
A Model for Smooth Viewing and Navigation
of Large 2D Information Spaces

Jarke J. van Wijk and Wim A.A. Nuij

Abstract—Large 2D information spaces, such as maps, images, or abstract visualizations, require views at various level of detail:

close ups to inspect details, overviews to maintain (literally) an overview. Users often change their view during a session. Smooth

animations enable the user to maintain an overview during interactive viewing and to understand the context of separate views. We

present a generic model to handle smooth image viewing. The core of the model is a metric on the effect of simultaneous zooming and

panning, based on an estimate of the perceived velocity. Using this metric, solutions for various problems are derived, such as the

optimal animation between two views, automatic zooming, and the parametrization of arbitrary camera paths. Optimal is defined here

as smooth and efficient. Solutions are based on the shortest paths of a virtual camera, given the metric. The model has two free

parameters: animation speed and zoom/pan trade off. A user experiment to find good values for these is described. Finally, it is shown

how the model can be extended to deal also with rotation and nonuniform scaling.

Index Terms—Navigation, viewing, zooming, panning, scrolling, scale space.
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1 INTRODUCTION

THE use of two-dimensional images for the presentation
of information is standard and ubiquitous. Cartography

is the prime example, but it is also common practice in
information visualization: Abstract data are mapped to
2D graphic representations, such as scatterplots, graph
diagrams, or treemaps. Large data sets lead to large images
with much detail. It is vital to achieve insight into
interaction with these representations, as summarized in
Shneiderman’s Visual Information Seeking mantra: Over-
view, zoom & filter, details-on-demand [13]. Another key
concept in information visualization is focus+context. Both
stress that data must be visualized at several levels of scale:
The user must be enable to zoom in and focus, while, on the
other hand, he should maintain an overview and under-
stand the context of the data focused on. One solution is to
offer multiple representations at different scales simulta-
neously, another class of solutions concerns distortion of
space, such as fish-eye views [6]. Here, we consider the use
of the time dimension for this purpose. Modern computer
hardware enables the user to inspect, navigate, and view
large images interactively and dynamically. While viewing
images, when the user shifts his attention, from overview to
detail or from one detail to another, smooth transitions aid
in understanding the relation between different views.

We present a computational model for the definition of

smooth animations for interactive image viewing and

navigation. This work is an extension of a previous

publication [16], where we focused on a single problem:

the definition of smooth animations from one view to

another. We repeat the ideas and solutions developed there,
though in a slightly more compact form, and show that
these can be used for other viewing applications as well.

The problem that we use as a starting point is the
following: Suppose we are developing an interactive
cartographic application. The user is presented a map of,
say, the US and can zoom in on regions, states, and cities by
picking items from a list or clicking on areas on the screen.
How do we define a smooth animation from one close-up
on the map to another?

At first sight, interpolation (linear in space, logarithmic
in scale) might seem to be sufficient to make the transition
from one view to another. However, this solution falls short
when the transition has to be made from one close-up to
another. For instance, suppose we focus on New York and
shift to Los Angeles. Such a simple solution leads to a long
animation, where a small strip of the US is shown in detail.
A somewhat better solution is to zoom out first, pan across
the continent, followed by a zoom in on the city of
destination. But, how much to zoom out? How much time
should the animation take? How to combine zooming and
panning? What is the optimal path? How can we define
optimal here? This problem turns out to be less simple than
it seems at first sight.

After a review of related work in Section 2, we analyze
the problem in Section 3. Central is the definition of a metric
on the effect of zooming and panning, derived from an
estimate of average velocity. Based on this metric we
present (Section 4) an optimal solution for a simple zoom-
out, pan, zoom-in scenario. Next, we consider arbitrary
transitions and present how an optimal path of a virtual
camera can be determined analytically given two projec-
tions. A first user experiment is presented in order to find
satisfying values for the two free parameters in the model
(animation speed and zoom/pan trade off).

Animation from one view to another is just one aspect of
interactive viewing in general, albeit a crucial one. In this
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extended publication, we show how these ideas can also be
used to solve other problems related to interactive viewing
of images. Specifically, in Section 5, we discuss how
automatic zooming can be defined and how arbitrary paths
can be dealt with. Furthermore, in Section 6, it is shown
how the model can be extended to deal with rotation and
nonuniform scaling.

Finally, conclusions are drawn and possible extensions
are discussed in Section 7.

2 BACKGROUND

The importance of viewing at different levels of scale, or for
short multiscale viewing, is addressed in many articles on
visualization and can be found in many interactive
applications, not only visualization tools, but also image
viewers, word processors, games, etc. Bederson et al. have
shown with their work on Zoomable User Interfaces [2], [3]
how flexible viewing can be used as a foundation for
intuitive user interfaces.

Surprisingly however, we could only find a few
references where the topic we address here is discussed
explicitly. Furnas and Bederson [7] present Space-Scale
Diagrams: a visual depiction of multiscale viewing. The
horizontal axis denotes space, the vertical axis denotes
scale. Furnas and Bederson show how this diagram can be
employed to attack a variety of problems associated with
multiscale viewing, including optimal pan-zoom trajec-
tories. Optimal is translated here as the shortest path. To
determine the length of a path, they present measures for
pure panning and zooming, based on an information
metric. The distance between two views is expressed as
the number of bits required to encode the difference
between the two frames. For panning, this is equal to �d,
where � is the bit density of the image and d is the
displacement in screen units, for zooming, this is equal to
�w log r, where w is the width of the screen, and r is the
zoom factor. Guidelines for several piecewise pure pans or
zooms trajectories are given, but, for the truly optimal
shape, the authors remark that such trajectories “will have a
complicated curved shape, and finding it is a complicated
calculus-of-variations problem.”

