Architectural Design,
driven by Requirements

21145
Fall 2008

Topics in Block B
I . SRNE\\?}IVP/AD 2.

ARCHITECTURAL SVVPAT
DESIGN § [<----mmmmmmmmmmee

\

AN

¥,
3 ADD N \SVVP/DD

From Regq. to Arch.: Doing Design
From Arch. to Req.: Doing Evaluation

From Arch. to Code: Doing Implementation, code generation, testing
infrastructure, code configuration management

From Code to Arch.: Monitoring impl. work, Reverse Engineering, Integration

Process, Documentation, Tools, Standards

Reading Material

® L.Bass, P Clements, R. Kazman. Software
Architecture in Practice (2nd Ed.). Addison-
Wesley, 2007. Ch. 4 “Understanding Quality
Attributes”, Ch. 5 “Achieving Quality”

® |. Gorton. Essential Software Architecture.

Springer, 2006. Ch. 3 “Software Quality
Attributes”

How to Do Design!?

Top-down approach (not the only way)

Need: User Requirements and Software
Requirements (incl. conceptual models)

Requirements are (partly) given in advance

Architectural Design also validates, refines,
and elicits requirements

Requirements
Engineering

Elicitation (obtain raw requirements)
Analysis (formalization, modeling)
Specification (refine, organize, document)
Validation (review)

Management (change control, tracing)

Requirements and
Architecture

® Architecture and Implementation (incl.

deployment) together determine qualities
of final product

® How much arch. and impl. contribute varies
per quality

® Architecturally Significant Requirement
(sometimes abbreviated as ASR)

® Functional vs. non-functional requirements

6

Functional Correctness

® Provide required functional relationship
between inputs and outputs

® Abstracts from timing, etc.
® Orthogonal to other quality attributes
® T[ypically not an architectural concern

® Almost any architecture can be made to
function correctly (at a price).

Key Quality Attributes

Performance (timely response vs task size)
Availability (deliver service when expected)
Usability (can user accomplish tasks easily)

Scalability (accommodate more “usage”,
while maintaining quality)

Security (prevent unauthorized use)
Modifiability (allow for reasonable changes)

Verifiability (can conformance be checked)

8

ISO 9126-1 Quality Model

Attribute Sub-characteristic
Functionality Accuracy, suitability, interoperability, compliance and
security
Reliability Maturity, fault tolerance and recoverability
Usability Understandability, learnability and operability
Efficiency Time behaviour, resource and utilization

Maintainability

Analysability, changeability, stability and testability

Portability

Adaptability, installability, conformance and

replaceability

ISO 9126 Quality Metrics

® |nternal quality metrics measure the sytem-
design+code

® [External quality metrics measure the
system-in-operation

® [he standards define the metrics, their
purpose, measurement formulae,
Interpretation, etc.

10

Business Qualities

Time to market

Cost and benefit

Projected lifetime

Roll-out schedule (of multiple features)

Integration with legacy systems

Performance
depends on

Distribution of functionality, nature of
interfaces and protocols (architectural)

Amount of communication (architectural)
Allocation of shared resources (arch.)
Choice of algorithms (non-architectural)

Coding (non-architectural)

Usability depends on

® Choice and layout of Ul widgets (non-arch.)

® Consistent style (could be architectural, if
various components have their own Ul)

® Responsiveness, cancel, undo, help, error
handling, internationalization facilities (most
likely architectural)

Modifiability
depends on

® Distribution of functionality (coherence,
coupling: architectural)

® Coding techniques (non-architectural)

Specify Requirements

® Requirements must be verifiable, the earlier
the better

® Quality attributes are notoriously hard to
specify and verify (compared to functional
requirements)

® Quality attribute communities use their
own terminology; there is overlap

® Quality attributes are hard to determine
before design, so do it during design

® Quality attribute scenarios

|5

Kruchten’s 4+ | Views

End-user Programmers
Functionality Software management

Development
View

| (_Scenarios) |

Process View —® Physical View

Logical View —#

Integrators System engineers
Performance Topology

Scalability Communications

16

Quality Attribute Scenario
()

Ty
| Artifact
Stimulus Response

A

Source Environment Response
of Stimulus Measure

® Source of stimulus: generator of stimulus
® Stimulus: action to consider

® Environment: state/condition of context
® Artifact: thing being stimulated

® Response (by artifact on stimulus)

® Response measure (quantitative judgment)

17

Example: Performance
of web order system

® Source: the user

® Stimulus: web form submission

® Environment: normal working conditions

® Artifact: the system

® Response: load & display confirmation page

® Response measure: page is displayed in less
than 5 seconds 99% of the time

|18

General vs Concrete

® (General scenarios: system independent (can
be formulated in advance)

