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Myriahedral projections are a new class of methods for mapping the earth. The globe is projected on a myriahedron, a

polyhedron with a very large number of faces. Next, this polyhedron is cut open and unfolded. The resulting maps have a

large number of interrupts, but are (almost) conformal and conserve areas. A general approach is presented to decide

where to cut the globe, followed by three different types of solution. These follow from the use of meshes based on the

standard graticule, the use of recursively subdivided polyhedra and meshes derived from the geography of the earth. A

number of examples are presented, including maps for tutorial purposes, optimal foldouts of Platonic solids, and a map of

the coastline of the earth.

INTRODUCTION

Mapping the earth is an old and intensively studied
problem. For about two thousand years, the challenge to
show the round earth on a flat surface has attracted many
cartographers, mathematicians, and inventors, and hun-
dreds of solutions have been developed. There are several
reasons for this high interest. First of all, the geography of
the earth itself is interesting for all its inhabitants. Secondly,
there are no perfect solutions possible such that the surface
of the earth is depicted without distortion. Finally, factors
such as the intended use of the map (e.g. navigation,
visualisation, or presentation), the available technology
(pen and ruler or computer), and the area or aspect to be
depicted lead to different requirements and hence to
different optima.

A layman might wonder why map projection is a problem
at all. A map of a small area, such as a district or city, is
almost free of distortion. So, to obtain a map of the earth
without distortion one just has to stitch together a large
number of such small maps. In this article we explore what
happens when this naive approach is pursued. We have
coined the term myriahedral for the resulting class of
projections. A myriahedron is a polyhedron with a myriad of
faces. The Latin word myriad is derived from the Greek
word murioi, which means ten thousands or innumerable.
We project the surface of the earth on such a myriahedron,
we label its edges as folds or cuts, and fold it out to obtain a
flat map.

In the next section, some basic notions on map
projection are presented, and related work is shortly
described, followed by a section in which an overview of
the approach employed here is given. Different solutions

are obtained by using different myriahedra and choices for
the edges to be cut, which are described in three separate
sections. The use of graticule-based meshes, recursively
subdivided polyhedra, and geographically aligned meshes
lead to different maps, each with their own strengths.
Finally, the results are discussed.

BACKGROUND

The globe is a useful model for the surface of the earth.
Locations on a globe (and the earth) are given by latitude w
and longitude l. The position of a point p(w, l) on a globe
with unit radius is (coslcosw, sinlcosw, sinw). Curves of
constant w, such as the equator, are parallels; curves of
constant l are meridians. A graticule is a set of parallels and
meridians at equal spacing in degrees.

Compared with a map, a globe has some disadvantages,
such as poor portability, and to obtain a more practical
solution, the spherical globe has to be mapped to a flat
surface. This puzzle has intrigued many researchers for two
thousand years. John P. Snyder has provided a fascinating
overview of the history of map projection. In the following,
references for map projections are only given if not
discussed in his book (Snyder, 1993), to keep the number
of references within bounds. Introductions to map pro-
jection can be found in textbooks on cartography or
geographic visualisation (Robinson et al., 1995; Kraak and
Ormeling, 2003; Slocum et al., 2003). Also on the web
much information can be found, for instance in the
extensive website developed by Furuti (2006).

The major problem of map projection is distortion.
Consider a small circle on the globe. After projection on a
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map, this circle transforms into an ellipse, known as the
Tissot indicatrix, with semi-axes with lengths a and b. If a 5

b for all locations, then angles between lines on the globe
are maintained after projection: The projection is con-
formal. The classic example is the Mercator projection.
Locally, conformality preserves shapes, but for larger areas
distortions occur. For example, in the Mercator projection
shapes near the poles are strongly distorted.

If ab 5 C for all locations on the map, then the
projection has the equal-area property: Areas are preserved
after projection. Examples are the sinusoidal, Lambert’s
cylindrical equal area and the Gall–Peters projection.

The problem is that for a double curved surface no
projection is possible that is both conformal and equal-area.
Along a curve on the surface, such as the equator, both
conditions can be met; however, at increasing distance from
such a curve the distortion accumulates. Therefore,
depending on the purpose of the map, one of these
properties or a compromise between them has to be
chosen. Concerning distortion, uniform distances are
another aspect to be optimised. Unfortunately, no map
projections are possible such that distances between any
two positions are depicted on a similar scale, but one can
aim at small variations overall or at proper depiction along
certain lines.

