
TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica TU/e

Exam 2II45 (Software Architecture) Block B on Wednesday 21 January 2009, 14.00h–17.00h

Work clearly. Read the entire exam before you start. Motivate each answer concisely
and to the point. Maximal scores per question are given between parentheses. The
maximum total score is 20 points on 11 questions.

We provide a set of hints for answering the questions. These are not the only correct answers,
and in most cases they are not fully written out.

1. (2) How does architectural design relate to other software development activities?

Hint Architectural design (AD) follows requirements gathering and analysis. AD needs
(an initial set of) requirements as an input, and serves to validate and elaborate require-
ments. AD precedes detailed design and coding (a.k.a. construction, implemenation), and
has an implemenation ‘blue print’ as output, which serves both as a technical road map
for construction, and as a planning and progress monitoring reference. An AD descrip-
tion provides an early opportunity to review solution ideas. Code reviews and unit testing
are based on AD module specifications. Integration testing also uses the AD as frame of
reference. AD descriptions provide documentation, thereby simplifying maintenance. AD
descriptions can be (partly) reused in other projects.

2. (2) When and why is it important to describe multiple architectural views?

Hint When (this is ambiguous, since it can be interpreted as ‘at what times’ and ‘under
what circumstances’): Typically, in most cases; in particular with multiple groups of stake-
holders (each group has its own viewpoint(s), served by corresponding views), and with
larger software products where a single viewpoint cannot capture all relevant architectural
issues in a comprehensive and accessible way.

Why: Separation of concerns to manage complexity. Different stakeholder groups have
different concerns, and different abilities to understand issues (do not bother them with
irrelevant details). Different concerns often require different specialists to handle them.

3. (1) Describe a generic viewpoint that is not one of Kruchten’s 4+1 viewpoints.

Hint E.g.: security viewpoint, safety viewpoint, performance viewpoint, usability view-
point, business viewpoint, . . . (You should also explain what a view from such a viewpoint
will offer, and why it is not subsumed in one of Kruchten’s 4+1 viewpoints.)

4. (1) What usabilty aspects are an architectural concern?

Hint Usability is not only a matter of an external user interface for human users. There
are also various cross-cutting issues that concern usability, such as system-wide consistent
undo and cancel operations, and internationalization; indicate why this is so.

Designing an extensible user interface through plug-ins is also an architectural concern.

N.B. Utility (available functionality) and performance are orthogonal to usability.



5. (2) Explain how Module Architecture Control can be performed.

Hint See Lecture 7 Module Architecture Control using Relation Algebra. Maintain “confor-
mance” of the “derived” module architecture (as extracted from the implementation) with
the “intended” module architecture (based on documentation and information from soft-
ware architects). By formalizing both the intended as well as the extracted module archi-
tecture, they can be compared. Differences require action: improvements (of either ”in-
tended”, ”derived”, or both) or justifications (e.g. optimizations which ”should” not be
visible at the architectural level).

6. (2) Present a general and a specific scalability requirement in the form of a Quality Attribute
Scenario.

Hint Example of a general scalability quality attribute scenario:

Source system owner

Stimulus request to accommodate more concurrent users (usage parameter)

Artifact the system, incl. computing platforms

Environment normal operation, design time, run time

Response add extra memory to servers, add extra servers (architectural parameters)

Response measure cost of additional hardware, change in performance

A concrete scalability quality attribute scenario:

Source system owner

Stimulus request to accommodate five times more concurrent users

Artifact the main server cluster

Environment normal operation

Response increase the number of servers no more than sixfold, without recompiling the
software

Response measure performance as measured by average number of typical requests pro-
cessed per minute may not drop more than 10%

Also see slide 8 of ADS Architecture Lecture (Block A). Do not confuse this with a (plain)
performance QAS.

7. (2) Describe the notion of tactic to achieve quality, and give an example of a modifiability
tactic.

Hint See slides 26–32 of Lecture 8.

Tactic (slide 26): Design decision that influences control of a quality attribute response.

Modifiability tactics: See slide 29. N.B. Do not confuse the goal of a tactic (e.g., “prevent
ripple effects”) and actual tactic(s) to accomplish this goal.

8. (2) What is the ATAM? Which ATAM activities can and cannot be used for creating an ar-
chitecture?

Hint ATAM stands for Architecture Trade-off Analysis Method. It is a way of organiz-
ing and carrying out a qualitative evaluation of architural designs for software-intensive
systems. See ATAM slides of Lecture 9.

Some activities of the ATAM could (should?) be carried out during architectural design:
identify business drivers and architectural approaches, generate a quality attribute utility
tree, brainstorm and prioritize scenarios.

2



The actual evaluation steps are not suitable: explain the ATAM, present the architecture,
verify business case and quality attribute scenarios, analyze architectural approach against
requirements.

9. (2) What is a Component Model and how can it play a role in architectural design?

Hint See CBSE slide 45, Lecture 9: A component model specifies the standards and con-
ventions that are needed to enable the composition of independently developed compo-
nents.

The architecture describes the organization of a system in terms of components (in a broader
sense) and their relationships. One way to do so is to choose a component model, specify
or select components for this model, thereby reusing the entire composition infrastructure
and possibly also existing components. The relationships between components still need
to be described.

10. (2) Compare Object-oriented Development and Component-Based Development (CBD) from an
architectural perspective.

Hint See CBSE slides 38–40 of Lecture 9: in particular, OO focuses on modularity for
construction, where CBD takes modularity further, viz. independent design, production,
deployment, and use. As a consequence, CBD (as opposed to OO) involves “really” late
binding, explicit dependencies, and binary reuse.

From an architectural perspective this means that a component-based design offers better
modularity, hence better modifiability and more opportunity for reuse. By reusing well-
tested components, the quality can also be better guaranteed. But this comes at a price:
more generic interfaces and a more expensive implementation effort (because it needs to
take care of operation in a more general—i.e., less controllable—environment).

11. (2) “Dynamic aspects of the software cannot be analysed without running it.” Would you
agree with this statement? If yes, explain why. If no, provide a counterexample.

Hint See slides on Reverse Engineering of Lecture 10. N.B. The negation of the statement
is not: “All dynamic aspects can be analysed without running it”, and also not “Some dy-
namic aspects cannot be analysed by running it”.

The best case is to be made for “Yes, some dynamic aspects can be analysed without running
it”. Appropriate RE tools can extract behavioral models (e.g., sequence diagrams, activity
diagrams, state diagrams, Petri nets) from source code through static analysis, i.e., without
executing it.

In fact, one can even defend “Yes, some dynamic aspects can only be analysed rigorously
without running it”, because by running the software you can explore only a very limited
part of the (often very big) state space, whereas formal analysis techniques (such as model
checking) can verify properties for all reachable states.

3


