LaQuSo

Laboratory for Quality Software

Quality Assessments LAl =
on chil - .

Source Code 18 s o

at
LaQuSo PAERTUR N S Y 8 - TPz

f
|_ O S Technische Universiteit
O U O I U e Eindhoven
University of Technology
fﬂ
!

Laboratory for Quality Software

II - L 3
.-““ Where innovation starts

What is LaQuSo? What do we do?

LaQuSo

Laboratory tor Quality Software

What is LaQuSo? What do we do?

LOOUSO

alab (TU/e, HG 5)
+ CS staff (TU/e)
+ CS staff (RU Nijmegen)

for Quality Software

What is LaQuSo? What do we do?

LaQuSo

..................... assesses Software Quality

(we also do other things)

Software quality assessment

quality

assessment

'

Software quality assessment

lots of options for inputs, process, and outputs:

source code * running user/install docs (?)
comments system (?) - design docs (??)
* models (?7?)

tools + scripts: La®uSo « browsing
o ana/ysis : (‘expel’t reVieW’)

» visualization

Y < code metrics + code smells/sloppiness ¢ arch. issues
« | | - dep. graph * coding standards ugs (?)
' ' rocess modeli)
 dupl. graph conformance P * MmjiSc. issues

* dynamic properties

La®uSo

W Laboratory for Guality Saftware

*

Software quality assessment

with static, not dynamic analysis

source code * 1unning - user/install docs (?)
comments cystem (7?) - design docs (??)
* models (?7?)

tools + scripts: La®uSo « browsing
o ana/ysis : (‘expel’t reVieW’)

» visualization

Y < code metrics + code smells/sloppiness ¢ arch. issues
« | | - dep. graph * coding standards ugs (?)
' ' rocess modeli)
 dupl. graph conformance P * MmjiSc. issues

* dynamic properties

La®uSo

W Laboratory for Guality Saftware

*

Software quality assessment

with static, structural, not behavioral analysis

source code - user/install docs (?)

comments * design docs (?7?)
* models (?7?)

tools + scripts: La®uSo « browsing
o ana/ysis : (‘expel’t reVieW’)

» visualization

Y < code metrics + code smells/sloppiness -« arch. issties
« | | - dep. graph * coding standards * bugs (?)
' | °_process models
 dupl. graph coriformance P * MjiSc. issues

* dynamic properties

La®uSo

* Laborotery for Guality Software

*

Software quality assessment

with static, structural, not behavioral analysis

structure (“architecture”): behavior:
how is it put together? what does it do?
assessed with assessed with
- code quality metrics - dataflow analysis

- dependency graph analysis < assertion checking
- duplication graph analysis * model checking

Software quality assessment

on just source code (design documentation is rare)

source code - user/install docs (?)
comments * design Z.cs (?77)
« models (?7?)

tools + scripts: La®uSo « browsing
o ana/ysis : (‘expel’t reVieW’)

» visualization

.J

code metrics
dep. graph
dupl. graph

L_n

La®uSo

* Laborotery for Guality Software

*

Source code quality assessment

with static, structural analysis

source code

* comments
tools + scripts: La®uSo « browsing
- analysis x (‘expert review’)

» visualization

.J

code quality metrics
dependency graph analysis
duplication graph analysis

L_n

La®uSo

* Laborotery for Guality Software

*

Source code quality assessment

with static, structural analysis

Reliability
Comectness 5 * End-User:
ns’ : i
SUIIabII"ty Accuracy @ O behavior, performance,
. _. security, reliability
Eﬂmﬁw » Customers:
Oualinr —— fg . O low cost, timely delivery
c * ﬁ"l * Product-Management:
Understandability , " c nm O features, short time to
h'hd'ﬁab]ﬁt)f .Q: f}'-"\-b‘\\ m_z:lr:KeL, (I:IUWtGUSL, pariy
i WITh products
Maintainability Tfaﬂﬂa?"@ § » Development:
Tesiabil-lty O low cost, employability
PDﬂﬂ.b]llT?l' * Maintenance:
Rewsabilily 0 modifiability
Figure 15.13 Some characteristics of software product quality, ‘ Stakeholders
from: Object-Oriented Software Engineering from: last hour
A Use Case Driven Approach R. Bril

Ilvar Jacobson et al., Addison-Wesley, 1992

La®uSo TU e =i

* Laborotery for Guality Software

*

What is maintainability?

