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VLSI Digital Signal Processing
Systems

• Technology trends:
– 200-300M chips by 2010 (0.07 micron CMOS)

• Challenges:
– Low-power DSP algorithms and architectures
– Low-power dedicated / programmable systems
– Multimedia & wireless system-driven architectures
– Convergence of Voice, Video and Data
– LAN, MAN, WAN, PAN
– Telephone Lines, Cables, Fiber, Wireless
– Standards and Interoperability
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Power Consumption in DSP
• Low performance portable applications:

– Cellular phones, personal digital assistants
– Reasonable battery lifetime, low weight

• High performance portable systems:
– Laptops, notebook computers

• Non-portable systems:
– Workstations,  communication systems
– DEC alpha: 1 GHz, 120 Watts
– Packaging costs, system reliability
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Power Dissipation
Two measures are important

• Peak power (Sets dimensions)

• Average power (Battery and cooling)
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CMOS Power Consumption
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Dynamic Power Consumption

Energy charged in a capacitor
EC = CV2/2 = CLVDD

2/2

Energy Ec is also discharged,
i.e.

Etot= CL VDD
2

Power consumption
P = CL VDD
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Off-Chip Connections have High Capacitive
Load

Reduced off Chip Data Transfers by
System Integration

Ideally a Single Chip Solution

Reduced Power Consumption
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Switching Activity (α):
Example
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Increased Switching Activity due to
Glitching

Extra transition
due to race

Dissipates energy
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Clock Gating and Power Down
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Only active modules should be clocked!

Control
circuitry is
needed for
clock gating
and power
down
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Carry Ripple

Transitions due to carry propagation
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Balancing
Operations Example:

Addition
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Delay as function of Supply
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Delay as function of Threshold
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Dual    VT    Technology

Low VT in critical path

Reduced VDD   αααα    Increased delay
Low VT  αααα  Faster  but Increased Leakage
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High VT stand-by
VDD

CL

standby

standby

High VT αααα low leakage

High VT αααα low leakage

Low leakage in
stand by when
high VT tansistors
turned off

Low VT

Fast
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Low Power Gate Resizing
• Systematic capture and elimination of slack using fictitious entities called Unit

Delay Fictitious Buffers.
• Replace unnecessary fast gates by slower lower power gates from an

underlying gate library.
• Use a simple relation between a gate’s speed and power and the UDF’s  in its

fanout nets. Model the problem as an efficiently solvable ILP similar to
retiming.

• In Proceedings of ARVLSI’99  Georgia Tech.
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Dual Supply Voltages for Low
Power

• Components on the Critical Path exhibit no slack
but components off the critical path exhibit
excessive slack.

• A high supply voltage VDDH for critical path
components and a low supply voltage VDDL for
non critical path components.

• Throughput is maintained and power consumption
is lowered.

V. Sundararajan and K.K. Parhi,  "Synthesis of Low Power CMOS VLSI Circuits using Dual Supply
Voltages", Prof. of ACM\/IEEE Design Automation Conference, pp. 72-75, New Orleans, June 1999
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Dual Supply Voltages for Low
Power

• Systematic capture and elimination of slack using fictitious entities called Unit
Delay Fictitious Buffers.

• Switch unnecessarily fast gates to to lower supply voltage VDDL thereby
saving power,  critical path gates have a high supply voltage of VDDH.

• Use a simple relation between a gate’s speed/power and supply voltage with
the UDF’s  in its fanout nets. Model the problem as an approximately solvable
ILP.
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Dual Threshold CMOS VLSI for
Low Power

• Systematic capture and elimination of slack using fictitious entities called Unit
Delay Fictitious Buffers.

• Gates on the critical path have a low threshold voltage VTL and unnecessarily
fast gates are switched to a high threshold voltage VTH.