® Concrete scenarios: specific to a particular
system (can often be obtained by
specialization of general scenarios)

® Typically use collections of scenarios

Performance in General

® Source: one or more, possibly internal

® Stimulus: individual/periodic/sporadic/
stochastic events

® Artifact: (sub)system
® Environment: normal/overload mode

® Response: handle stimulus, change service
level

® Response measure: latency, deadline,
throughput, jitter, miss rate, data loss

20

Performance Notes

Throughput: transactions/messages/events/requests
processed per second; average vs peak; input
characteristics/mix

Response Time, Latency: distribution constraints if
not a fixed amount

Real-Time Deadlines: hard, soft, time scale

Capacity: number of records; temporary,
persistent; access characteristics

Accuracy: numerical

Overhead: error protection, crypto, logging

21

21

Availability Concerns

How system failure is detected.
How frequently system failure may occur.
What happens when a failure occurs.

How long a system is allowed to be out of
operation.

When failures may occur safely.
How failures can be prevented.

What kinds of notifications are required when a
failure occurs.

22

22

Availability in General

Source: internal/external to system

Stimulus: fault (no response, crash, early/late
response, wrong format/value)

Environment: normal/degraded operation

Artifact: processors, communication channels,
persistent storage, processes

Response: log, notify, corrective action, degrade

Response measure: time interval/percentage (must-
be available, allowed degraded), mean-time
between failure, mean-time to repair

23

23

Scalability

® Also see ADS Architectures slides

® Ch. 3 of Essential Software Architecture

® Homework Assignment /7 (one week; last):

Express a general and a concrete scalability
requirement in the form of Quality
Attribute Scenarios (see peach for details)

24

Security in General

® Engineering discipline in itself

® Doing this well requires a major effort

Confidentiality (protected against unauthorized
access)

Integrity (protected against unauthorized
change)

Nonrepudiation (transaction cannot be denied)
Assurance (signature)

Availability (no denial of service)

Auditing (preserve historic trail of activities)

25

25

Modifiability in General

® Source: end user, developer, administrator
® Stimulus: change request to add/delete/...
® Artifact: component, platform

® Environment: at run/build/design time

® Response: Localize entities to be modified,
realize/verify/deploy modifications

® Response measure: number of elements
changed, cost, effort, side-effects

26

Usability Concerns

Learning system features

Using a system effectively
Minimizing the impact of user errors
Adapting the system to user needs

Increasing confidence and satisfaction

27

Usability in General

Source: end user

Stimulus: minimize impact of errors
Artifact: the system

Environment: at runtime

Response: provide undo/cancel operation

Response measure: user satisfaction

28

28

Achieving Quality

Tactics
»| to Control >
Stimulus Response | Response

\ v

® Tactic: design decision that influences
control of a quality attribute response

® Architectural strategy: collection of tactics

29

Availability Tactics

® Also see slides on Fault Tolerance

® Goal: prevent/mitigate system failure and its
associated consequences

® All approaches to maintaining availability
involve

some type of redundancy

some type of health monitoring to detect a
failure

some type of recovery when a failure is
detected

30

30

Availability Tactics

® Detection: ping, heartbeat, exceptions

® Recovery:
- voting
- active redundancy (hot standby)
- passive redundancy (warm standby, dual/
triple redundancy)
- spare (cold standby) with checkpoints

31

Modifiability Tactics

Goal:When a change is requested, it can be
realized and verified within time and budget

Localize/limit modifications (coherence,
generality)

Prevent ripple effects (dependency,
coupling; information hiding, intermediary)

Defer binding time (aim: reduce time to
deploy, allow nondeveloper modifications;
e.g. plugins, config. files; cost: extra
infrastructure to support late binding)

32

Performance Tactics

® Also see slides for Part |
® Basic contributors to response time:

- Resource consumption: CPU, memory,
data stores, network

- Blocked time (contention for resources,
unavailable resources, dependence on
other computations)

33

33

Performance Tactics

Resource demand (event rate, load per
event)

Resource management: concurrency,
replication, caching, increase available
resources

Resource arbitration: scheduling policies
(cf. 2IN25 - RT Architectures)

34

Usability Tactics

® Runtime: provide feedback (progress
indicators), assistance; run as separate user-

interface thread

® Design time: separate user interface from
the rest (cf. modifiability: user interfaces
tend to change frequently)

35

Related Disciplines

® Performance Engineering } o

- Queuing Theory

® Reliability Engineering
® Security Engineering
® Usability Engineering (Ergonomics)

® Software Engineering (in a narrower sense)

36

More on
Design Methods

® Design multiple alternative architectures

® Evaluate and compare on the basis of
Quality Attribute Scenarios

® More about evaluation: next week