- What is maintenance?
* To fix an error / bug in the system
 To add a new feature to the system
 To adapt the system to a new environment

* Why check maintainability?
« Better maintainable systems take less time
and less money to adapt and fix

La®uSo

* Laborotery for Guality Software

*

What code is to maintain?

* Poorly understandable
* not documented
 cluttered or inconsistently used/developed code
» too big

* Poorly modifiable
e code is duplicated
« code is intertwined
« code is non-extendable
e code is non-portable

* Poorly testable / analysable
« code is too complex

Source code structure

VS.

accidental
complexity

La@uSo TU e B2000
* Laborotery for Guality Software
*

Source code quality assessment

with static, structural analysis

structure?

essential
VS.

accidental
complexity

La@uSo TU e B2000
* Laborotery for Guality Software
*

Source code structure

structure?

Source code structure

structure?
software entropy

Assume that & system initially has a certain software entropy.
Experience shows that it is reasonable to assume that the increase in
software entropy Is proportional to the entropy of the software when
the modification started. This means that it is easier to change an
ordered system than a disordered one, something that all experience
shows, This would mathematically be expressed a3

AE ~E
or, with differential caleulus

dE = iE
df

Software ontropy Systam 1

| System 2

Limit for
Justifiable
malntainebhility

Sta:ﬂng..--"'"
lxﬂm“"""'l-.'.

o ™
Lifetimea far
Syatam 1
S
Lifetime for
System 2

Figure 4.1 A system's entropy and how it increases at different speeds
depending on the stariing entropy.

from: Object-Oriented Software Engineering, A Use Case Driven Approach
lvar Jacobson et al., Addison-Wesley, 1992

La®uSo

* Laborotery for Guality Software

*

! Yerhaticb U islie
Lreseniy ai fechnalagy

Source code structure

- R ——
- e
! e LAl e il
! ']
hety | +
e
; s
i -

housework
o Byt B

structure? | - SL |
tidy your room, dear O —

from: (personal communication),
mother, yesterday

La@uSo TU/ e B0

* Laborotery for Guality Software

*

Source code structure

LaQuSo’s job:

 map out the structure
* map out + measure the mess (if any)

Source code maintainability

the role of source code quality metrics

metrics related to software entropy:

 number of lines per file / function

number of code lines per file / function

McCabe complexity per function

Halstead development effort

percentage of duplicated code per file / function
fan-in / fan-out based metrics per class / package

other metrics:
* percentage of comments per file

LaQuSo’s results (2004-2009)

In source code assessment

- Many successful assessments for companies
(from one-man companies to multinationals)

- Assessment tools built / integrated

+ Scientific studies on assessments

Summary

LaQuSo assesses software quality

- usually maintainability

usually based on source code only
usually focusing on architecture, not

the architectural structure is visualized
* Its tidiness is measured
untidiness Is manually inspected

LaQuSo’s results

A case study

“How maintainable is our system?”

Case study for a financial organization

Question: "How maintainable is our system?”
(Shall we continue maintenance for another 5 years?)

Facts:

« System of approximately 15 years old
 Web application
— client side : HTML, JavaScript, some Java
— server side: PL/SQL, some Java
« Other languages involved
- C, COBOL, Oracle Forms
— Links through common use of the database
* Very limited documentation

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

- Dependencies | X,
“ L%
° 5 E,.
| | ;
;Y = 1,
“\\% : a
Ba %\h ;
X ¢
| 3,
| "=
!l

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

— iltin=| [DIT| C . .
- Dependencies X - >
(method/function calls) t AV
- ° 3 e
Layers A :
L - B
.l : {
“\\% a
Callers g . \%
: O
kN K
| 2,
|
y

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

MAIN

- Dependencies <

Red: Calls from and to - — -
modules inside : ik g :
the system of g
interest

MAIN
H

Green: Calls from and to s \ E
modules outside AN
the system of | >,
interest > N et