Igarashi and Hinckley [8] have considered how to
improve browsing through large documents. They recom-
mend that, during scrolling, the view should zoom out
automatically such that the perceptual scrolling speed in
screen space remains constant.

At some more distance, other related work can be found
in the field of multiscale analysis of images where
differential geometry is often used. In particular, Eberly
has defined a similar metric as we have to describe the
effect of changes in position and scale [4]. He uses this
metric to model anisotropic diffusion.

Our approach has a similar structure as that of Furnas
and Bederson, but differs in the way various aspects are
filled in. We discuss viewing in u;w space, where u denotes
panning and w denotes zooming, both measured in world
coordinates. We use u;w diagrams, which are simpler to
understand and work with than space-scale diagrams. We
define optimal as smooth and efficient, define a metric to
measure the effect of combined zooming and panning, and

derive, based on differential geometry, differential equa-

tions that describe optimal paths. We solve these explicitly,

first for a zoom-pan-zoom strategy and next to find the

optimal path. A user study has been done to obtain good

values for the two parameters of the model and, finally, we

apply and extend the base model for a variety of

applications.

3 MODEL

In this section, we define the projection in more detail,

followed by our definition of optimality and the definition

of a metric to assess the effect of zooming and panning. This

metric is next used to define optimality quantitatively.

3.1 Projection

Weconsider the projection of a square subsetA of an objectM

to image space I.M is defined over an areaW � IR2,A � W ,

whereW denotes world space. We define the area of interest

A by a center point c ¼ ðcx; cyÞ 2 W and a width w, i.e.,

A ¼ ½cx � w=2; cx þ w=2� � ½cy � w=2; cy þ w=2�:

For the image space I, we use normalized device

coordinates: a unit square, centered around the origin, i.e.,

I ¼ ½�1=2; 1=2� � ½�1=2; 1=2�:

The projection of a point x ¼ ðx; yÞ 2 A to a point x0 ¼
ðx0; y0Þ 2 I is then simply

ðx0; y0Þ ¼ x� cx
w

;
y� cy
w

� �
; ð1Þ

the inverse projection is given by

ðx; yÞ ¼ ðcx þ wx0; cy þ wy0Þ: ð2Þ

Suppose now that two areas of interest, A0 and A1, are

given, defined by ci, wi, with i ¼ 0; 1, and that an animation

from the first to the second has to be defined (see Fig. 1). To

this end we have to find functions cðsÞ and wðsÞ; s 2 ½0; S�
such that at least

cð0Þ ¼ c0; wð0Þ ¼ w0;
cðSÞ ¼ c1; wðSÞ ¼ w1:

The parameter s is along a path from the first to the second

projection and S denotes the final value. The functions cðsÞ
and wðsÞ denote the path of the camera and the width

shown along the path. An animation can now be defined by

setting

s ¼ V t; t 2 ½0; S=V �; ð3Þ

where V denotes the constant animation speed and t wall

clock time, for instance, in seconds. In the remainder of this

paper, we will use s as the main parameter, decoupled from

the basic animation speed V . For convenience, if a unit

speed is assumed, s and t are interchangeable.
We simplify the problem by assuming that there is no

perceptual difference between horizontal, diagonal, and

vertical panning. In this case, an optimal path cðsÞ is always

a straight line and, hence, we can define
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cðsÞ ¼ c0 þ
c1 � c0

kc1 � c0k
uðsÞ; u 2 ½u0; u1�;

with u0 ¼ 0 and u1 ¼ kc1 � c0k:
ð4Þ

The parameter uðsÞ denotes panning along a straight line.
We have to find functions uðsÞ and wðsÞ; s 2 ½0; S�, such that
at least

uð0Þ ¼ u0; wð0Þ ¼ w0;
uðSÞ ¼ u1; wðSÞ ¼ w1:

ð5Þ

We can depict the problem in ðu;wÞ space, as shown in
Fig. 2. We found these diagrams, which we called u,
w-diagrams, more convenient to reason about the problem
than space scale diagrams. Each projection maps to a point
in the diagram. Zooming and panning naturally map to
moving a point vertically or horizontally. The axes have the
same dimension, both units in world space. Furthermore,
the diagram enables a direct physical interpretation. The
horizontal axis can be considered as a cross-section through
the object M to be displayed, the point p ¼ ðu;wÞ (or ðc; wÞ)
can be interpreted as a camera, floating at a height w above
M. The field of view of this camera is, given the definitions
used here, 2 arctan 1=2 � 53�. The path pðsÞ ¼ ðuðsÞ; wðsÞÞ
is, hence, simply the path of a camera, flying above a map.
This can be emulated physically: Position yourself in front
of an image, look perpendicular to this image, and move
your head according to a camera path (or, move the image).
In this way, we can try out various scenarios for zooming
and panning in an easy way and obtain a rough feeling for
optimal paths.

