
SW-ARCH 2007

1

Component-Based
Software Engineering

M.R.V. Chaudron
Leiden Institute for Advanced Computer Science

–

Adapted by Tom Verhoeff for 2II45 in 2008, 2009

1

SW-ARCH 2007

2

Contents

 introduction to Component-based SW development
 motivation
 main concepts

 CBSE and reuse
 component models, components
 CBSE and object technology

2

SW-ARCH 2007

3

1) requirements traceability
 why do we need this?

2) support of trade-off analyses
why do we chose this?

3) completeness & consistency
of the architecture
Do we have everything?

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B. (1995), “On the Definition of Software System Architecture,” in Proceedings
of the First International Workshop on Architectures for Software Systems - 17th ICSE, Seattle, 24-25 April 1995, pp. 85-95.

Functional
Requirements

Extra-Functional
Requirements

Domain
Requirements

User
Requirements

Group Functionality
in subsystems

 Realizing extra-
functional quality

properties

Synthesize

 Analyze

refine

Concerns for the Architect
The three major concerns for the architects are [Gacek95]

3

SW-ARCH 2007

4

• Get stakeholder involvement early and frequently
• Understand the drivers for the project (business, politics)
• Understand the requirements incl. quality properties

– SMART & prioritized
• Develop iteratively and incrementally
• Describe architecture using multiple views

– abstract, but precise, design decisions & rationale
• Design for change (modularity, low coupling, information hiding)

– keep your options open
• Analyze at an early stage (use maths! and scenarios)
• Simplify, simplify, simplify
• Regularly update planning and risk analysis
• Monitor that architecture is implemented as intended
• Get good people, make them happy, set them loose

Summary of key architecting practices

4

SW-ARCH 2007

5

Recommendations for Architecture Description
• Describe the system goals & the assumptions on the environment
• Describe the design principles, decisions, guidelines

• and their rationale
• Describe several views that can be combined in a consistent model
 at least the following views should be given:

• functional/structural (decomposition) view
• include a description of the interfaces between (sub)systems

• process/dynamical view
• deployment view

• Prevent mixing of views
• Address non-functional (*ilities) aspects
• Use a well-defined notation and include its key/legend

• this aids systematic use of notation/avoids inconsistent use
• improves common understanding
• prevents mixing of different levels of abstraction

• Add explanation in natural language

5

SW-ARCH 2007

6

Summary Architecture Evaluation

• Use Scenario-based evaluation for what-if questions

– Identify sensitivity- & trade-off points, and risks

• Use analytical methods to support architectural decision making

– Reliability  Reliability Block Diagrams

– Throughput  Queuing networks

• Use metrics to manage

– Modularity (coupling, cohesion)

– conformance of implementation to design

• Many analyses are of ‘back of the envelope’ size.

 little effort, lots of value

 even if your model is not perfect (which they never are)

If you haven’t analyzed it, don’t build it.

6

SW-ARCH 2007

7

Component Based Software Engineering

7

SW-ARCH 2007

8

References: Main Sources
Main text (background):

• Component Software: Beyond Object Oriented Programming

 Clemens Szyperski, Addison-Wesley, (2nd ed, 2002)

• papers from course web page:
‣ Volume II: Technical Concepts of CBSE, F. Bachman et. al.,

 CMU/SEI TR 2000-008, May 2000 [Must read]

‣ “Mass Produced Software Components.” Douglas Mc Illroy,

1968/9, NATO Conference on SE [Optional]

8

SW-ARCH 2007

9

Observations on the practice of SE

 Systems should be built to facilitate change
  easy removal and addition of functionality

It is not the strongest of the species that survive, nor
the most intelligent, but the ones most responsive to
change. -- Charles Darwin

About 80% of software engineering deals with
changing existing software

Time to market is an important competitive
advantage: incorporate successful innovations quickly

9

SW-ARCH 2007

10

• The size & complexity of software increases rapidly
• Single products become part of product families
• Software is upgraded after deployment
• Applications must be built from components that
 were never intended to work together.
• The time-to-market must decrease significantly
• The cost of products must be reduced

Problems of Software Engineering

Productivity & Flexibility

CBSE is part of the solution, but not in isolation
10

SW-ARCH 2007

11

Systems should be assembled
from existing components.

The CBD-ʻSolution’

Idea dates (at least) to the
1968 NATO Conference.
Douglas McIlroy: Mass Produced Software Components

component repository & market component-based
systems

compose

1968

11

SW-ARCH 2007

12

Why Components?

Following other engineering
disciplines (civil and electrical),
software engineering is looking to
develop

a catalogue of software
building blocks

connection standards

Component
Library

Confusing or helpful?

12

SW-ARCH 2007

13

What is CBSE?

