2562, 5122, 10242) and the resolution of the mesh (5.8K, 23.2K,
and 92.8K triangles). As geometric model we used the cow, and
for the rendering the base case, as shown in fig. 1. More complex
cases, involving for instance modulation of β, are in the order of 5-
25 % slower. These results are representative for all images shown

Figure 9: (a) texture modulated for κmax; (b) zoomed in

in this paper. Rendering was done on a desktop PC with an AMD
Athlon XP1700 processor, and a GeForce4 Ti200 graphics card.

Resolution 5.8 K� 23.2 K� 92.8K�
256 × 256 600 (76.9) 228 (22.7) 64.0 (6.6)
512 × 512 290 (76.9) 165 (22.7) 58.8 (6.6)

1024 × 1024 88.0 (76.9) 72.4 (22.7) 40.0 (6.6)

Table 1: Performance results for texture synthesis in frames per
second. Static case, dynamic case between parentheses

Due to faster hardware and possibly a more efficient implemen-
tation, the results outperform those of the original method. High-
resolution imagery is produced in real-time. For the static case the
frame rate depends on the resolution of the image and the number of
triangles used. The dynamic case is much slower and dominated by
the number of triangles. Here per frame texture coordinates have
to be recalculated and resent per frame. We found that resending
vertex information took most (about 90 %) of the extra overhead.
A much higher performance can possibly be achieved by delegating
the texture coordinate calculation to the graphics hardware also.

6 Discussion

We discuss various aspects of IBFVS: Efficiency, versatility, simplic-
ity, and novelty.

IBFVS is about two to three orders of magnitude faster than other
methods for the synthesis of dense texture animations of flow on
curved surfaces. Our method is the first to exploit graphics hard-
ware for this. Similar as for IBFV, efficiency comes also from three
other effects: few steps in the generation of images, exploitation
of frame to frame coherence, and sampling of the flow field on the
original mesh.

Concerning versatility, we can produce visualizations for arbi-
trary, time-dependent flow fields defined on arbitrary meshes. Sim-
ilar as with the original method, various kinds of texture can be
produced by variation of the scale s of the texture, the type of time
profile w(t), the image variation speed vg and the blending factor α.
By varying the strength of the texture β as a function of properties
of the surface, a variety of special effects can be achieved.

Also with respect to simplicity IBFVS inherits all properties from
standard IBFV. The method is easy to understand and implement,
and does not depend on peculiar features of the graphics hardware.

Concerning the contribution of this work, we have introduced
a novel approach to generate dense textures on curved surfaces.
By generating these directly in image space, many problems of the
standard approach for texture mapping (see section 2) are circum-
vented. Parametrization is reduced to a simple problem, and, very
useful for visualization purposes, a uniform density in image space
is achieved.

Dense flow aligned textures on surfaces, generated at high speed,
are useful for many application areas. In the application sections we
have not only presented examples for flow visualization, but also
showed how the method can be used to depict surface detail and to
generate artificial drawings. The high performance of the method
invites experiments: to try different modulations and combinations
of settings, and to use it for different applications.

6.1 Future work

Concerning flow visualization, the next challenge is to develop a
similar method for 3D volumes. In [28] such an approach is pre-
sented for particles. One fundamental problem here is perceptual.
How to depict three-dimensional flow directly in an understandable
way is by lack of suitable metaphors still an unsolved problem.

We have used IBFVS for different applications, but it can proba-
bly also be used for other types of applications. One area where we
were not successful yet, is the rendering of hair and fur. The stan-
dard textures produced look somewhat furry, but they cannot com-
pete with existing methods for this, such as [14]. Soft silhouettes
are one of the missing features, but possibly this can be remedied.
One promising application area is medical visualization: figure 9
already suggests that the method could be used to visualize surface
detail of organs such as the human brain. Other possible extensions
of the method are the use of multiple layers, flow fields defined by
solid texturing [21], spatial or temporal modulation of α, and spatial
variation of density.

7 Conclusions

We have presented a simple, efficient, effective, and versatile
method for the rendering of dense, vector-field aligned textures
on three-dimensional curved surfaces. Unsteady flow on arbitrary
surfaces is visualized as animations of texture, at fifty or more
frames per second on a PC, using standard features of consumer
graphics hardware. The method can be used for a variety of ap-
plications, such as flow visualization, surface rendering, and non-
photorealistic rendering.

References

[1] B. Cabral and L. C. Leedom. Imaging vector fields using line
integral convolution. In Proceedings of ACM SIGGRAPH 93,
Computer Graphics Proceedings, Annual Conference Series,
pages 263–272, Anaheim, California, August 1993.

[2] W.C. de Leeuw and R. van Liere. Divide and conquer spot
noise. In Proceedings SuperComputing’97, 1997.

[3] W.C. de Leeuw and J.J. van Wijk. Enhanced spot noise for
vector field visualization. In Proceedings IEEE Visualiza-
tion’95, 1995.