3.2 Requirements

The next question is what is an optimal path. We think this
can be summarized in two words: The optimal path should
be smooth and efficient. Smoothness is a constraint. The path
should be at least continuous in the first order, in the sense
that no sudden steps are made or abrupt changes in
direction occur. These are requirements on the shape of the
path. Furthermore, the parametrization of the path must be
chosen carefully. We formulate this as follows: When the
camera moves along the path, the viewer should get the

impression of a smooth and continuous motion of the
projected image on the screen. We limit ourselves to the
perceptual level here and discard cognitive aspects, such as
memory, meaning of the image shown, etc. Such aspects are
much harder to incorporate in a model and we assume that
a perceptually smooth motion will also aid in cognition.

Furthermore, in the remainder of this paper, we assume
that each projected part of M has the same characteristics,
i.e., each image shown is equally interesting, has the same
visual density, etc., for the range of c and w of interest and
that there are no discontinuities in the displayed image for
varying w. In a strict sense, this requirement can only be
met by artificial imagery with fractal characteristics. In real
world applications, such as cartography, urban areas are
more interesting than uniformly colored oceans; in strong
close-up views, often less detail is available. On the other
hand, most applications for which interactive zooming is
interesting will have details at many scales and it is the task
of the designer to make sure that, at each scale, an
appropriate level of detail is shown. In cartography, this
is well-known as generalization.

The aspect to be optimized is efficiency. We operationa-
lize this by aiming for the shortest path in u;w space
possible: Detours are not appreciated; we want to get from
A to B as fast as possible.

3.3 Metric

We aim for a path that is smooth and efficient. Both require
that we are able to measure the effect of changing c and w,
as perceived by the viewer. Following and generalizing the
approach of Igarashi and Hinckley [8], we use the velocity
of the moving image as a basis for measurements, i.e., we
aim at a metric for the perceived average optic flow in the
image window. To this end, we first consider the velocity _xx0

of a projected point x0 in image space. We use a centered
dot as notation for differentiation with respect to s, e.g.,
_aa ¼ da=ds. Differentiation of (1) gives

_xx0 ¼ �x _ww� _ccxwþ cx _ww

w2
;
�y _ww� _ccywþ cy _ww

w2

� �
;

or, using (2),

_xx0 ¼ �x0 _ww� _ccx
w

;
�y0 _ww� _ccy

w

� �
:

We are not only interested in a single point, we have to
measure the velocity over the whole screen space I. For this,
we use the root mean squared average velocity VRMS
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V 2
RMS ¼

V 2
R
I _xx0 � _xx0dIR
I dI

¼ V 2

Z 1=2

�1=2

Z 1=2

�1=2

ð _xx0 2 þ _yy0 2Þdx0dy0

¼ V 2 1

w2
_cxcx
2 þ 1

w2
_cycy
2 þ 1

6w2
_ww2

� �

¼ V 2 1

w2
_uu2 þ 1

6w2
_ww2

� �
:

VRMS is proportional to the animationvelocityV and thezoom
velocity _ww and pan velocity _uu, both relative to the width w in
world space. For zooming, this is consistent with the
recommendation given in [12], where the use of a logarith-
mically slower movement is advocated when the target (in
3D) is approached. Also, VRMS shows that zooming has less
impact (the factor 1=6) than panning. At this point, it is too
early touseVRMS directly as ameasure.Wecannot be sure that
the perceptual effect of zooming versus panning is indeed
measured by the average velocity. Hence, we define a metric
on ðu;wÞ space that is more general:

ds2 ¼ �2

w2
du2 þ 1

�2w2
dw2: ð6Þ

This metric gives the distance ds traveled when u and w are
changed with du and dw. The parameter � represents a trade
off between zooming and panning. A high value indicates
that zooming has little impact, a low value indicates that
panning has less impact. For � ¼ 61=4 � 1:565, the metric is
equivalent to using VRMS as a measure. The best value for �
dependson the subjectiveperceptionof theviewer, andhas to
be found experimentally. Results from such experiments and
suggestions for good values of � are given in Section 4.3.

Fig. 3 shows a visualization of the metric defined in (6)
for various values of � in ðu;wÞ space. Each small ellipse
denotes a set of points equidistant to its center according to
the metric in ðu;wÞ space. Or, more technically, each ellipse
visualizes a covariant metric tensor. The shape of the
ellipses is determined by �, their size is proportional to w.

Given the metric, an optimal path can now be defined
more precisely. Two conditions must be satisfied. First, the
animation should be smooth. In other words, when s varies
constantly, the perceived rate of change has to be constant
according to the metric. This implies that the path
ðuðsÞ; wðsÞÞ has to be arc length parametrized and should
satisfy the following differential equation, derived directly
from the metric:

�2 _uu2 þ _ww2=�2 ¼ w2: ð7Þ

Second, the animation should be efficient. If the path is arc
length parametrized, then s represents the distance
traveled. Efficiency then implies that the total distance S
should be minimal.

In terms of Fig. 3, the task of finding an optimal path
loosely comes down to finding a path between two points
such that, at each step along the path, the same number of
ellipses is crossed and that, in total, as few ellipses as
possible are crossed. For each value of �, such an optimal
path is shown where the dots indicate equidistant points.
The shapes of these paths depend on �: little zooming for
low �, much zooming for high �.