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

MAIN

- Dependencies <

Red: Calls from and to — : i
modules inside ;o '
the system of
interest : ,

B
o oo R (e e 5

MAIN

Green: Calls from and to
modules outside
the system of
interest

Calls in highlighted area
break layering rules

La®uSo

* Laborotery for Guality Software

*

C 0 U Dr Uc Ci 0
* Red arrow = data layer -

- Data layer only receives — : i

- Almost layered J E
architecture

-y

MAIN
i
H

 Good design, however... R \

* The data layer is |
accessed from several .
other layers : SNy

La®uSo TU e 8200

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

* Dependencies

* Visualizing the calls
between modules

By expanding and
collapsing, we can identify
individual faulty
dependencies

. ‘ , : 00-.6‘ -
Huge green ‘bubbles S e O
reflect many internal calls '

La@uSo TU/ e B0

* Laborotery for Guality Software

*

« Code duplication

* Many occurrences of
code duplication found

La®uSo

* Laborotery for Guality Software

*

i Yerhaticb U islie
Lreseniy ai fechnalagy

- Code duplication 1|
- L rts of files are B O N N
argepaf so |e. N N . N\
present in other files \ \
N) NN\
By zooming in, the actual
code fragment can be seen L .

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

« Code duplication

Code File A Code File B

« Zooming in to the file level

By zooming in, the actual

code fragment can be seen Duplication between files

Internal duplication

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

- Code commenting

 extensive

* thorough (explains design and implementation decisions)

La®uSo

* Laborotery for Guality Software

*

“How maintainable is our system?”

Case study for a financial organization

Findings:

The system is well structured
(layered architecture)

Code duplication pollutes the system
(refactor on further development)

A list of strong and weak points with recommendations

We can estimate annual maintenance effort
(Halstead effort, function points)

La®uSo

* Laborotery for Guality Software

*

LaQuSo’s results

Tool demo

SQuAVisiT tool demo.swf

SQuAVisiT tool demo.swf
SQuAVisiT tool demo.swf
SQuAVisiT tool demo.swf

Summary

Maintenance costs time and money
to fix, add and adapt features in systems

How much depends on the quality of the system

Code quality assessment (“code mining”’) can be used:
— as an overall health check of the system
— as aid for solving specific problems
— for getting insight in the architecture and system internals

La®uSo

LaQuSo has tooling for multiple languages and visualizations

* Laborotery for Guality Software

*

What does LaQuSo do?

Code quality assessment (“code mining”)

— Assessing overall quality, performance, maintainability and
reliability of code bases

La®uSo

* Laborotery for Guality Software

*

LaQuSo’s results

More case studies

“Is architectural purity preserved?”

Case study for a embedded systems manufacturer

Question: ” With extensive changes to the system, is

architectural purity still preserved?”
(Developers assume that the architecture is layered)

Facts:
« Component system with compile-time binding via make files
 C with embedded Assembler
* 6 years old
« Medium size of 150 KLoC
* No access to documentation

La®uSo

* Laborotery for Guality Software

*

“Is architectural purity preserved?”

Case study for a embedded systems manufacturer

- Dependencies B -
- Visualization of callerand
called dependencies 7
&

La®uSo

* Laborotery for Guality Software

*

“Is architectural purity preserved?”

Case study for a embedded systems manufacturer

_Sample : MAIN

- Dependencies

* Visualization of caller and
called dependencies

* Visualization of the
architectural dependencies
shows unlayered
architecture

Calls in highlighted area
break layering rules

La®@uSo TU e =200
* Laberotery for Cluality Solware
*

“Is architectural purity preserved?”

Case study for a embedded systems manufacturer

Findings:

The system is poorly layered

Unexpected cross dependencies
exist between components

Extensive changes to the system will
put even more stress on the architecture

“Why is it so slow?”

Case study for a pension fund

Question: “The calculation for creating the annual
survey takes very long. Why is this?”

“What is the quality of the architecture?”
(migration at hand due to discontinuation of support)

Facts:
« Homogeneous system in COBOL
* 17 years old
« Large system of 1.7 MLoC
« Communication with an Oracle 9i database

La®uSo

* Laborotery for Guality Software

*

“Why is it so slow?”

Case study for a pension fund

* Unnecessary querying to the database discovered
« By visualizing queries, patterns emerge:

l : ‘ ,
T SRR 1 1i1|'|11|"f'|'!1[1||ll] Before
It pil Wil i

After

Increase in speed: 40%

La®uSo

* Laborotery for Guality Software

*

“Can we port it? Is the architecture tidy?”

