
Elegant and Efficient Solution for Problem 4:
Different Neighbour (QUANTA 2007)

Tom Verhoeff
Eindhoven University of Technology, The Netherlands
Email: T.Verhoeff@TUE.NL Web: www.win.tue.nl

17 November 2007
Lucknow, India

Given initial state: ∧
anda < b ∧ f(a) 6= f(b)

Desired final state: 6=
differsa ≤ r < b ∧ f(r) 6= f(r + 1)

Possible pre-final state (introducing fresh variable):

a ≤ r < s ≤ b ∧ f(r) 6= f(s) ∧ s = r + 1

Loop invariant:
a ≤ r < s ≤ b ∧ f(r) 6= f(s)

Loop termination condition:
s = r + 1

Loop guard:
s 6= r + 1

Variant function for loop termination (decreases every iteration until 0):

s− (r + 1)

Initialisation of loop invariant: :=
replace by

r, s := a, b

1

Candidate statements for loop progress:

r := m

s := m

Condition on m to maintain invariant a ≤ r < s ≤ b under progress:

r < m < s

To decrease s− (r + 1) most under all circumstances take the middle: div
integer
division

m := (r + s) div 2

Conditions to maintain inariant f(r) 6= f(s) under progress:

(r := m)(f(r) 6= f(s))

(s := m)(f(r) 6= f(s))

Rewritten conditions: →
conditionalf(m) 6= f(s)→ r := m

f(r) 6= f(m)→ s := m

These conditions cover all possibilities, because if both would fail then ⇒
implies

f(m) = f(s) ∧ f(r) = f(m) ⇒ f(r) = f(s)

contradicting the invariant f(r) 6= f(s)

The completed abstract program:

r, s := a, b
; do s 6= r + 1 →

m := (r + s) div 2
; if f(m) 6= f(s)→ r := m
[] f(r) 6= f(m)→ s := m
fi

od

In the C programming language:

r = a ; s = b ;

while (s != r + 1) {

m = (r + s) / 2 ;

if (f(m) != f(s)) r = m ;

else /* f(r) != f(m) */ s = m ;

} /* end while */

2

Efficiency of this solution: constant memory, logarithmic time

32-bit integers go well over 109, and 64-bit exceeds 1018. The difference
between these two is a factor 109. If it takes 1 s for 109 then a linear program
will take 109 more time for 1018, or some 30 years. The logarithmic program
merely doubles its execution time.

By the way, the linear program is best written as

r = a ;

while (f(r) == f(r+1)) {

r = r + 1 ;

} /* end while */

Here is a construction simillar in style to the one given above:

Given initial state:
a < b ∧ f(a) 6= f(b)

Desired final state:
a ≤ r < b ∧ f(r) 6= f(r + 1)

Loop invariant:
a ≤ r < b ∧ f(r) 6= f(b)

Loop termination condition:

f(r) = f(r + 1)

Loop guard (note that this is well-defined when the invariant holds):

f(r) 6= f(r + 1)

Variant function for loop termination (decreases every iteration until 0):

b− (r + 1)

Initialisation of loop invariant:

r := a

Candidate statement for loop progress:

r := r + 1

Condition to check:

f(r) = f(r+1) ∧ a ≤ r < b ∧ f(r) 6= f(b) ⇒ a ≤ r+1 < b ∧ f(r+1) 6= f(b)

3