4 PATHS

We illustrate the preceding ideas first for a simple scenario,
next we consider optimal paths, followed by a description
of a user study we did to find optimal values for the
parameters. In the next section, we describe a number of
other applications.

4.1 Zoom Out, Pan, Zoom In

Fig. 4 shows a simple path:

. For s ¼ 0 to sA: Zoom out from ðu0; w0Þ to ðu0; wmÞ;

. For s ¼ sA to sB: Pan from ðu0; wmÞ to ðu1; wmÞ;

. For s ¼ sB to S: Zoom in from ðu1; wmÞ to ðu1; w1Þ.
The problem now is to define a path ðuðsÞ; wðsÞÞ such that
the path is arc length parametrized and that the total path

length S is minimal. In [16], we derived that the optimal
path ðuðsÞ; wðsÞÞ for s 2 ½0; S� for this zoom-pan-zoom

scenario is given by:
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Ignoring the constraints, the optimal value of wm depends

only on � and on the distance between c0 and c1. For

� ¼ 61=4, wm � 1:2kc1 � c0k, i.e., one has to zoom out to such

a level that both the start point c0 and the end point c1 are

visible at some moment during the flight.

4.2 The Optimal Path

The preceding section dealt with a path with a rectangular

shape. The smoothness criterion is violated here: At the

corners, the motion is discontinuous. Also, the total length is

not optimal:By cutting corners a shorterpathcanbeachieved.

An optimal path between ðu0; w0Þ and ðu1; w1Þ has to satisfy

the boundary conditions given in (5) and the arc length

parametrization condition (7). Furthermore, it has to be the

shortest path between the two points, i.e., the geodesic.
In standard Euclidean space, a geodesic is a straight line;

in curved space, this is usually a curve. A classic example is

spherical space, used for mapping spheres. On a longitude,

latitude map, a line does not give the shortest path on the

sphere, whereas a great circle does. Also, our ðu;wÞ space is

curved because of the metric we have defined. Specifically,

we are dealing here with hyperbolic space. In the

Appendix, we give some more background on this.
Curved space is studied with analytical means in

differential geometry, of which Gauss and Beltrami can be

considered the founders. From this vast area we only need

to know how from the metric an equation for the geodesics

can be found [1], [11], [14]. Differential geometry tells us

that, for a space with a metric of the form

ds2 ¼ E du2 þG dw2;

a geodesic ðuðsÞ; wðsÞÞ has to satisfy the following

equations:

€uuþ Eu

2E
_uu2 þEw

E
_uu _ww� Gu

2E
_ww2 ¼ 0; and

€ww� Ew

2G
_uu2 þGu

G
_uu _wwþGw

2G
_ww2 ¼ 0;

where double dots denote double differentiation with
respect to s (e.g., €uu ¼ d2u=ds2) and subscripts denote partial
differentation (e.g., Eu ¼ @E=@u). For our metric E ¼ �2=w2

and G ¼ 1=�2w2, substitution gives

€uu� 2 _uu _ww=w ¼ 0; and

€wwþ �4 _uu2=w� _ww2=w ¼ 0:
ð8Þ

Hence, the optimal path is the solution for ðuðsÞ; wðsÞÞ that
satisfies (5), (7), and (8). In Appendix 2 of [16], we have
shown how the analytical solution can be derived, here we
give the final result for ðuðsÞ; wðsÞÞ; s 2 ½0; S�; u0 6¼ u1:

where the hyperbolic cosine, sine, and tangent are
defined as cosh x ¼ ðex þ e�xÞ=2, sinh x ¼ ðex � e�xÞ=2,
and tanhx ¼ sinh x= cosh x. For u0 ¼ u1, the optimal path
is given by

Fig. 5 shows sets of geodesic paths, starting from u ¼ 0 and
w ¼ 10 in different directions, for various values of �.
Furthermore, in each plot, a set of contours is shown as thin
lines. Each contour represents a set of points at an equal
distance from the start point. Both the paths and the
contours are parts of ellipses, where � again determines
their shapes. A path lies on the half-ellipse through ðu0; w0Þ
and ðu1; w1Þ with equation

u� u0 þ w0 sinh r0=�
2

w0 cosh r0=�2

� �2

þ w

w0 cosh r0

� �2

¼ 1; ð10Þ

with w > 0. For � ¼ 1 paths are circles. The center lies on the
u-axis. Hence, when traveling over the path, in the end, the
horizontal axis (corresponding to the image itself) is
approached perpendicularly. In other words, if we are
close to the image (small w), then panning is not effective
for optimal paths. The equation of the half-ellipse that
contains all points at the same distance S of a start point
ðu0; w0Þ is

u� u0

w0 sinhð�S=2Þ=�2

� �2

þ w� w0 coshð�SÞ
w0 sinhð�SÞ

� �2

¼ 1; ð11Þ
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with w > 0. Generalizing, replacement of u� u0 by jc� c0j
gives a half-ellipsoid in ðc; wÞ space that denotes all points
at the same distance.