Case study for a pension fund

- Dependencies

* A lot of open spaces

* 1216 modules not called
by other modules

 This may be dead code

651 modules indeed
dead (confirmed)

“Can we port it? Is the architecture tidy?”

Case study for a pension fund

* Dependencies

* Many violations in layering

“Can we port it? Is the architecture tidy?”

Case study for a pension fund

- Calculating quality metrics on the source code
Fan Out (# modules called)

Layer | Unit |Module| LOCs [ommeni Blanks | Source| IFs | LOOPs [McCabe| Fan_in [Fag/outl €N | MBR | RSA | RSI | cvR | id

CopolPr A0FC" "WOFC27 17480 310 14837 256 63 320 S 7G5 2 0.272000,60300 0716000
‘CobolPrc'®OFC 'xOFC27 16331 HEEH 483 14241 194 105 300 1 S20 a=7 2 0.53000/0,55900 0, 71700 1
'CobolPro®MORC' |'MOFCZT 8722 7 313 702 105 20 131 1 20 715 2 0.82900'0.51500 0.86100 3
‘CoholPrd®OFC' 'WOFC27 11391 Sl 298 o852 &8v 20 114 1 Bm 1 8 0.65500'0,49500 0,73000 2
"CobolPro¥URCT XURCOG 1688 E‘Q 104 1335 47 2 a0 1 b E6 2 0.21700/0,19400 0. 27200 2
'CobolPro®IFC' WIFCOSC1100 147 65 aes 33 5 39 1 b 25 2 0.15900/0.51700 0.59900 &
‘CobolPro¥IFC' MIFCA303000 f8S 199 2616 11 12 24 1 ¥ 176 8 0.27500/0.51400 0.66200 4
‘Rekenre 'XARF' | "WARFO31384 40 31 304 10] 11 1 D 7 4 0.09200/0,24300/0,44000 14
‘Dratalaye ¥UOE" XU0510671 106 a6 a09 2 a 9 1 D 4 2 0.02300/0.63000 064500 11
'CobolPro®hRC" MMRCESI1112 133 143 236] a 7 1 B 115 2 0.54300'0,40900 0.56400 5
"CobolPro®hEC XMFCEE!630 109 52 469 2 1 4 1 B 43 2 0.27300/016700 0,37200 7
‘Dratalaye ¥UOG" ¥U0510 180 36 34 110 2 a 3 1 D 2 2 0.13900/0.000000,13200 9
‘Rekenre WARF' "MARFO21130 10 28 0z 2 a 3 1 D 3 4 0.48900/0.00000/0,43900 13
‘Datalaye ¥UOG' ¥U0510 177 41 33 103 2 a 3 1 D 2 2 0.139000.00000/0,13900/10
‘Rekenre XARF' WARFO3I119 10 28 21 1]] 1 1 D 7 4 0.94800 0.00000/0.942300 15
‘Rekenre WARF' "MARFO2I117 10 28 70 0 a 1 1 D 3 4 0.5820000.00000/0,.589200 16
‘Rekenre/ ®&RF' "MARFO3I119 10 28 g1 0 a 1 1 b 7 4 0.94300/0.00000/0,9430012

McCabe complexity
(#If’'s + #Loops +1)

La®uSo TU e300

* Laborotery for Guality Software

*

“Can we port it? Is the architecture tidy?”

Case study for a pension fund

- Calculating quality metrics on the source code
/ Fan Out (# modules called)

Guideline: McCabe < 30

Some are over 100 going up to 320!

This rules out white-box testing

/Metricscan find maintenance landmines

McCabe complexity
La®@uSo

* Laborotery for Guality Software

*

“Can we port it? Is the architecture tidy?”

