
TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica TU/e

Exam 2II45 Block 2 (Software Architecture, 1.5h) on Thursday 21 January 2010, 14.00h–17.00h

Work clearly. Read the entire exam before you start. Motivate each answer
concisely and to the point. Maximal scores per question are given between
parentheses. The maximum total score is 30 points on 10 questions.

Hint We provide a set of hints for answering the questions. These are not the only
correct answers, and in most cases they are not fully written out.

1. (3) Explain the notions of an Architecture and an Architectural Description according
to IEEE Standard 1471, and summarize their differences.

Hint Every existing (software) system has an architecture, in an abstract sense,
being ‘the fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the principles guid-
ing its design and evolution’. That architecture need not be explicitly described
or systematic in nature; it could be implicit in the implementation and it could be
chaotic, ad hoc, unmotivated, and even not consciously known to anybody.

An architectural description consists of artifacts that document an architecture. In
particular, these artifacts identify Concerns, select Viewpoints, provide Rationale,
and consist of Models organized by Views.

To summarize the differences: an architecture exists abstractly and implicitly in
an implemented system; an architectural description exists explicitly as concrete ar-
tifacts separate from any system, describing an architecture of a, possibly non-
existent, system. The actual architecture of a system can differ from what is de-
scribed in the architectural description.

2. (3) How can the verification of software products benefit from architectural de-
sign? Present at least three ways.

Hint An architectural description

(a) . . . can be reviewed before code is developed; designing an architecture also
provides early feedback on requirements; this reduces the cost of design er-
rors;

(b) . . . defines components, which can be unit tested independently before inte-
gration, again reducing cost;

(c) . . . facilitates controlled, stepwise integration (as opposed to ‘big-bang’ inte-
gration), thereby making it easier to localize integration errors, once again
reducing costs.



This takes into account the lessons from the economy of defects: the later defects are
addressed, the higher the cost (exponentially).

3. (3) Present some modifiability aspects that are and some that are not an architec-
tural concern, and explain why this is the case.

Hint Coupling and cohesion are modifiability aspects that are an architectural
concern. Use of standardized architectural styles and patterns is another. Coding style
in general is not (though prescribing a uniform style and the use of code templates
could be).

Low coupling and high cohesion improve modifiability, by improving understand-
ability and minimizing the ripple effect of changes. Using a good coding style to
implement a bad architecture will not improve modifiability of the architecture.
(Bad coding style could potentially lead to a bad product (with low modifiability
because of poor readability) in spite of a good architecture.)

4. (3) What architectural (sub)views play a role in Module Architecture Control, what
do these views describe, and what is their role?

Hint See MAC slides: The module view and code view, as subviews of the
development view, play a role. These views describe intended and derived re-
lationships between entities (modules, components). MAC seeks to monitor the
consistency of these views as software is developed and evolves under mainte-
nance, by comparing intended and derived module relationships.

5. (3) Present a general and a specific performance requirements in the form of a Qual-
ity Attribute Scenario.

Hint Example of a general performance quality attribute scenario:

Source internal or external, possibly multiple sources

Stimulus individual, periodic, sporadic, stochastic events

Artifact (sub)system

Environment normal/overlaod mode

Response handle stimulus, change service level

Response measure latency, deadling, thoughput, jitter, miss rate, data loss

A concrete performance quality attribute scenario:

Source the brake pedal in a car

Stimulus emergency stop signal (full depression)

Artifact the anti-lock brake controller

2



Environment normal operation

Response produce activation signals for brake actuators without locking the wheels

Response measure response latency is always less than 1 ms

A different concrete performance quality attribute scenario:

Source the web interface

Stimulus loan calculation requests at a rate causing a server load of more than 2

Artifact the main computation server

Environment normal operation

Response change into overload mode

Response measure mean response time remains less than 3 seconds, with a stan-
dard deviation less than 1 second, taken over 1000 requests

6. (3) Describe the notion of tactic to achieve a specified quality, and give two exam-
ples of availability tactics.

Hint See slides 29–35 of Week 11.

Tactic (slide 29): Design decision that influences control of a quality attribute re-
sponse. N.B. A tactic is an option worthwhile considering, not a guaranteed solu-
tion. So, a tactic is not ‘a standardized way to reach a specified quality’.

Availability tactics: See slides 30–31. N.B. Do not confuse the goal of a tactic (e.g.,
“mitigate system failure”) and actual tactic(s) aimed at accomplishing that goal.

7. (3) What is the ATAM and what does it deliver? Give an example of an architec-
tural trade-off point.

Hint See ATAM slides: ATAM stands for Architecture Trade-off Analysis Method.
It is a way of organizing and carrying out a qualitative evaluation of architural
designs for software-intensive systems. It delivers a utility tree, quality attribute
scenarios, sensitivity and trade-off points, and it identifies risks and non-risks.

A trade-off point is a parameter of the architecture that affects multiple quality
attributes in opposite directions. For instance, looser coupling (to improve mod-
ifiability) or better encryption (to improve security) can negatively affect perfor-
mance.

8. (3) What is a Component Model? How can it be used to make performance predic-
tions?

3



Hint See CBSE slides: A component model specifies the standards and conven-
tions that are needed to enable the composition of independently developed com-
ponents.

Component developers need to specify a behavior model and a resource model
for each component. The application developer selects and connects components,
and models appropriate application scenarios. These models are combined, to-
gether with information about the infrastructure from the component model, into
a complete model (of system and environment), which can be analyzed and/or
simulated to predict performance.

9. (3) Describe general steps to extract architectural information from a given source
code base, and indicate what information can be obtained in that way. Give at
least two reasons why such reverse engineering would be interesting.

Hint See slides of Week 14 (p. 9, 10): Select desired models, classify nature of
given code; extraction steps: Code → Data → Model → Information

Models for each of Kruchten’s 4+1 views can be extracted this way. Typically, logi-
cal view and process view, incl. execution scenarios, are addressed. A deployment
view may be harder to extract.

Interesting (a) because architectural documentation may be lacking, and is needed
for maintenance; (b) in order to check whether an implementation-under-construction
adheres to architectural decisions (cf. question 4); possibly also (c) to obtain quality
metrics (especially when the architectural models are informal).

10. (3) What are potential benefits of using an Architecture Description Language? What
are its drawbacks (current or inherent)?

Hint See MDE/MDA slides 9 and 10. Pro: formal (more precise), human-and-
machine readable, higher level of abstraction, permits analysis and automatic code
generation. Con: lack of agreement on semantics, inconvenient formats, limited
focus (mostly vertical).

4