Fig. 6 shows another visualization of the paths. The
horizontal axis denotes s, the vertical axis u. The thick lines
show uðsÞ for three values of �. This shows that the virtual
camera moves smoothly and monotonically in the direction
of u1. Furthermore, the instantaneous width is shown: the
interval between the graphs of uðsÞ � wðsÞ=2 and
uðsÞ þ wðsÞ=2, shown as thin lines. Again, the effect of
different values for � is clearly visible.

The scale of s has not been discussed so far. For this case,
the total path length S varies from about 4.2 to 4.5. What is
this dimension? For a pure panning motion, we find that
value s corresponds to a motion of ��u=w, i.e., s relates here
to � times the number of image widths panned, which is a
fairly natural and understandable measure. For example,
for � ¼ 1, panning from ðu;wÞ ¼ ð0; 10Þ to ð40; 10Þ gives a

distance s ¼ 4. For a zoom out with a factor r ¼ w1=w0, we
find that the corresponding s equals ln r=�. Hence, zooming
in from ð40; 10Þ to ð40; 1Þ gives a distance of s � 2:3.

The paths derived here and in the previous section can
easily be translated into an implementation of a smooth
animation. The simplest and also most flexible approach is
to calculate, for each new frame, everything anew. We take
advantage here of the property that geodesics are unique: If
C is a point on the geodesic from A to B, then the geodesic
from C to B is a subset of the original one. We typically use
a procedure which takes as input the current view (c0 and
w0), the target view (c1 and w1), the animation parameters
(V and �), and the time step �t between frames, and which
returns the view (c and w) for the next frame. For the time
step, we use an average value of the last five to 10 frames.

Another implementation is to recalculate the path only
when one of the parameters changes. This requires two
separate procedures (one for making a step and one for
changing the path), where care has to be taken that the latter
one is always called when a parameter is changed. The
suggested stateless implementation takes care of this
automatically, simplifying the change of parameters during
the flight, at the expense of some additional computing cost.
But, typically, this cost is negligible when compared to the
rendering of the frame.

4.3 User Experiments

We have done a first user experiment to obtain insight into
preferred values for V and �. We have implemented a small
application where the user can load an image, define areas
of interest, switch between these areas, upon which a
smooth animation is shown with user-defined settings for V
and �. Also, the application has a test mode for more
controlled experiments. We used a high resolution height
map of Mars as image [5]. This image is visually interesting,
contains information on various scales, and was unfamiliar
to our users. We explained the background of the
experiments and asked the users to set V and � for two
conditions. First, an alternating zoom-pan animation be-
tween two locations was shown; second, a tour around
10 different locations was shown. We asked the users to set
the parameters such that the perceived animation was
smooth, fluent, and suitable for a daily use application. The
task was done at a notebook computer and took about
5 minutes to complete. Users could set the values via
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sliders, no feedback on numerical values was given to

prevent bias. The 26 users were colleagues and students

from our department and all had (much) experience with

using computers. Fig. 7 shows the interface. An overview of

Mars is shown here and the two locations for the alternating

zoom-pan animations are shown. Fig. 8 shows the average

optimal animation selected by the users as a sequence of

views, taken at intervals of 0.5 seconds.
Many users commented on the importance of cognitive

aspects. They pointed out that familiarity of the image

shown, the amount of detail in the image, and the exact task

would influence their preferences. Also, we found that

some users set � to get a zoom-out level which they liked,

where the aspect of smooth motion was of lesser impor-

tance. On the positive side, the users found the final paths

(given their preferences) smooth, pleasant, and natural.
Fig. 9 shows the parameter settings that were selected by

our users. It shows that preferences for � and V were

uncorrelated; hence, these seem to be independent dimen-

sions, and that the conditions (two versus 10 locations) did

not strongly influence the result. The average value for V is

0.90, the standard deviation 0.43. For �, the average value is

1.42 and the standard deviation is 0.47. The confidence

intervals are shown for a confidence level of 99 percent. The

value of 1.42 for � is (statistically significant) smaller than

1.565, the value which we derived from using the root mean

squared average velocity. The average value found is close to

� ¼
ffiffiffi
2

p
. It goes too far to extrapolate from our limited

empirical result to such a precise suggestion for an optimal

value, especially becausewe have nomodel to explain this. It

is interesting though that the associated maximumwidth for

the zoom-pan-zoom path is simply ju1 � u0j, without extra

constants. For the optimal path, we find that for w0 ¼ w1 and

� ¼
ffiffiffi
2

p
the maximum width also has a simple form, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu1 � u0Þ2 þ w2
0

q
:

The variation in the results was large, much larger than

we expected. Nevertheless, we think that these average

values will yield reasonable results for a variety of users

and use cases. For an optimal result, the setting has to be

customizable to the preference of the user.

5 APPLICATIONS

Animation from one view to another is just one, but a

fundamental aspect of interactive viewing in general. Using

a geometric analogy, if a view corresponds to point, an

optimal animation corresponds to a line. If we know how to

produce lines and how to interpolate between points, we

can use this also for other purposes. In this section, we

present two other applications of the model. We have not

yet performed user tests to validate whether these results

are indeed significant improvements in real-world cases,

however, the initial results are promising.

5.1 Automatic Zooming

Igarashi and Hinckley [8] have introduced speed-depen-

dent automatic zooming for browsing large documents. In

our terminology, they choose w such that j _uuj=w is constant.