Besides these constraints from differential geometry, map
projection also has to cope with a topological issue. A
sphere is a surface without a boundary, whereas a finite flat
area has to be bounded. Hence, a cartographer has to
decide where to cut the globe and to which curve this cut
has to be mapped. Many choices are possible. One option,
used for azimuthal projections, is to cut the surface of the
globe at a single point, and to project this to a circle,
leading to very strong distortions at the boundary. The
most popular choice is to cut the globular surface along a
meridian, and to project the two edges of this cut to an
ellipse, a flattened ellipse or a rectangle, where in the last
two cases the point-shaped poles are projected to curves.

The use of interrupts reduces distortion. For the
production of globes, minimal distortion is vital for
production purposes; hence gore maps are used, where
the world is divided in for instance twelve gores. Goode’s
homolosine projection (1923) is an equal-area projection,
composed from twelve regions to form six interrupted
lobes, with interrupts through the oceans. The projection
of the earth on unfolded polyhedra instead of rectangles or
ellipses is an old idea, going back to Da Vinci and Dürer. All
regular polyhedra have been proposed as suitable candi-
dates. Some examples are Cahill’s Butterfly Map (1909,
octahedron) and the Dymaxion Map of Buckminster Fuller,
who used a cuboctahedron (1946) and an icosahedron
(1954). Steve Waterman has developed an appealing
polyhedral map, based on sphere packing.

Figure 1 visualises the trade-off to be made when dealing
with distortion in map projection. An ideal projection
should be equal-area, conformal, and have no interrupts;
however, at most, two of these can be satisfied simulta-
neously. Such projections are shown here at the corners of a
triangle, whereas edges denote solutions where one of the
requirements is satisfied. Existing solutions can be posi-
tioned in this solution space. Examples are given for some

cylindrical projections, with linear parallels and meridians.
Most of the existing solutions, using no interrupts, are
located at the bottom of the triangle. In this article, we
explore the top of the triangle, which is still terra incognita,
using geographic terminology. Or, in other words, we
discuss projections that are both (almost) equal area and
conformal, but do have a very large number of interrupts.

Related issues have been studied intensively in the fields
of computer graphics and geometric modelling, for
applications such as texture mapping, finite-element surface
meshing, and generation of clothing patterns. The problem
of earth mapping is a particular case of the general surface
parameterisation problem. A survey is given by Floater and
Hormann (2005). Finding strips on meshes has been
studied in the context of mesh compression and mesh
rendering, for instance by Karni et al. (2002). Bounded-
distortion flattening of curved surfaces via cuts was studied
by Sorkine et al. (2002). The work presented here has a
different scope and ambition as this related work. The
geometry to be handled is just a sphere. The aim is to
obtain zero distortion, and we accept a large number of
cuts. Finally, we aim at providing an integrated framework,
offering fine control over the results, and explore the effect
of different choices for the depiction of the surface of the
earth.

METHOD

We project the globe on a polyhedral mesh, label edges as
cuts or folds, and unfold the mesh. We assume that the
faces of the mesh are small compared with the radius of the
globe, such that area and angular distortion are almost
negligible. We first discuss the labelling problem. A mesh
can be considered as a (planar) graph G 5 (V, E), consisting
of a set of vertices V and undirected edges E that connect
vertices. Consider the dual graph H 5 (V’, E’), where each
vertex denotes a face of the mesh, and each edge
corresponds to an edge of the original graph, but now

Figure 1. Distortion in map projection
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connecting two faces instead of two vertices (Figure 2).
After labelling edges as folds and cuts, we obtain two
subgraphs Hf and Hc, where all edges of each subgraph are
labelled the same. The labelling of edges should be done
such that

N the foldout is connected. In other words, in Hf a path
should exist from any node (face of the mesh) to any
other node.

N the foldout can be flattened. Hence, in Hf no cycles
should occur, otherwise this condition cannot be met.

Taken together, these constraints imply that Hf should be a
spanning tree of H. Also, the subgraph Gc of G with only
edges labelled as cuts should be a spanning tree of G. This
can be seen as follows. All vertices should have one or more
cuts in the set of neighbouring edges (otherwise the foldout
can not be flattened), and cycles in the cuts would lead to a
split of the foldout. The set of cuts unfolds to a single
boundary, with a length of twice the sum of lengths of the
cuts.