Component-based Software Engineering is concerned with the rapid
assembly and maintenance of component-based systems, where
• components and platforms have certified properties
• these certified properties provide the basis for predicting
 properties of systems built from components.

based on definition of SEI in CMU/SEI-2000-TR-008

Predictability is a key property of mature engineering disciplines.
It enables feedback on design and adaptation;
i.e. development time is reduced because we can analyze prior to
building

13

SW-ARCH 2007

14

Motivations for CBSE

• Productivity
• Quality
• Time-to-market
• Maintenance

Strategic business
goals that increase
- Turnover
- Market share

reduce

- Cost of development
- Cost of ownership

profit

€

€

€€

€€

14

SW-ARCH 2007

15

Increase competitiveness (sw/€):

• Reduce cost of development

• Increase software/€

Limited human talent (sw/people):

• Increase software/person

⇒ reuse existing solutions, rather than invent them

CBSE & Software Productivity

15

SW-ARCH 2007

16

Improve Quality:
Idea: Assuming that a collection of high-quality
components is available, assembling these should
yield systems of high-quality.

CBSE & System Quality

1. The cost of establishing the high quality of
components is amortized over multiple use.

2. Multiple uses of component improves its quality,
increases likelihood of finding&removing defects.

16

SW-ARCH 2007

17

CBSE & Time-to-market
If the reuse of a component requires less time
than the development of a component, systems
can be built faster.

17

SW-ARCH 2007

18

CBSE & Maintenance
The use of CBD requires good modular design.

This modularity provides quality properties like
• comprehensibility/understandability
• maintainability
• flexibility
• …

18

SW-ARCH 2007

19

Technical Drivers for CBSE

CBSE may help improve system qualities

Flexibility

Adaptability

Maintainability
Reliability

Integration

Interoperability

System
Qualities

19

SW-ARCH 2007

20

What is software reuse?

 Software reuse is the process whereby an
organisation employs a set of systematic operating
procedures to specify, produce, classify, retrieve,
and adapt software artifacts for the purpose of using
them in its development activities.

 Mili et.al. 2002

20

SW-ARCH 2007

21

Reuse-based Software Engineering
• Reuse-based SE has many business drivers

in common with CBSE:
– increase productivity & quality

– reduce time-to-market,

CBSE enables Reuse, Reuse is not sufficient for CBSE.

However, reuse imposes less technical- and
design-constraints on the unit of reuse (asset).

21

SW-ARCH 2007

22

Reusable Assets

Virtually any product of the SE process can be reused:

• Requirements

• Architectures

• Designs
– design patterns, interfaces

• Source Code
– ranging from to libraries, patterns, to modules, to macros,

coding conventions, ...

• Test Scripts

22

SW-ARCH 2007

23

Distinguishable flexibility requirements

C1 C2 C3

C1 C’2 C3

C1 C2 C3

C1 C2 C3 C4

C1 C2 C3

C2 C3 C4

Substitutability Extensibility Decomposability

complete
specification

extensible
architecture

generic components,
flexible architecture

At what stage is flexibility needed?
Design-, compile-, run-time

23

SW-ARCH 2007

24

Modularity in different phases
• Modular in Design

– Modern computers
– Eclectic Furniture (not “modular” furniture)
– Recipes in a cookbook

• Modular in Production
– Engines and Chassis
– Hardware and software
– NOT chips, NOT a cookbook

• Modular in Use
– “Modular” furniture, bedding
– Suits and ties
– Recipes in a cookbook

By Baldwin & Clarke

24

SW-ARCH 2007

25

COMPONENT MODELS

Michel Chaudron

25

SW-ARCH 2007

26

Standardization to avoid market fragmentation

 - Horizontal standards:

 Internet, OS's, UI's, …

 - Vertical standards:

 Control, ERP, TV, ...

Interfaces are central to CBSE

26

SW-ARCH 2007

27

• Interfaces describe what a component
• … may offer: provides interface
• … needs: requires interface

• Interfaces should be “first-class citizens”
 Free combination of implementation and interfaces

• Components can have multiple interfaces,

 corresponding to different types of access points

Interfaces are central to CBSE

27

SW-ARCH 2007

28

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only

A software component is independently deployable
and subject to composition by third parties.

Clemens Szyperski, 1997

What is a Component?

28

SW-ARCH 2007

29

A reusable software component is a logically
cohesive, loosely coupled module that denotes a
single abstraction.

Grady Booch, Software Components with Ada, 1987

What is a Component?

A component is a piece of software small enough to
create and maintain, big enough to deploy and
support, and with standard interfaces for
interoperability.

 Jed Harris, President of CI Labs (Jan. 1995).
29

SW-ARCH 2007

30

What is a software component?