When applied straightforwardly, this gives strongly vary-

ing values for w when j _uuj changes abruptly such that the

aim of a constant perceived velocity is not achieved. Hence,

a number of heuristics are used to bound _ww.
The model presented here can also be used for this

purpose. Suppose that the user constantly specifies values

for u and/or _uu, for instance, by dragging a scrollbar or an

arrow or rectangle in a navigation window, and that, for

_uu ¼ 0, the user wants to view his image with the minimal

width wM . Suppose further that the current view is p0 and

that we can derive a target view pT from u and/or _uu. Let

pðp0;p1; sÞ denote a point on an optimal path between two

points with parameter value s and let Sðp0;p1Þ denote the

corresponding distance, all according to (9). A suitable view

p� for the next time step can then be obtained via

p� ¼ pðp0;pT ;minðV�t; Sðp0;pT ÞÞÞ:

In other words, we make a step along the optimal path in

the direction of pT . The length of this step is V�t, as long as

we cannot reach the target in a single step. This assures us

that the target is approached efficiently, whereas the

perceived velocity is constant. The procedure is shown
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Fig. 7. Interface for user experiment.

Fig. 8. Average optimal animation, time interval 0.5 seconds.



schematically in Fig. 10. Blue dots denote a sequence of
target views, red dots denote a sequence of derived views.

There are several possibilities for the setting of pT , as
illustrated in Fig. 11. The blue line and dots again show
target views, derived from the input of a user. From a rest
state, the focus is moved with a constant speed to the right;
next, the direction is reversed; and, finally, a rest state is
achieved again. The value of w used here was chosen such
that, in combination with _uu, a constant perceived velocity is
obtained. For a given step size V�t and pan velocity _uu, the
corresponding value for w follows here from

wCð _uuÞ ¼ max wM;
�2j _uuj�t

2 sinhð�V�t=2Þ

� �
:

For the parts with constant speed, a good result is achieved
when this input is used directly, but sudden changes in
velocity cause large changes in w.

The red lines and dots show results for different
strategies for pT . Every fifth dot is connected here with
the associated target point, to show the relation more
clearly. First, we can take only positional information into
account:

pT ¼ ðu;wMÞ:

The width w does increase, but slowly, and, as a result, the
view shown is delayed with respect to the input of the user.
However, the resulting animation is smooth. Second, we
can take only velocity information into account:

pT ¼ ðu0 þ _uu�t; wCð _uuÞÞ:

This speed-dependent approach is similar to that of Igarashi
and Hinckley. The image in the middle shows that the

target w is reached quickly and smoothly. The absolute

value of u is not met, but this cannot be expected here as

only the velocity is used as input. Finally, we can take both

position and velocity into account:

pT ¼ ðu;wCð _uuÞÞ:

The position is matched better now. The value for w does

overshoot to make up for the delay in the start of the

sequence.
The position-based approaches suffer from lag. This is

inevitable when the amount of image change is bounded.

However, a smaller lag, at the expense of a higher optic

flow, can be obtained by increasing V and �. Fig. 12 shows

an example for the position controlled approach, where, for

both parameters, a 30 percent higher setting was used.
Experiments with users for a number of tasks will have

to reveal what their preference is. For the time being, we

find it promising that, based on the model, various

strategies that produce smooth results can be defined

easily. Furthermore, the strategies that use position are
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Fig. 9. Scatterplot of V and � values found.

Fig. 10. Principle automatic zooming.

Fig. 11. Automatic zooming.



compatible with the results presented before: A discontin-

uous change of u gives the optimal path.

5.2 Arbitrary Paths

Suppose that an arbitrary camera path,pðs�Þ ¼ ðcðs�Þ; wðs�ÞÞ,
has been defined by a designer or otherwise and that we

want to achieve a constant perceived velocity along the

path. This can be easily achieved via reparametrization of

the path such that the path is arclength parametrized

according to the metric (6). Specifically, the given path is

replaced by a path qðsÞ ¼ pðs�Þ, where s follows from

numerical integration of

s ¼
Z s�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 _ccðxÞ � _ccðxÞ

w2ðxÞ þ _ww2ðxÞ
�2w2ðxÞ

s
dx;

Instead of doing this reparametrization initially, it can also

be done on the fly. Suppose that the current projection is p0

and that a step S ¼ V�t has to be made. One approach is to

evaluate the preceding integral for increasing s� until a

value is found for which s ¼ S. Alternatively, the iso-

distance half-ellipsoid, defined in (11), can be used. The

intersection of the given path with this half-ellipsoid is the

next point searched for, which can be computed analytically

if the path is defined by linear or quadratic segments.

6 GENERIC TRANSFORMS

We have shown how the model for smooth zooming and

panning can be used for various applications. A next

question is if the model can be extended such that also other

image transforms can be dealt with, i.e., rotation and

nonuniform scaling. These are more rare than translation

and uniform scaling, but do occur, especially when abstract

data are visualized. A good example are treemaps [9]. A

treemap is a space-filling display of hierarchical data,

generated by recursively subdividing rectangles in alter-

nating directions. If one wants to zoom in smoothly on a

part of the hierarchy, using the rule that on the highest level

shown the first subdivision is always from left to right, both

rotation and nonuniform scaling have to be dealt with. For

both cases, we derive the optimal paths, which can be used

as a basic building block for the applications discussed in

the previous section.