There is a third constraint to be satisfied: The labelling
should be such that the foldout does not suffer from fold-
overs. The folded out mesh should not only be planar, it
should also be single-valued. The use of an arbitrary
spanning tree does lead to fold-overs in general. However,
we found empirically that the schemes we use in the
following almost never lead to fold-overs, and we do not
explicitly test on this. The problem of fold-overs is complex,
and we cannot give proofs on this. Nevertheless, it can be
understood that fold-overs are rare by observing that the
sphere is a very simple, uniform, convex surface; and also,
the typical patterns that emerge are strips of triangles,
connected to and radiating outward from a line or point,
which strips rarely overlap.

The term spanning tree suggests a solution for labelling
the edges: Minimal spanning trees of graphs are a well-
known concept in computer science. Assign a weight w(ei)
to each of the edges ei, such that a high value indicates a
high strength and that we prefer this edge to be a fold.
Next, calculate a maximal spanning tree Hf (or a minimal
spanning tree Gc), i.e., a spanning tree such that the sum of

the weights its edges is maximal (or minimal). The
algorithm to produce a myriahedral projection is now as
follows:

1. Generate a mesh;
2. Assign weights to all edges;
3. Calculate a maximal spanning tree Hf;
4. Unfold the mesh;
5. Render the unfolded mesh.

In the following sections, we discuss various choices for the
first two steps, here we describe the last three steps, which
are the same for all results shown.

For the calculation of the maximal spanning tree we
followed the recommendations given by Moret and
Shapiro (1991). We use Prim’s algorithm (Prim, 1957) to
find a maximal spanning tree. Starting from a single
vertex, iteratively, the neighbouring edge with the
highest weight and the corresponding vertex is added.
This gives an optimal solution. The neighbouring edges
of the growing tree are stored in a priority queue, for
which we use pairing heaps (Fredman, Sedgewick, Sleator
and Tarjan, 1986). The performance is O(|E | z |V | log
|V |), where |E | and |V | denote the number of edges and
vertices. In practice, optimal spanning trees are calculated
within a second for graphs with ten thousands of edges and
vertices.

Unfolding is straightforward. Assume that all faces of the
mesh are triangles. Faces with more edges can be handled
by inserting interior edges with very high weights, such that
these faces are never split up. Unfolding is done by first
picking a central face, followed by recursive processing of
adjacent faces. Consider two neighbouring triangles PQR
and RQS, and assume that the unfolded positions P9, Q9,
and R9 are known. Next, the angle a between RQS and
the plane of PQR is determined, and S9 is calculated such
that the new angle is a9, |QS | 5 |Q9S9| and |RS | 5 |R9S9|.
The use of a9 5 0 gives a flat mesh, use of (for instance) a9

5 a(1 z cos(pt/T))/2 gives a pleasant animation
(examples are shown in http://www.win.tue.nl/,
vanwijk/myriahedral).

The geography of the earth (or whatever image on a
spherical surface has to be displayed) is mapped as a texture
on the triangles. We use the maps of David Pape for this
(Pape, 2001). When the triangles are large compared with
the radius of the globe, like in standard polyhedral
projections, the triangles have to be subdivided further to
control the projection in the interior. We use a simple
gnomonic projection here.

Rendering maps for presentation purposes requires
proper anti-aliasing, because regular patterns and very thin
gaps have to be dealt with. For the images shown, 100-fold
supersampling per pixel with a jittered grid was used,
followed by filtering with a Mitchell filter.

All images were produced with a custom developed,
integrated tool to define meshes and weights, and to
calculate and render the results, running under MS
Windows. Response times on standard PCs range from
instantaneous to a few seconds, which enables fast
exploration of parameter spaces. Rendering of high
resolution, high quality maps can take somewhat longer,
up to a few minutes.

Figure 2. (a) Mesh G; (b) Dual mesh H; (c) Cuts and folds; (d)
Foldout
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GRATICULES

The simplest way to define a mesh is to use the graticule
itself, and to cut along parallels or meridians. The results
can be used as an introduction to map projection. A weight
for edges, using the value of w and l of the midpoint of an
edge, can be defined as

w(w,l)~{(Wwjw{w0jzWl min
k
jl{l0z2pkj),

where Ww and Wl are overall scaling factors, and w0 and l0

denote where a maximal strength is desired. Different
values for these lead to a number of familiar looking
projections (Figure 3). The use of a high value for Ww

gives cuts along meridians. Dependent on the value of
w0 a cylindrical projection (0u, equator), an azimuthal
projection (90u, North pole), or a conical projection
(here 25u) is obtained when the meridian strips are
unfolded. Use of a negative value for Ww gives two
hemispheres, each with an azimuthal projection. The
meridian at which to be centred can be controlled by using
a low value for Wl and a suitable value for l0. The use of a
high value for Wl gives cuts along parallels. Unfolding these
parallels gives a result resembling the polyconic projection
of Hassler (1820).

