Elegant and Efficient Solution for Problem 4: Different Neighbour (QUANTA 2007)

Tom Verhoeff
Eindhoven University of Technology, The Netherlands Email: T.Verhoeff@TUE.NL Web: wWw.win.tue.nl

17 November 2007
Lucknow, India

Given initial state:

$$
a<b \wedge f(a) \neq f(b) \quad \text { and }
$$

Desired final state:

$$
a \leq r<b \wedge f(r) \neq f(r+1)
$$

Possible pre-final state (introducing fresh variable):

$$
a \leq r<s \leq b \wedge f(r) \neq f(s) \wedge s=r+1
$$

Loop invariant:

$$
a \leq r<s \leq b \wedge f(r) \neq f(s)
$$

Loop termination condition:

$$
s=r+1
$$

Loop guard:

$$
s \neq r+1
$$

Variant function for loop termination (decreases every iteration until 0):

$$
s-(r+1)
$$

Initialisation of loop invariant:

$$
r, s:=a, b
$$

Candidate statements for loop progress:

$$
\begin{aligned}
& r:=m \\
& s:=m
\end{aligned}
$$

Condition on m to maintain invariant $a \leq r<s \leq b$ under progress:

$$
r<m<s
$$

To decrease $s-(r+1)$ most under all circumstances take the middle:

$$
m:=(r+s) \operatorname{div} 2
$$

Conditions to maintain inariant $f(r) \neq f(s)$ under progress:

$$
\begin{aligned}
& (r:=m)(f(r) \neq f(s)) \\
& (s:=m)(f(r) \neq f(s))
\end{aligned}
$$

Rewritten conditions:

$$
\begin{aligned}
& f(m) \neq f(s) \rightarrow r:=m \\
& f(r) \neq f(m) \rightarrow s:=m
\end{aligned}
$$

These conditions cover all possibilities, because if both would fail then

$$
f(m)=f(s) \wedge f(r)=f(m) \Rightarrow f(r)=f(s)
$$

div

 integer division$$
\rightarrow
$$

conditional
\Rightarrow
implies
contradicting the invariant $f(r) \neq f(s)$
The completed abstract program:

```
\(r, s:=a, b\)
; do \(s \neq r+1 \rightarrow\)
    \(m:=(r+s) \operatorname{div} 2\)
    ; if \(f(m) \neq f(s) \rightarrow r:=m\)
        [] \(f(r) \neq f(m) \rightarrow s:=m\)
        fi
od
```

In the C programming language:

```
r = a ; s = b ;
while ( s != r + 1 ) {
    m = ( r + s ) / 2 ;
    if (f(m) != f(s) ) r = m ;
    else /* f(r) != f(m) */ s = m ;
} /* end while */
```

Efficiency of this solution: constant memory, logarithmic time
32 -bit integers go well over 10^{9}, and 64 -bit exceeds $10^{1} 8$. The difference between these two is a factor 10^{9}. If it takes 1 s for 10^{9} then a linear program will take 10^{9} more time for 10^{18}, or some 30 years. The logarithmic program merely doubles its execution time.
By the way, the linear program is best written as

```
r = a ;
while ( f(r) == f(r+1) ) {
    r = r + 1;
} /* end while */
```

Here is a construction simillar in style to the one given above:
Given initial state:

$$
a<b \wedge f(a) \neq f(b)
$$

Desired final state:

$$
a \leq r<b \wedge f(r) \neq f(r+1)
$$

Loop invariant:

$$
a \leq r<b \wedge f(r) \neq f(b)
$$

Loop termination condition:

$$
f(r)=f(r+1)
$$

Loop guard (note that this is well-defined when the invariant holds):

$$
f(r) \neq f(r+1)
$$

Variant function for loop termination (decreases every iteration until 0):

$$
b-(r+1)
$$

Initialisation of loop invariant:

$$
r:=a
$$

Candidate statement for loop progress:

$$
r:=r+1
$$

Condition to check:
$f(r)=f(r+1) \wedge a \leq r<b \wedge f(r) \neq f(b) \Rightarrow a \leq r+1<b \wedge f(r+1) \neq f(b)$