[4] M. Floater. Parametrization and smooth approximation of
surface triangulations. Computer Aided Geometric Design,
14(3), 1997.

[5] L.K. Forssell and S.D. Cohen. Using line integral convolu-
tion for flow visualization: Curvilinear grids, variablespeed
animation, and unsteady flows. IEEE Transactions on Visual-
ization and Computer Graphics, 1(2):133–141, June 1995.

[6] J. Goldfeather. Understanding errors in approximating princi-
pal direction vectors. Technical Report 01-006, University of
Minnesota, Computer Science and Engineering, 2001.

[7] G. Gorla, V. Interrante, and G. Sapiro. Texture synthesis for
3d shape representation. IEEE Transactions on Visualization
and Computer Graphics, 2002.

[8] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl. Appli-
cations of pixel textures in visualization and realistic image
synthesis. In ACM Symposium on Interactive 3D Graphics,
pages 127–134, April 1999.

[9] S. Hellerman and M. Rosenstein. Normal monthly wind stress
over the world ocean with error estimates. Journal of Physical
Oceanography, 13:1093–1104, 1983.

[10] V. Interrante. Illustrating surface shape in volume data
via principal direction-driven 3D line integral convolution.
Computer Graphics, 31(Annual Conference Series):109–116,
1997.

[11] V. Interrante, H. Fuchs, and S. M. Pizer. Enhancing transpar-
ent skin surfaces with ridge and valley lines. In Proceedings
IEEE Visualization’95, pages 52–59, 1995.

[12] B. Jobard, G. Erlebacher, and M.Y. Hussaini. Hardware-
accelerated texture advection for unsteady flow visualization.
In Proceedings IEEE Visualization 2000, pages 155–162, Oc-
tober 2000.

[13] B. Jobard, G. Erlebacher, and M.Y. Hussaini. Lagrangian-
eulerian advection for unsteady flow visualization. In Pro-
ceedings IEEE Visualization 2001, pages 53–60, October
2001.

[14] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe. Real-
time fur over arbitrary surfaces. In ACM 2001 Symposium on
Interactive 3D Graphics, 2001.

[15] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM
Transactions on Graphics, 21(3):362–371, 2002. Proceedings
of ACM SIGGRAPH 2002.

[16] C. Loop. Smooth subdivision surfaces based on triangles.
Master’s thesis, Department of Mathematics, University of
Utah, 1987.

[17] E.B. Lum, A. Stompel, and K.-L. Ma. Kinetic visualization:
A technique for illustrating 3d shape and structure. In Pro-
ceedings IEEE Visualization 2002, pages 435–442, 2002.

[18] N. Max and B. Becker. Flow visualization using moving tex-
tures. In Proceedings of the ICASW/LaRC Symposium on Vi-
sualizing Time-Varying Data, pages 77–87, 1995.

[19] G. Miller. Efficient algorithms for local and global accessi-
bility shading. In Proceedings of SIGGRAPH ’94, Annual
Conference Series, pages 319–326, 1994.

[20] R. Peikert and M. Roth. The parallel vectors operator – a
vector field visualization primitive. In Proceedings IEEE Vi-
sualization’99, pages 263–270, 1999.

[21] K. Perlin. An image synthesizer. Computer Graphics, 19(3),
1985. Proceedings of ACM SIGGRAPH 85.

[22] H.-W. Shen and D. L. Kao. A new line integral convolution al-
gorithm for visualizing time-varying flow fields. IEEE Trans-
actions on Visualization and Computer Graphics, 4(2):98–
108, 1998.

[23] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern
mapping. ACM Transactions on Graphics, 21(3):673–680,
2002. Proceedings of ACM SIGGRAPH 2002.

[24] D. Stalling and H.-C. Hege. Fast and resolution independent
line integral convolution. In Proceedings of ACM SIGGRAPH
95, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 249–256, August 1995.

[25] J. J. van Wijk. Spot noise: Texture synthesis for data visual-
ization. Computer Graphics, 25:309–318, 1991. Proceedings
ACM SIGGRAPH 91.

[26] J. J. van Wijk. Image based flow visualization. ACM Trans-
actions on Graphics, 21(3):745–754, 2002. Proceedings of
ACM SIGGRAPH 2002.

[27] J.J. van Wijk. Ibfvs: examples and demo software, 2003.
http://www.win.tue.nl/˜vanwijk/ibfvs.

[28] D. Weiskopf, M. Hopf, and T. Ertl. Hardware-accelerated vi-
sualization of time-varying 2d and 3d vector fields by texture
advection via programmable per-pixel operations. In Vision,
Modeling, and Visualization VMV ’01 Conference Proceed-
ings, pages 439–446, November 2001.

[29] J. Wejchert and D. Haumann. Animation aerodynamics. Com-
puter Graphics, 25:19–22, 1991. Proceedings ACM SIG-
GRAPH 91.

[30] M. Zöckler, D. Stalling, and H.-C. Hege. Parallel line integral
convolution. Parallel Computing, 23(7):975–989, 1997.