The relation between a spatially varying weight w and the
decision where to cut and fold can be understood by
considering Prim’s algorithm. Suppose, without loss of
generality, that we start at a maximum of w and proceed to
attach the edges with the highest weight. At some point,
edges at the boundary will have approximately the same
weight and, after a number of additions, a ring of faces is
added, with cuts in between neighbouring faces in this ring.
Hence, edges aligned with contours of w typically turn into
folds, whereas edges aligned with gradients of w turn into
cuts.

Each strip is almost free of angular or area distortion,
however, a large number of interrupts occur with varying
widths. These gaps visualise, just like the Tissot indicatrix,
the distortion that occurs when a non-interrupted map is
used, and can be used to explain the basic problem of map
projection. If we want to close these gaps, the strips must
be broadened. However, to maintain an equal area, they
have to be shortened, and to maintain the same aspect ratio
they have to be lengthened, which is not possible
simultaneously. Also, it is clearly visible that mapping a
point (such as a pole) to a line leads to a strong distortion.

When the number of strips is increased, the gaps are less
visible, and the distortion is shown via the transparency of
the map (Figure 4).

Figure 3. Graticular projections, derived from a 5u graticule. 2592 polygons: a) cylindrical; b) conical; c) azimuthal; d) azimuthal, two hemi-
spheres; e) polyconical
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RECURSIVE SUBDIVISION

For the graticular projections, thin strips of faces are
attached to one single strip or face. This is a degenerated
tree structure. In this section, we consider what results are
obtained when a more balanced pattern is used. To this
end, we start with Platonic solids for the projection of the
globe, and recursively subdivide the polygons of these
solids. This approach has been used before for encoding
and handling geospatial data (Dutton, 1996).

At each level i, each edge is split and the new centres,
halfway on the greater circle connecting the original
endpoints, are connected. As a result, for instance each
triangle is replaced at each level by four smaller triangles.
Other subdivision schemes can also be used, for instance
triangles can be subdivided into nine smaller ones.

The edge weights are set as follows. We associate with
each edge three numbers w0, w1, and wc, where the first two
correspond with the endpoints and the latter with the
centre position. For new edges, w0 r i, w1 r i, and wc r
iz1. If an edge e is split into two edges e’ and e’’, we use
linear interpolation for the new values

w
0

0/w0, w
0

1/wc, w
0

c/(w0zwc)=2;

w
00

0/wc, w
00

1/w1, w
00

c/(wczw1)=2:

As a result, the weights are highest close to the centre of
original edges. Finally, we use wc as the edge weight for the
edges of the final mesh, plus a graticule weight w with small
values for Wl and Ww to select the aspect.

The resulting unfolded maps are, at first sight, somewhat
surprising (Figure 5). One would expect to see interesting
fractal shapes, however, at the second level of subdivision
the gaps are already almost invisible (Figure 6). Indeed, the
structure of the cuts is self-similar, however, for higher
levels of subdivision and smaller triangles, the surface of the
sphere quickly approaches a plane, which has Hausdorff
dimension 2. Only when areas would be removed, such as
the centre triangles in the Sierpinski triangle, a fractal shape
would be obtained.

As a step aside, fractal surfaces and foldouts do not match
well either. Unfolding, for instance, a recursively sub-
divided surface with displaced midpoints leads to a large
number of fold-overs (Figure 7).

As another step aside, let us consider optimal mapping on
Platonic solids. We consider a map optimal when the cuts
do not cross continents. To find such mappings, we assign
to each edge a weight proportional to the amount of land
cut, computed by sampling the edges at a number of
positions (here we used 25) and looking up if land or sea is
covered in a texture map of the earth. Next, the map is
unfolded using the standard method and the sum of
weights of cut edges is determined. This procedure is
repeated for a large number of orientations of the mesh,
searching for a minimal value. We used a sequence of three
rotations to vary the orientation of the mesh, and used steps
of 1u per rotation. Results are shown in Figure 8.

