Elegant and Efficient Solution for Problem 4:
Different Neighbour (QUANTA 2007)

Tom Verhoeft
Eindhoven University of Technology, The Netherlands
Email: T.Verhoeff@TUE.NL Web: www.win.tue.nl

17 November 2007
Lucknow, India

Given initial state: A
a<b A fla)# f(b) and
Desired final state: +
a<r<bA f(r)# f(r+1) differs

Possible pre-final state (introducing fresh variable):

a<r<s<bA f(r)#f(s) N s=r+1

Loop invariant:

a<r<s<bA f(r)# f(s)

Loop termination condition:
s=r+1

Loop guard:
s#Er+1

Variant function for loop termination (decreases every iteration until 0):
s—(r+1)

Initialisation of loop invariant: =
replace by

Candidate statements for loop progress:
ri=m
s:=m
Condition on m to maintain invariant a < r < s < b under progress:

r<m<s

To decrease s — (r + 1) most under all circumstances take the middle:
m = (r+s) div 2

Conditions to maintain inariant f(r) # f(s) under progress:
(r:=m)(f(r) # f(s))
(s :=m)(f(r) # f(s))
Rewritten conditions:
f(m) # f(s) = r:=m
f(r) # f(m) — s:=m

These conditions cover all possibilities, because if both would fail then

fm)=f(s) N f(r)=f(m) = f(r) = f(s)
contradicting the invariant f(r) # f(s)
The completed abstract program:

r,s:=a,b
;dos#r+1—
m = (r+s) div 2
Pif f(m) # f(s) = r=m
E f(r) # f(m) — s:=m

od
In the C programming language:

r=a; s =>b;

while (s !'=r + 1) {
m=(r+s)/2;

if (f(m) '= f(s)) r
else /* f(r) '= f(m) */ s
} /* end while */

nn
B B

div
integer
division

—

conditional

=
implies

Efficiency of this solution: constant memory, logarithmic time

32-bit integers go well over 10°, and 64-bit exceeds 10'8. The difference
between these two is a factor 10°. If it takes 1 s for 10 then a linear program
will take 10° more time for 10'%, or some 30 years. The logarithmic program
merely doubles its execution time.

By the way, the linear program is best written as

r=a ;

while (f(r) == f(r+1)) {
r=1r +1;

} /* end while */

Here is a construction simillar in style to the one given above:

Given initial state:

a<b A fla)# F(b)

Desired final state:
a<r<bn f(r)# fir+1)

Loop invariant:

a<r<bA f(r)# f(b)

Loop termination condition:
fr)=f(r+1)
Loop guard (note that this is well-defined when the invariant holds):
fr)#flr+1)
Variant function for loop termination (decreases every iteration until 0):
b—(r+1)
Initialisation of loop invariant:
ri=a
Candidate statement for loop progress:
r=r-+1
Condition to check:
fry=fr+) ANa<r<bA f(r)# f(b) = a<r+1<bA f(r+1) # f(b)