6.1 Rotation

We first consider rotation, using the same line of thought as

for the base case. Suppose that the view is rotated over an

angle �. The projection of points ðx; yÞ in world space to

points ðx0; y0Þ in image space is then given by

ðx0; y0Þ ¼ x� cx
w

;
y� cy
w

� �
cos� � sin�
sin� cos�

� �
:

A measure for the average perceived velocity of the

rotating, moving and scaling image is the corresponding

root mean squared average velocity VRMS

V 2
RMS ¼ V 2 1

6
_��2 þ 1

w2
_cxcx
2 þ 1

w2
_cycy
2 þ 1

6w2
_ww2

� �

¼ V 2 1

6
_��2 þ 1

w2
_uu2 þ 1

6w2
_ww2

� �
:

We see that the impact of rotation is limited. The effect of _��

is independent on the current scale w. Also, there is no

interaction between rotation and position, hence an optimal

path will be along a line through c0 and c1 and we use u as a

parameter along this line again.
The value of VRMS leads to the following metric on

ð�; u; wÞ space

ds2 ¼ 1

�2
d�2 þ �2

w2
du2 þ 1

�2w2
dw2;

where � is an extra parameter that denotes the visual

impact of rotation, just like � denotes the impact of scaling.

The unit of � is radians/second, a large value for � indicates

that rotation has little visual impact. We have not done a

user study yet to find an optimal value. The value for VRMS

suggests using � ¼
ffiffiffi
6

p
, which we found to be acceptable in

practice.
To find an optimal path, we derive a system of

differential equations from this metric, i.e., the arc length

parametrization constraint and the geodesic equations

_��2=�2 þ �2 _uu2=w2 þ _ww2=�2w2 ¼ 1;

€�� ¼ 0;

€uu� 2 _uu _ww=w ¼ 0; and

€wwþ �4 _uu2=w� _ww2=w ¼ 0:

The last two equations are the same as for the base case. The

optimal path for an animation from ð�0; u0; w0Þ to

ð�1; u1; w1Þ is hence also similar as for the base case:

VAN WIJK AND NUIJ: A MODEL FOR SMOOTH VIEWING AND NAVIGATION OF LARGE 2D INFORMATION SPACES 9

Fig. 12. Position controlled, V and � 30 percent increased.



The angle � is just linearly interpolated from �0 to �1, the
distance S increases to compensate for the extra rotation to
be done. Fig. 13 shows an example. Start and end views are
shown as gray boxes in world space, the views in between
are shown as rectangles, whose centers are shown as dots.

6.2 Nonuniform Scaling

We next consider nonuniform scaling. Suppose that the
width of the view is specified independently for the x and y
direction. The projection of points ðx; yÞ in world space to
points ðx0; y0Þ in image space is then given by

ðx0; y0Þ ¼ x� cx
wx

;
y� cy
wy

� �
cos� � sin�
sin� cos�

� �
:

Note that, with this definition (translation, scaling, followed
by rotation), the axes remain orthogonal. A measure for the
average perceived velocity is

V 2
RMS ¼ V 2 1

6
_��2 þ 12 _cxcx

2 þ _wxwx
2

12w2
x

þ 12 _cycy
2 þ _wywy

2

12w2
y

 !
:

We see that this measure falls apart into three parts: one for
rotation and one per axis for translation and scaling. The
latter parts each have the same structure as the measure
derived for the base case. Because of this separation, we can
no longer make the assumption that the optimal path is
along a straight line between the two center points.

From the value of VRMS, we derive the following metric
on ð�; cx; cy; wx; wyÞ space:

ds2 ¼ d�2

�2
þ �2dc2x

w2
x

þ dw2
x

2 �2w2
x

þ
�2dc2y
w2

y

þ
dw2

y

2 �2w2
y

:

This metric is chosen such that it leads to the same optimal
path as presented before for a purely symmetric case
(wxi ¼ wyi and cxi ¼ cyi; i ¼ 0; 1).

The associated differential equations, i.e., the arc length
parametrization constraint and the geodesic equations, are

_��2

�2
þ �2 _cxcx

2

w2
x

þ _wxwx
2

2 �2w2
x

þ �2 _cycy
2

w2
y

þ _wywy
2

2 �2w2
y

¼ 1;

€�� ¼ 0;

€ccz � 2 _ccz _wwz=wz ¼ 0; and

€wwz þ 2 �4 _cc2z=wz � _ww2
z=wz ¼ 0;

where z denotes, here and in the next equations, x or y. The
optimal path for an animation from ð�0; c0; wx0; wy0Þ to
ð�1; c1; wx1; wy1Þ is now

Fig. 14 shows examples of nonuniform scaling. The top
image shows a transition from a horizontal strip to a vertical
one. At first, a horizontal motion dominates. Meanwhile,
the strip distorts into a square and, next, to a vertical strip.
In the last part of the animation, vertical motion dominates.
For such situations, a smooth and pleasing result is
obtained.

One would hope and expect that this general model
gives a good result for arbitrary transitions. Unfortunately,
this is not the case; the bottom image shows a counter
example. Here, a simple transition from one square to
another has to be made. The square is distorted into a broad
rectangle here because, in the horizontal direction, a much
larger distance has to be crossed than in the vertical
direction. When viewed on the screen, this looks like a
cartoon effect. This particular path is indeed the most
efficient path between the two views in four-dimensional
(cx; cy; wx; wy) space, but, for viewing, for instance, a
cartographic map, one would prefer that the views in
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Fig. 13. Example rotation.