Figure 4. Polyconical projection, derived from a 1u graticule,
64 800 polygons

Figure 5. Recursive subdivision of Platonic solids, using five levels
of subdivision, 4096220 480 polygons

Figure 6. Close-up of icosahedral projection

Figure 7. Folding out a fractal surface gives a mess
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For the tetrahedron a perfect, and for the other platonic
solids an almost perfect, mapping is achieved. Except for
the tetrahedron, the resulting layout of the continents is the
same as the layout used by Fuller for his Dymaxion map. He
used a slightly modified icosahedron for his best-known
version, but the version shown here reveals that his
modifications are not necessary per se.

GEOGRAPHY ALIGNED MESHES

Taking continents into account when deciding where to cut
is an obvious idea. In this section, we explore this further.
We generate meshes such that continents are cut orthogo-
nal to their boundaries. First, we define for each point on
the sphere a value f(w, l) that denotes the amount of land in
its neighbourhood. High values are in the centres of
continents, low values in the centres of oceans. This
function is used to generate the mesh, and also to control
the strength of edges. We use linear interpolation of a
matrix of values Fij, with i 5 0,..., I21 and j 5 0, ..., J21 to
calculate f(w, l). The corresponding values for l and w per
element are li 5 2p(iz0.5)/I and wj 5 p(jz0.5)/J 2 p/
2, respectively. The matrix F is derived from a raster image
R of a map with the same dimensions as F via convolution
with a filter m, i.e.,

Fij~
XKz

j

k~K{
j

XLz

l~L{

mjklRizk,jzl,

where izk is calculated modulo I, L2 5 max(2j,2L), and
Lz 5 min(J212j, L). We typically use I 5 256, J 5 128,
and L 5 32. A large weight mask m is used, because it is not
only the edges that have to be blurred, but also areas far
from coastlines must be assigned varying values. The
convolution has to be done taking the curvature into
account; therefore, the width and contents of the mask have
to be adapted per scan line. For the width, we use Kj

z 5

2Kj
2 5 qIL/2Jcoswjr. We use a Gaussian filter, taking the

distance rjkl along a greater circle into account between a
centre element R0,j and an element Rk,jzl, as well as the
area ajl of the latter. Specifically,

mjkl~
XKz

j

k~K{
j

XLz

l~L{

sjkl,

with

sjkl~ajkl exp ({r2
jkl=2s2)=

ffiffiffiffiffiffi
2p
p

s,

ajl~2p2 cos wjzl=NM , and

rjkl~ arccos p(wj,0):p(wjzl,lk)
h i

:

Figure 9 shows an example. As a result, for instance the
value for the South Pole is similar to that of the centre of
South America.

To obtain a foldout with cuts perpendicular to contours
of f, the following steps are performed (Figure 10), inspired

Figure 8. Optimal fold-outs of Platonic solids
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by the anisotropic polygonal remeshing method of Alliez
et al. (2003):

a. Generate mesh lines along and perpendicular to
contours of f with the algorithm of Jobard and Lefer
(Jobard and Lefer, 1997);

b. Calculate intersections of these sets of lines, and derive
polygons;

c. Tesselate polygons with more than four edges; and
finally

d. Use the standard approach to decide on folds and cuts.

These steps are discussed in more detail.
The algorithm of Jobard and Lefer (Jobard and Lefer,

1997) is an elegant and fast method to produce equally
spaced streamlines for a given vector field. Starting from a
single streamline, new streamlines are repeatedly started
from seedpoints at a distance d from points of existing
streamlines, and traced in both directions. If such a
streamline is too close to an existing streamline or when a
cycle is formed, the tracing is stopped. The time critical step
is to determine which points are close. The standard
solution is to use a rectangular grid for fast look-up. Here
streamlines are traced in (w, l) space, and the mapping to
the sphere has to be taken into account. We therefore use
horizontal strips of rectangles, where the number of
rectangles per strip is proportional to cosw.

To obtain mesh lines along contours, the vector field

c(w,l)~(fl,{fw)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 wf 2
w zf 2

l

q

is traced; lines perpendicular to contours follow from
tracing the vector field

g(w,l)~(fw cos w,fl= cos w)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 wf 2
w zf 2

l

q
, where

fl~Lf (w,l)=Ll and fw~Lf (w,l)=Lw:

The factors cosw in the definition of c and g follow from the
requirements that we want these fields to have a unit
magnitude and to be orthogonal after projection on the
sphere. Projection implies that components Dl of a vector
(Dw, Dl) are scaled with a factor cosw, whereas the Dw
components keep their length. For the tracing, we use a
fourth order Runge–Kutta method with a fixed time step.