Suggestions from the audience?

Reflect on differences between civil and electrical
engineering on the one hand and software
engineering on the other hand

Cross-cutting concerns

How can you recognize a software component?

30

SW-ARCH 2007

31

What is a Component?
- a unit of

- independent production, acquisition,
 deployment, and maintenance
- replacement
- reuse
- composition

- a package of cohesive services
- encapsulates design decisions
- explicit dependencies
- cohesive / denotes a single abstraction
- generic (application independent)
- configurable

- loosely coupled
- standardized interfaces
- self-contained

properties
depend
on how they
are used

intrinsic
properties

context / system
properties

31

SW-ARCH 2007

32

A software component is a unit of independent
deployment

 “It works fine on my machine.”

 never partially deployed
 no dependencies on peer-components
  some ‘meaningful’ functionality by itself
 components tend to be ‘large grained’

 Components should be deployment-friendly

What is independent deployment?

32

SW-ARCH 2007

33

A reusable software component is a logically cohesive,
loosely coupled module that denotes a single
abstraction.

Grady Booch, Software Components with Ada, 1987

What is a Component?

Tries to provide some design guidance.
What is cohesive? loosely coupled? single abstraction?

33

SW-ARCH 2007

34

What is a Component?
“A binary unit of independent production, acquisition, and deployment that
interacts to form a functioning system.”

 - C. Szyperski, Component Software

“A component is an independently deliverable package of operations.”

 - Texas Instruments Literature

“A replaceable unit of development work which encapsulates design
decisions and which will be composed with other components as part of a
larger unit.” - Desmond D’ Souza, in Catalysis

34

SW-ARCH 2007

35

What is composition?

• What is composition?

• What things can hinder successful composition?

• How does composition depend on the ‘matter’ of a
component?

• May require specific infrastructure

35

SW-ARCH 2007

36

CBD in Practice

Lego + Fisher Technik + Meccanno + Ministek + ...

No ‘one size
fits all’

36

SW-ARCH 2007

37

A component can be used within the scope
of a component-model

.Net, Enterprise Java Beans, Corba Components + ...

37

SW-ARCH 2007

38

Object Technology and CBSE
“OT is Neither Necessary Nor Sufficient for CBSE”

OT was a useful and convenient starting point for CBSE

OT did not express full range of abstractions needed by CBSE

(insufficiency)

It is possible to realize CBSE without employing OT (non-necessity)

CBSE might induce substantial changes in approach to system design,

project management, and organizational style

38

SW-ARCH 2007

39

On the relation between OO and CBD

• Object Orientation emphasizes modularity of the
construction of a system

• CBD emphasizes modularity in design, production,
deployment and use of a system.

39

SW-ARCH 2007

40

Objects vs. Components

• “Object Oriented Programming = Polymorphism + (Some) Late
Binding + (Some) Encapsulation + Inheritance

• Component Oriented Programming = Polymorphism + (Really)
Late Binding + (Real, Enforced) Encapsulation + Interface
Inheritance + Binary Reuse”

Charlie Kindel “COM Guy” Microsoft Corp. 9/97

40

SW-ARCH 2007

41

Questions of CBD approaches
• How will one component find another component at run-time?
• Which instance should be used if multiple versions of a component are

present at run-time?
• What happens if one component needs to be shut down temporarily?

Can this be hidden from (made transparent to) other components?
• How does development and evolution of one component of a family of

systems impact other components?
• Are components bloated by code that is unrelated to its specific task in

a system?
• A component is almost a perfect fit for a new system. Can the existing

component be extended in unanticipated ways without touching the
source code?

• How can components that run on different platforms interoperate?

Adapted from: Component Development for the Java Platform, Stuart Dabbs Halloway, 2002

41

SW-ARCH 2007

42

executiondevelopment deployment

design &
modelling tool

programming tool

configuration management tool

compiler

build/release tool

execution
infrastructure

representation of
component

phase

infrastructure

packaging distribution

packaging
tool

42

SW-ARCH 2007

43

executiondevelopment deployment

representation of
component

phase packaging distribution

model / specification
e.g. UML, Petri-net
source code & data files
e.g. C++ Structured archive

e.g. zip-file
• Solid-medium that preserves file-structure
• network: requires conventions on where to install

unpack & place comp in memory

executable code
- low level machine code
- high level code for
interpretation

Component Development Lifecycle

In different processes, components are composed
in different phases of development

43

SW-ARCH 2007

44

Component Model

What conventions does a component model need to
specify to enable composition?