apy Em L a

Firir

U Ol L
adusidan LN} -
=
=y
S

LT TeeTn

Many dupl

T oma . =w

cry for Quality 3

Case study for a pension fund

14785 MOYE SPACES - 8334 PAR
14736 TO PP-DATUM-YAMAF OF GROEP-X0) 8335 TO PP-IND-GEVERIFIEERD OF GROEP-X
14757 HOFCSZ10PAR. 8330 KQFCSZ10PAR.
14788 MOYE PP-IND-GEYERIFIEERD OF GROEP 8337
14789 PAR 8338 MOYE PP-BESCHOLWINGSDATUM OF GRr
14790 TO PP-IND-GEVERIFIEERD: OF GROEP-X 8339 PAR
14791 HOFCSZ10PAR. 5340 TO PP-BESCHOUWINGSDATLUM OF GROE
14792 8341 KOQFCSZ10PAR.
14793 IF PP-INDIC-PROFORMA-REGLULIER OF GROE 8342 IF PP-INDIC-PROFORMA-REGLULIER OF GROEI
14794 ="K 8343 =k
14795 THEMN 8344 THEN
14796 ¥ sanroep vanuit klantbeeld PP-BEREKEMIMGST 8345 ¥ qanroep vanuit klantbeeld PP-BEREKEMIMGST
14797 # PP-GEBELIRTEMNISDATUM = leeg B398 * PP-GEBELRTENISDATUM = leag
14795 MOYE PP-BEREKEMINGSDATUM OF GROEP-X 8347 MOYE PP-BEREKEMINGSDATUM OF GROEP-X
14799 TO FP-BEREKEMIMNGSDATUM OF GROEP-=01 8345 TO PP-BEREKEMIMGSCATUM OF GROEP-=QI
14500 RQFCSZ10PAR 8349 XQFCSZ10PAR
14301 MOYE SPACE 8350 MOYE SPACE
14302 TO PP-GEEEURTENISDATUM OF GROEP-20I 8351 TO PP-GEEEURTEMISDATUM OF GROEP-2QI
14503 HOQFCSZ10PAR. 8352 KOQFCSZ10PAR.
14504 ELSE 8353 ELSE
14505 IF PP-DATUM-EINDE-OPBOUW-FPU OF GROE 8354 IF PP-DATUM-EIMNDE-OPBEOUW-OF OF GROEF
14806 <x SPACE 8355 <x SPACE
14307 THEM 8356 THEM
14505 MOYE PP-DATUM-EINDE-OFPEOUW-FPL DF 8357 MOYE PP-DATUM-EINDE-OPEOLUW-OF OF 1
14509 PAR. 8358 PAR.
14510 TO PP-GEBEURTENISDATUM OF GROEI 8359 TO PP-GEBELRTENISDATUM OF GROEI
14311 ROFCSZ210PAR 8360 ROFCS210PAR
14312 ELSE 8361 ELSE
14513 MOYE PP-DATUM-GEBEURTENIS DF GROEP 8362 MOYE Lv-DATUM-GEBEURTENIS OF WRE
14814 TO PP-GEBEURTEMISDATUM OF GROEP-X 8363 TO PP-GEBEURTENISDATUM OF GROEP-X
8364 XQFCSZ10PAR
- - 8365 END-TF
' SROEP-! 5366 MOYE Lv-DATUM-GEEEURTEMIS DOF ‘WRE
I catl o n S fo u n d JQOEP-XC 8367 TO PP-BEREKEMIMGSDATUM OF GROEP-2QI
L] 8365 KOFCSZ10PAR.
8369 END-IF
14521 MUYE FF-5E5CHOUWLIMGS0A | UM UF GROEP- 8370 MOYE PP-KOOPSOM-EP-FPLI OF GROEP-x
14822 TO PP-BESCHOUWIMGSDATLIM OF GROEP-=t 8371 TO PP-KOOPSOM-EP-FPU OF GROEP-XOF
14823 HOFCSZ10PAR. 8372 OF GROEP-XQFCSZ10-IMPUT OF RQFCS2Z10Pa
14824 MOVYE ZERD 8373 MOWYE PP-WERK-KOOPSOM-EP-FFU OF GROE
14825 TO PP-AANTAL-EERDERE-ULTTR. OF GROEP- 8374 TO PP-WERK-KOOPSOM-EP-FPU OF GROEP-
14826 RQFCSZ10PAR 8375 OF GROEP-XQFCSZ10-INPUT OF XQFCSZ10PA
14827 MOYE ZERD 8376 MOWE PP-APR-DATLUM-VAMNAF OF GROEP-}
14828 TO PP-WERK-KOOPSOM-EP-FPU OF GROEP 8377 TO PP-APR-DATIUM-YARAF OF GROEP-x0)
14529 OF GROEP-XQFCSZ10-IMPUT OF XQFCSZ10P) 8375 OF GROEP-XQFCSZ10-IMPUT OF RQFCSZ10Pa
14530 PP-EQOPSOM-EP-FPU OF GROEP-XQF(8379 ** gerste initializeren
145831 OF GROEP-XQFCSZ10-IMPUT OF XQFCSZ10P 8380 MOYE ZERO
14832 MOWYE PP-FICTIEF-REMDEMENT — OF GROEP- 8381 TO PP-AANTAL-EERDERE-UITTR. OF GROEP-
14833 TO PP-FICTIEF-RENDEMEMT OF GROEP-X(8382 KOQFCSZ10PAR.
14834 HOFCSZ10PAR. 8303 MOWYE PP-AANTAL-EERDERE-UITTR OF GROEF
14835 MOYE SFACE 8304 TO PP-AANTAL-EERDERE-UITTR. OF GROEP-
14836 TO PP-APR-DATUM-VANAF OF GROEP-XOQFC 8385 XQFCSZ10PAR
14837 GROEP-XQFCS210-INPUT OF RQFCS210PAR | 5386 IF PP-AANTAL-EERDERE-UITTR OF GROEP-XC
14835 MOWE PP-REGELMATIGE-INLEG-AEP OF GROE 8387 KQFCSZ10PAR = ZERD
14539 TO PP-REGELMATIGE-INLEG-AEP OF GROEP 8365
14540 AOFCSZ10PAR. 8389 IF { PP-E'W-EF OF GROEP-%0OFC2705-INPUT |
14541 MOVE 1 8390 - PP-WERK-KOOPSOM-EP-FPU OF GROEP-Xx
14842 TO OPC OF XOFCS210CTL 5391 OF GROEP-KQFCSZ10-INPUT OF XQFCS210P:
14343 PERFDRM M2-1044-CALL-BLOCE 8392 Je=0.1
14844 IF RET OF ¥QFCSZ10CTL <> ZERD 1 8393 AND
14545 THEN 8394 { PP-EW-EP OF GROEP-ZOFCZ70S-IMFUT O
14845 MOYE RET OF ¥QFC5210CTL TO RET OF CTI 8395 - PP-WERK-KQOPSOM-EP-FPU OF GROEP-)
1az4 MOVE FER NF YOECSZI0CT] TOFEE OECT = OE CROFD-YOECSZ 1 0-TMBLT OF YOFCSZ 100,