In the next step, crossings between these line sets are
calculated and the lines are cleaned up. Streamlines without
crossings are removed, neighbouring points of crossings are
removed from the streamlines, and heads and tails are
removed. Next, the resulting net is scanned and a set of
polygons, covering the sphere, is constructed. This gives a
regular, rectangular mesh for a large part of the sphere, but
also and unfortunately, irregular polygons. This can be
understood from the topology of vector fields, a well-
known topic in the visualisation community (Helman and
Hesselink, 1991). Critical points are points where the
magnitude of the vector field is zero. For the vector fields
used here, these occur at maxima of f (centres of
continents), minima of f (centres of oceans) and at
saddle-points of f (for instance between South America
and Africa). The domain of a flow field can be tessellated
using streamlines between these critical points, the so-called
separatrices, which gives a topological decomposition of the
domain. For the vector fields used here, separatrices
typically run through valleys of f. When f is used to decide
which edges to label as cuts, the surface breaks along those
valleys, which in turn appear as overall boundaries.
Downhill gradient lines of f, following g, bend into such
valleys with a sharp turn or stop because a line at the other
side is too close, leading to irregular polygons.

We use a standard triangulation algorithm to tessellate
polygons with more than four edges. First, the polygon is
split into convex polygons, next, triangles are split off.
Heuristics used are a preference for short inserted edges and
avoidance of obtuse or very sharp angles. This is not perfect
yet and leads to a somewhat fractured and irregular
appearance of the map when unfolded. Improvement turns
out not to be simple. In an image like Figure 10(c) it is easy

Figure 9. From R to F via convolution with a Gaussian

Figure 10. Use of contours and gradients to derive a mesh: a) Jobard and Lefer algorithm; b) finding polygons; c) triangulation; d) deciding
on cuts
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to point at polygons where better choices could have been
made, the hard part is to find methods that have no adverse
effect at other locations. For instance, introducing extra
points and edges often leads to more irregularities, and
tracing lines between critical points in advance gives wide
interrupts instead of multiple smaller ones.

We also tried the use of a tensor field based on curvature
(Alliez et al., 2003), instead of a vector field (Figure 11).
Here, at each point, the direction of minimum or maximum
curvature is traced. This gives an orthogonal mesh, without
singularities along lines and, indeed, the valley in the centre
of the Atlantic Ocean is now filled in a more regular way.
However, this does not necessarily lead to a more appealing
tessellation, see for instance the small strip introduced in
the centre of this valley. Tensor fields have two kinds of
singular points: trisectors and wedges. Here, a trisector
appears in the northern Atlantic Ocean, and a wedge in the
Gulf of Guinea. This latter feature leads to irregularities in
the resulting mesh.

Other solutions are to increase the density of the mesh,
and, simply to accept the fractured boundaries. Visually,
they show that the surface of the globe is torn apart, and
they show that where this is done exactly is somewhat
arbitrary.

Figure 12 shows results of this approach. Straightforward
application leads again to the layout of the continents of
Buckminster Fuller. A more familiar layout can be obtained
by adding a graticular weight, and tuning Wl and Ww. The
overall layout resembles a conical projection. The con-
tinents are shown with few interrupts and with correct
shape and relative position. Instead of f, also |f 2 fc| can be
used as a weight for the edges. As a result, the global
boundary of the map is along contours f 5 fc. This
boundary is smooth, and divides the surface here into the
main continents, the oceans, and Antarctica. The author
does not know a similar map.

Also, 2f can be used as a weight for the edges. This
results in a map where the oceans are central, surrounded
by the coastline of the world. Ocean centred maps have
been made before, such versions are available for Goode’s
homolosine map and Fuller’s Dymaxion map. Closest is a
map presented by Athelstan Spilhaus (Spilhaus, 1983). His
map (and also Fuller’s) is centred on Antarctica, showing
the oceans as three lobes, and is, hence, somewhat less
extreme than the version shown here. A map similar to
Spilhaus’s map can easily be generated with our method,
simply by removing Antarctica from the map R.

DISCUSSION

We have presented a new class of map projections, based on
projecting the earth on myriahedra, polyhedra with many
faces, and unfolding these. A general approach is presented
to decide on cuts and folds, based on weighting the edges
and calculating a maximal spanning tree. Three different
choices for types of meshes and weighting schemes are
presented, leading to a variety of different projections of the
surface of the earth.