Standards for

-Implementation technology

-Standard interfaces

-Specification/documentation/meta-data

44

SW-ARCH 2007

45

Useful Distinction

component
specification

component
implementation

component
interface

specifies functionality
& extra-functional
properties of component

implementation
of specification

architect/design

programmer

run-time environment

*

*

component
instance

*

instantiation in a
concrete device

exposes
functionality
(operations)
& behavior
at run-time

has

has

has

45

SW-ARCH 2007

46

Useful Distinction

component
specification

component
implementation

component
interface

specifies functionality
& extra-functional
properties of component

implementation
of specification

architect/design

programmer

run-time environment

*

*

component
instance

*

instantiation in a
concrete device

exposes
functionality
(operations)
& behaviour
at run-time

has

has

has

Design

Production

Use / Run-time

46

SW-ARCH 2007

47

Component Model
Definition: A component model specifies the standards

and conventions that are needed to enable the
composition of independently developed
components.

Typically:
• The composition mechanism/infrastructure
• The conventions that components must adhere to in

order to enable successful composition

Definition: A component is a building block
that conforms to a component model.

47

SW-ARCH 2007

48

types of
building blocksComponent Model

Architecture

defines
• which specific components form a system
• which specific interfaces these components have
• specific patterns of execution

Architecture & Component Model

specific blocks
& their assembly

system

48

SW-ARCH 2007

49

Questions?

Self-Study material:
 - Tech. Report SEI: Technical Concepts of CBSE
 - Optional paper by McIlroy: Mass Produced Software Component

You should know
 - an answer to ‘What is a component?’
 - what a component model is
 - the relation between reuse, CBD, and OO
 - the relation to architecture

49

SW-ARCH 2007

50

Architecture vs. Generic Components

there is exactly one component
that fits each place in the system

every component fits
 at every place

Architectural component Framework component
‘plug-in’

Generic component

several components fit at a
 particular place in the system

50

SW-ARCH 2007

51

Architecture vs. Generic Components

there is exactly one type
of functionality that fits
each place in the system

functionality can be
combined arbitrarily

Architectural component Framework component
‘plug-in’

Generic component

specific types of function
fit at a particular place

 in the system

Design of components
is coordinated

Design of components
is independent

Design of components
is scoped

independence of component design

Architecture XYZ Unix’ Pipe & FiltersInternet-browsers

example
Extension by architecture only Internet-browsers

Extensibility of component

51

SW-ARCH 2007

52

Architecture vs. Generic Components
Architectural component Framework component

‘plug-in’
Generic component

relative contribution to component model

architecture
driven
features

basic inter-
operability

52

SW-ARCH 2007

53

A Component-based Reference Architecture for
Computer Games (E. Folmer, 2007)

53

SW-ARCH 2007

54

CBSE in Automotive

Vehicle mechanics

ECU

Sensor ActuatorSensor

ECU

Sensor ActuatorSensor

ECU

Sensor ActuatorSensor

gateway
(CAN) BUS

brake injection

Infotainment

ECU – Electronic Control Unit

54

SW-ARCH 2007

55

Software Component Technology

Definition A Software Component Technology is the

implementation of a component model by means of:

• standards and guidelines for the implementation and
execution of software components

• software tools that supports the implementation,
assembly and execution of components.

Examples: (D)COM, .Net, Corba-Component Model,
Enterprise-Java Beans, Koala, Robocop, Fractal, …

55

SW-ARCH 2007

56

Aspects of Component Models

A component model is a set of agreements that is needed to

enable the composition of components.

A component model typically addresses
• Life-cycle management:

• instantiation, (de)activation, removal

• Binding mechanisms
• Interaction style
• Data exchange format
• Process model

Related: Packaging Model

56

SW-ARCH 2007

57

Component Platform
A component platform is the run-time infrastructure
of the component model.

Windows
CLR

.Net
Components

Windows
JVM

Java
Components

Windows
CORBA

Corba
Components

UNIX

For example

57

SW-ARCH 2007

58

Component Platform
Component Platforms may provide support for

Extra-functional / resource aspects

- interoperabiliy (language/OS)

- scheduling

- quality of service management

- (dynamic) load balancing

- (re)negotatiation

- security

- fault tolerance (replication)

Inter-component services

- binding

- interaction

Component lifecycles

- install, create, replace,
 start, stop, remove

58

SW-ARCH 2007

59

Middleware in Distributed Systems

HW platform

OS Middleware

Appl ApplAppl

Middleware is software that connects two or more
software applications so that they can exchange data.

"the software layer that lies between the operating
system and the applications on each side" of a
distributed computing system.

HW platform

Middleware OS

Appl ApplAppl

59

SW-ARCH 2007

60

Concluding Remarks

• A component is a building block that conforms to a
component model

• Different component models aim to achieve different
system quality properties

• A component model may be biased to specific types
of architectures

60