i Yerhaticb U islie

Lrivaniyal fechnzlagy

“Can we port it? Is the architecture tidy?”

Case study for a pension fund

Findings

Reduction of unnecessary queries resulted in a
40% increase in speed in calculating annual surveys

651 confirmed dead modules and some
modules are too complex based on metrics

No strict layering present in the architecture

With these findings, recommendations can be made for migration

La®uSo

* Laborotery for Guality Software

*

“What’s the design of our system?”

Case study for a printer manufacturer

Question: “What’s the design of our system?”
Facts:

 No documentation of system available

« C++ code

60,000 Lines of code
« We would like UML class and sequence diagrams

La®uSo

* Laborotery for Guality Software

*

“What’s the design of our system?”

Case study for a printer manufacturer

Automatic model extraction ___sh_o_wg —

Potentially unused classes!

Very complex!

La®uSo

* Laborotery for Guality Software

*

“What’s the design of our system?”

Case study for a printer manufacturer

Class Diagrams

Metrics Subsystems

A B
Number of classes 176 70
Number of methods 1106 383
Avg. methods per class 6.28 5.45
Classes with > 30 methods A 2
Max fan-in / Max fan-out 27 | 27 23/ 21

- Subsystem A is quite big
- Big parts of functionality are implemented in a few files
* Many files depend on these few

La®uSo

* Laborotery for Guality Software

*

“What’s the design of our system?”

Case study for a printer manufacturer

Sequence Diagrams

Metrics Subsystems
A B

Incoming and Maximum 112 271

outgoing messages |classes with > 5 6

per class 30 mess.

Max. depth of scenario 41 55

* A number of heavily used classes
* Scenarios’ depth: too high —» functionality
should be differently distributed

La®uSo

* Laborotery for Guality Software

*

“What’s the design of our system?”

Case study for a printer manufacturer

Findings

Automatic UML model extraction
can help in understanding the system

Metrics on the acquired models can
point out maintainability landmines

What else does LaQuSo do?