There remains one question to be answered: What is this
all good for? Most resulting maps are highly unusual, and
do not correspond with what on average is considered to be
a useful map.

Furthermore, the complexity is high. Standard projection
methods require, in the worst case, a few iterations per
point to solve a transcendental equation; the methods
presented here require implementation of a number of non-
trivial algorithms. Hence, forward mapping is not easy, and
also inverse mapping, from a location on the map to a point
on the globe, is much more involved than with standard
maps.

Fortunately, there are also positive aspects that can be
mentioned. From an academic point of view, a classic topic
like map projection deserves an exhaustive exploration and
this class of maps has not been addressed yet. What happens
when many small maps are glued together is obvious and
here an extensive answer is given. Hence, these maps could
be used for textbook purposes. Furthermore, each class has
its own interesting aspects. The graticular maps can be used
to explain the basics of map projection. Polyhedral maps are
entertaining, and here we have presented optimal versions.

We have investigated what happens when interrupts are
removed. In Figure 13, two examples are shown, derived
from maps shown in Figure 12. We matched corresponding
vertices at a distance below a certain threshold, starting at
the ends of gaps, followed by a finite element simulation to
redistribute the points of the mesh. In the examples shown,
we defined the stiffness matrix such that the equal-area
property is satisfied. These steps are repeated until no
corresponding vertices could be found. The maps are not
conformal: Parallels and meridians do not cross at right
angles. The hard boundaries of the maps without interrupts
are somewhat arbitrary, but do attract attention, in contrast
to the more fuzzy boundaries of their myriahedral counter-
parts. Finally, they reveal a quality of all myriahedral maps.
The interrupts present in myriahedral maps show the
inevitable distortion in a natural, and explicit way, whereas

Figure 11. Same as Figure 10, using curvature tensor field
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in standard maps it is left to the viewer to guess where and
which distortion occurs.

Methodologically interesting is that here a computer
science approach is used, whereas map projection is
traditionally the domain of mathematicians, cartographers,
and mathematical cartographers. Myriahedral projections
are generated using algorithms, partially originating from
flow visualisation, and not by formulas. Implementation is

not simple, but when the machinery is set up, a very large
variety of maps can be generated just by changing
parameters, such as Wl, Ww, F, f0, s, and the size of the
faces used. This leaves much room for serendipity, and
indeed, some of the maps shown here were discovered by
accident.

Maps are not only used for navigation or visualisation,
but also for decorative, illustrative and even rhetoric

Figure 12. Myriahedral projections with geography aligned meshes, 5500 polygons
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purposes (Monmonier, 1991), for instance on covers of
magazines. The coastline map is an example, which can
serve to emphasise the importance of oceans. Another
example is shown in Figure 14. Here, we used a subdivided
icosahedral projection, centred at 40uN, 100uW, and used
an edge weight proportional to the distance from this
point, plus a small random factor.

As a first step to a user study, the resulting projections
were shown as static images and in animated version to
about 20 people, ranging from laymen via computer
scientists to cartographers. In general, the reception was
very positive. Most people found the results compelling and
intriguing. Computer science colleagues liked the general
framework and the algorithms. Nevertheless, taking a
utilitarian point of view, some cartographers argued that
cuts are always more disturbing reading a map than having
distortion, which is the reason that such projections have
been discarded so far and are not useful in practice.
Concerning usability for tutorial purposes, results were
mixed again. Some cartographers found this a very strong
feature; others argued that visualising a distorted grid
would be more effective. More elaborate usability tests are
required to evaluate which approach is most effective here
and, also, to see what the value is in general. Besides such a
lab test, an interesting test is whether these results are
interesting for, and find their way to, a large audience. So
far the results were only shown under non-disclosure
conditions, so we cannot report on that yet. It is
encouraging, however, that many viewers asked when the
results would become publicly available and if they could be
notified on this.

There is room for more future work. We are considering
alternative methods to produce geography aligned meshes.
An interesting option is to use a physically based model to
simulate crack formation (Iben and O’Brien, 2006). Also,
the methods presented here can be used for a variety of
other purposes, for instance to show plate tectonics,
voyages of discovery, or scientific data given for spherical

angles. Such applications can be produced easily, just by
varying the map used for mesh alignment.
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