Fig. 14. Examples of nonuniform scaling.



between are also square. A remedy could be to add the
additional constraint that the aspect ratio has to remain
constant or, more generally, has to increase or decrease
monotonically, but we have not worked this out further yet.

7 CONCLUSIONS

We have shown how to generate smooth animations when
viewing 2D images. The core of the model is the definition
of a metric on the impact of zooming, panning, and rotation,
which we used to produce smooth camera paths for various
applications. The original impetus for this work was the
visualization of call graphs via a hierarchical matrix
visualization [15]. The use of a smooth zoom-pan strategy
to maintain a good overview was vital here because the
information shown is abstract and varies per level. The
method described here has been integrated and gives very
good results, visually.

Anumber of aspects deserve further study. The extensions
presented in Sections 5 and 6 should be evaluated with
rigorous user-studies. We have not yet derived a method for
nonuniform scaling with a constraint on the change of the
aspect-ratio. A possible variation is to use a varying velocity
such as acceleration at the beginning and deceleration at the
end of the animation, thereby mimicking real world camera
movements. User-studies are required to find out if this is
preferable to a constant velocity.

We aimed at perceptually pleasing results, however,
cognitive aspects also play an important role for this kind of
animation. More research can be done to study the role of
perception versus cognition. Specifically, it is interesting to
study what the average value and variation of � is when
perceptual effects are isolated in some way. A more precise
analysis of the various cognitive aspects as well as guide-
lines for good values for � given a variety of tasks, image
contents, etc. would be useful. An extended model in which
the user can additionally specify that he, for instance, wants
to zoom out more than the optimal paths defined here,
could also be useful to tackle the cognitive aspects.
Meanwhile however, the model presented here is already
useful for a variety of cases, especially if the user can tune
the parameters to his preferences.

Another interesting area for future research concerns the
applicability of this model for 3D navigation. We obtained a
very first result, in the sense that this work provides a
theoretical confirmation of some of the empirical results
provided by Mackinlay et al. [12]. A generic solution for
optimal paths in 3D would be very useful for, for instance,
architectural walk-throughs. However, in 3D navigation,
the complexity of the optic flow pattern is much higher than
for 2D image viewing and depends strongly on the scene
and the current point of view; hence, we cannot expect that
a closed form solution can be derived.

APPENDIX

CURVED SPACE

To illustrate this concept of curved space, we consider what
geometric surface corresponds to our metric, like a sphere
corresponds with the longitude latitude map. Loosely, we

distort the 2D images shown in Fig. 3 to a 3D surface such
that all ellipses are distorted to circles with the same size. To
this end, one has to shrink horizontal lines (w constant) for
high values of w and to stretch them for low values. This
will give a rotationally symmetric 3D surface. Horizontal
lines are distorted into circles or, in other words, the
u parameter is mapped to rotation.

More formally, let us consider a parametric surface
xðu;wÞ ¼ ðxðu;wÞ; yðu;wÞ; zðu; vÞÞ. The length of a small step
dx ¼ xuduþ xvdv has to fit the measure, i.e.,

dx � dx ¼ �2

w2
du2 þ 1

�2w2
dw2:

Fig. 15 shows a surface that satisfies this constraint:

xðu;wÞ ¼ ð�=wÞ cos u;
yðu;wÞ ¼ ð�=wÞ sin u; and

zðu;wÞ ¼ 1

�
lnðwþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � �4

p
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � �4

p
w�

:

For � ¼ 1, this is a well-known surface in geometry: a
pseudosphere. Similar to a sphere, the Gaussian curvature
is constant, but here it is negative instead of positive.

Back to our context, the horizontal circles are lines with
constant w, the lines toward the top are lines with constant
u. In other words, panning is mapped to rotating around
the central axis. Panning over large distances corresponds
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Fig. 15. u;w space depicted as a geometric surface.

Fig. 16. Trajectories in u;w space.



to rotating multiple times around the central axis, each
point on the surface is multivalued. Zooming out corre-
sponds to climbing the object, zooming in to descending.
Note that the square grid cells shrink when w increases.
Two geodesics are shown. For large panning distances
(moving multiple times around the central axis), the
geodesic is located high on the surface, i.e., zooming out
is stronger. Fig. 16 shows the same trajectories in u;w space.

We can illustrate that we are dealing with non-Euclidean
space also in another way. Euclid’s fifth axiom states that,
given a line L and a point A not on this line, there exists a
unique line through A that does not intersect L. In our
situation, however, if we replace lines by geodesics, there
exist an infinite number of lines that do not intersect the
given line (Fig. 17). The latter is characteristic for hyperbolic
geometry, discovered independently by Bolyai and Loba-
chevsky in the early 19th century. One model for hyperbolic
geometry is Poincaré’s Disc model, well-known from the art
of M.C. Escher and applied in Information Visualization for
fish-eye views [10]. Another model, also from Poincaré, is
the Half-Plane model, which is the same as the model used
here (for � ¼ 1).
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Fig. 17. Hyperbolic zoom-pan space: Multiple lines through A.