Automatic model extraction

Static analysis of source code

Other types of visualizations of systems

Estimate understandability, maintenance effort, etc.

Model extraction

Extracting UML state diagrams from embedded C/C++ code

State diagrams can be extracted from C/C++ code

Transitions between states are guarded

Based on alternative paths (if-then-else and switch)
in the code as often seen in embedded software

Extraction of models is fully automatic

La®uSo

* Laborotery for Guality Software

*

Model extraction

Extracting UML state diagrams from embedded C/C++ code

OO ~Jo Ul W

static void OBJ control (Obj *obj, ObjEvent event)

{bool y = true;

gwitch (obj->state) {

case STATE A:
switch (event)
case EVENT1:

if (y){obj->state =
else{ obj->state =

break;
case EVENT2:

obj->state

break; }
break;
case STATE B:
switch (event)
case EVENTI1:

5bj—>state

break;
case EVENT3:

5bj—>state
greak;}

break;
default; }}

{

STATE B; }
STATE C; }
STATE C;
STATE A;
STATE C;

* Laborotery for Guality Software

*

STATE_A

vl
EVEMT

(Lea L
EYERTY

{TRUE}
EVENTZ

STATE C

! Tethai pr
TU e=
! Lresensiy al Mechnalagy

Static analysis of source code

- Automatically check source code for

- Uninitialized variables
— Null pointer dereferencing
— Out of bounds referencing of arrays

— User defined properties, e.g.
— Lock — Unlock
— B may only occur after A

Visualizing object—oriented systems

Visualizing structure

- Base size:
Number of attributes

* Height:
Number of methods

“Our load balance system crashes”

Case study for a printing service organization

Problem: “Load balance system crashes spuriously”

Facts:

* Distribution of print jobs over document printers
« 7,500 LoC in C language

La®uSo

* Laborotery for Guality Software

*

“Our load balance system crashes”

Case study for a printing service organization

Client 1 Printer 1
: Load
Client 2 > S ;
| Balancer Printer 2
Client n Printer m

La®uSo

* Laborotery for Guality Software

*

“Our load balance system crashes”

Case study for a printing service organization

- The source code was manually translated into a mathematical
model describing the behavior of the system

* This model can be checked fully automatically for unwanted
behavioral properties

— Free from deadlocks
— Limits on locking
— Limits on the number of requests

La®uSo

* Laborotery for Guality Software

*

“Our load balance system crashes”

Case study for a printing service organization

- The mathematical model is based on process algebra.
* Resulting model is complex:

#Clients #Servers #Levels #States #Transi-
tions

1 1 7m38s 241 657k 1.38M

1 2 3h01m 267 18M 38.5M

2 3 9h55m 444 54M 141M

1 3 13h* 481 213M 465.5M

2 2 >113h* >215 >511M >1121M

3 GHz machine with 4 GB RAM
* On a cluster of 32 64-bit machines with 1 GB RAM

La@uSo TU e =000

ey al echnalagy

* Laborotery for Guality Software

*

“Our load balance system crashes”

Case study for a printing service organization

Findings:

In 7,500 Lines of Code, 6 errors were found

With error traces, these errors were repaired

No further deadlocks have occurred up to now

“What is the quality of our driver?”

Case study for a chip manufacturer

Problem: “What is the quality of our driver?”
(Focusing on dynamic properties)

Facts:
* Driver shows race conditions
 Ca. 5,000 LoC in C language
* Driver for Linux Kernel
 Documentation did not give insight in problem issues

La®uSo

* Laborotery for Guality Software

*

“What is the quality of our driver?”

Case study for a chip manufacturer

- The source code was manually translated into a mathematical
model describing the system’s behavior

- This model was checked fully automatically for behavioral
properties such as:

— Interrupt enabled accessing of shared memory
— Disabling / Enabling interrupts twice in a row
— Inconsistencies in use of wake-up functions

— Incorrectly detected timeouts

La®uSo

* Laborotery for Guality Software

*

“What is the quality of our driver?”

Case study for a chip manufacturer

Findings:

Mutual exclusion violations in
accessing shared memory

Improper use of wake-up calls

Violations were traced back to the source code

Suggestions for fixes in the source code

La®uSo

* Laborotery for Guality Software

*