• Use a simple relation between a gate’s speed /power and threshold voltage
with the UDF’s in its fanout nets. Model the problem as an efficiently
approximable 0-1 ILP.
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Experimental Results
• Table :ISCAS’85 Benchmark Ckts

Resizing (20 Sizes) Dual VDD Dual

Ckt #Gates Power
Savings

CPU(s) Power
Savings

CPU(s) Power
Savings

C1908           880           15.27%    87.5           49.5%         739.05        84.92%
c2670           1211           28.91%  164.38       57.6%        1229.37        90.25%
c3540           1705           37.11%  312.51       57.7%        1743.75        83.36%
c5315           2351           41.91%  660.56       62.4%         4243.63       91.56%
c6288           2416           5.57%      69.58       62.7%         7736.05       61.75%
c7552           3624           54.05%  1256.76     59.6%         9475.1         90.90%

Vt (5v, 2.4v)

V. Sundararajan and K.K. Parhi, "Low Power Synthesis of Dual Threshold Voltage CMOS
VLSI Circuits” Proc. of 1999 IEEE Int. Symp. on Low-Power Electronics and Design, 
pp. 139-144, San Diego, Aug. 1999 
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HEAT: Hierarchical Energy
Analysis Tool

• Salient features:
– Based on stochastic techniques
– Transistor-level analysis
– Effectively models glitching activity
– Reasonably fast due to its hierarchical nature
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Theoretical Background

• Signal probability:
– S=T    / T     ,where

• Transition probability:

• Conditional probability:
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State Transition Diagram
Modeling
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The HEAT algorithm

• Partitioning of systems unit into smaller sub-units
• State transition diagram modeling
• Edge energy computation (HSPICE)
• Computation of steady-state probabilities

(MATLAB)
• Edge activity computation
• Computation of average energy

Energy = Wj
j

⋅ EAj
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Performance Comparison
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J. Satyanarayana and K.K. Parhi, "Power Estimation of Digital Datapaths using HEAT Tool",
IEEE Design and Test Magazine, 17(2), pp. 101-110, April-June 2000
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Finite field arithmetic -- Addition
and Multiplication

A = am−1α m−1+...+a1α +a0

B = bm−1α
m−1 +...+b1α +b0

A +B = am−1 +bm−1( )α m−1 +...+ a1 +b1( )α + a0 + b0( )
A ⋅ B = am−1α

m−1 +...+a1α +a0( )bm−1α
m−1+...+b1α + b0( )mod p(x)( )

Polynomial addition over GF(2)
       one’s complement operation --> XOR gates
Polynomial multiplication and modulo operation
       (modulo primitive polynomial p(x) )
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Programmable finite field
multiplier

Array-type Parallel Digit-serial

MAC2
MAC2
DEGRED2
DEGRED2

MAC2
+

DEGRED2

Four
Instr.
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Finite field arithmetic--
programmable finite field multipliers

Programmability:-primitive polynomial p(x)
                            -field order m

How to achieve programmability:-control circuitry
                                                      -zero, pre & post padding

Polynomial multiplication
Polynomial modulo operation

Array-type multiplication
Fully parallel multiplication

Digit-serial/parallel multiplication

L. Song and K. K. Parhi, “Low-energy digit-serial/parallel finite field multipliers”, 
Journal of VLSI Signal Processing, 19(2), pp. 149-166, June 1998 
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Data-path architectures for low
energy RS codecs

• Advantages of having two separate sub-arrays
– Example: Vector-vector multiplication over GF(2  )

– Assume energy(parallel multiplier)=Eng

m
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Data-path architectures for low-
power RS encoder

• Data-paths
– One parallel finite field multiplier
– Digit-serial multiplication: MACx and DEGREDy
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Data-path architectures for low
energy RS codecs

• Data-path:
– one parallel finite field multiplier
– Digit-serial multiplication: MACx and DEGREDy

Energy

MAC8 + DEGRED2
MAC8 + DEGRED1
MAC4 + DEGRED2
MAC4 + DEGRED1

Energy-delay MAC8 + DEGRED4
MAC8 + DEGRED2

L. Song, K.K. Parhi, I. Kuroda, T. Nishitani, "Hardware/Software Codesign of Finite Field  Datapath for Low-Energy
Reed-Solomon Codecs", IEEE Trans. on VLSI Systems,  8(2), pp. 160-172, Apr. 2000
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Low power design challenges
• System Integration
• Application Specific architectures for

Wireless/ADSL/Security
• Programmable DSPs to handle new

application requirements
• Low-Power Architectures driven by

Interconnect, Crosstalk in DSM technology
• How Far are we away from PDAs/Cell

Phones for wireless video, internet access
and e-commerce?


