
Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

1

Reinder J. Bril
r.j.bril@tue.nl, www.win.tue.nl/~rbril

Module Architecture Control
using Relation Algebra

18-11-2009



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

2

Questions

• Development artefacts of a system?
• How to maintain consistency:

– between these artefacts (inter)?
– between elements of an artefact (intra)?

• This lecture:
– consistency between architecture and 

implementation
• SAN:

– consistency of designs [Lange et al 05]
– generalization [Muskens et al 05].



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

3

Goals

• Student understands:
– the need for module architecture control;
– how module architecture control can be 

performed;
– the basics of relation algebra.

• Student can apply relation algebra on a 
simple example.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

4

Overview

• Context and motivation
– Software architecture – recap
– Application domain

• Module architecture notions
• Relation algebra
• Verification
• Conclusion
• References



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

5

Overview

• Context and motivation
– Software architecture – recap
– Application domain

• Module architecture notions
• Relation algebra
• Verification
• Conclusion
• References



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

6

• End-User:
behavior, performance, 
security, reliability

• Customers:
low cost, timely delivery

• Product-Management:
features, short time to 
market, low cost, parity 
with products

• Development:
low cost, employability

• Maintenance:
modifiability

Software architecture – recap

Stakeholders



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

7

• End-User:
behavior, performance, 
security, reliability

• Customers:
low cost, timely delivery

• Product-Management:
features, short time to 
market, low cost, parity 
with products

• Development:
low cost, employability

• Maintenance:
modifiability

Software architecture – recap

Stakeholders

Product view



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

8

• End-User:
behavior, performance, 
security, reliability

• Customers:
low cost, timely delivery

• Product-Management:
features, short time to 
market, low cost, parity 
with products

• Development:
low cost, employability

• Maintenance:
modifiability

Software architecture – recap

Stakeholders

D
evelopm

ent view



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

9

• Software architecture:

earliest artifact

means for mutual communication

enables analysis of concerns

manifests concerns as system qualities

• Software architecture is vital !

[Bass et al 1995]

Software architecture – recap



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

10

Need for (system) architecture
• If a project has not achieved a system architecture, including its 

rationale, the project should not proceed to full-scale system 

development. Specifying the architecture as a deliverable 

enables its use throughout the development and maintenance

process.

[Boehm 1995]

Software architecture – recap



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Logical
View

Logical
View

end users

Development
View

Development
View

Process
View

Process
View

Deployment
View

Deployment
View

programmers

system engineerssystem integrators

ScenariosScenarios

Software architecture – recap

4+1 View Model [Kruchten 95]
11



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Logical
View

Logical
View

end users

Module
View

Module
View

Process
View

Process
View

Deployment
View

Deployment
View

programmers

system engineerssystem integrators

ScenariosScenarios

Software architecture – recap

4+1 View Model Revisited

Code
View

Code
View

12



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Logical
View

Logical
View

end users

Module
View

Module
View

Process
View

Process
View

Deployment
View

Deployment
View

programmers

system engineerssystem integrators

ScenariosScenarios

Software architecture – recap

4+1 View Model Revisited

Code
View

Code
View

13



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Module
View

Module
View

programmers

Software architecture – recap

Development View

Code
View

Code
View

14



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

15

Software architecture – recap
• A software architecture characterization:

– Components (or [architectural] entities);
– Connections;
– Constraints.

• Module view:
– System, Subsystems, Components;
– Part-of relation and uses relation;
– Layering, orthogonally.

• Code view:
– Directories, Files;
– Directory structure, location of files, and include relation;
– File name conventions and file length constraints.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

16

Overview

• Context and motivation
– Software architecture – recap
– Application domain

• Module architecture notions
• Relation algebra
• Verification
• Conclusion
• References



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

17

Application domain

• Telecommunications domain
• SOPHO: Philips’ family of PBXs

– 100 - 1M telephony lines
– origin dating back to early 1980’s
– economic lifetime ~ 15 years
– maintenance obligations ≥ 10 years
– 5 K files, 2.5 MLOC in C++
– successful ⇒ asset
⇒ careful to maintain this legacy



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

18

Application domain

• Complexity of legacy systems
– hard to understand (e.g. size);
– documentation out-of-date;
– gap between intrinsic and experienced complexity.

• Architecture vital, but not maintained …:
– recovery;
– analysis;
– verification and control;
– (improvements).

• Need for architectural support !



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

19

Application domain

• Characteristics (development view):
– module view

• 8 K architectural entities;
• organised in an unbalanced tree, depth 5 – 12;
• layered system, consisting of 8 subsystems.

– code view
• 1 directory with 5 K files, and 2.5 MLOC in C++;
• 35 K include statements;
• File names based on “12 NCs”,

file length varies from 100 to 20 K lines.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Application domain

SAS

SD

CPS

SOPHO
CPC

POM

GOS

LOS

POMCL

“Intended” module architecture
(documentation + software architects) 20



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Application domain

POMCLSAS

SD

CPC

POMCPS

GOS

SOPHO

LOS

“Derived” module architecture
(extracted from the implementation) 21



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

22

Conformance

Causes when “intended” and “extracted” differ:
1. “intended” is wrong (e.g. out-of-date): improve;

2. “extracted” is wrong: improve;

3. implementation is optimized for, e.g., speed ⇒ refinement.

Intended Extracted

S

H

A

D

I

S

H

A

D

I



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

23

Application domain

• Ensure conformance to an architecture !
– Keep the architecture up-to-date

• Approach using relation algebra (RPA):
– Represent the “intended” architecture in RPA.
– Extract the “derived” architecture from the 

implementation, and represent in RPA.
– Express “conformance” in RPA.
– Ensure conformance by means of verification 

(using RPA) and improvements (i.e. control).



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

24

Overview

• Context and motivation
• Module architecture notions
• Relation algebra
• Verification
• Conclusion
• References



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

25

Overview
• Context and motivation
• Module architecture notions

– Module diagram
– Decomposition tree
– Lifting
– Hiding
– Lowering
– Weights

• Relation algebra
• Verification
• Conclusion
• References



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

26

Module architecture notions

• Module diagram
• Decomposition tree
• Lifting
• Hiding
• Lowering
• Weights



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

27

B

A

S

A3A1

B2B1

A2

Module diagram

• Visualises a system’s architecture

• “Boxes-in-boxes” representation

• Boxes represent entities

• Arrows represent dependencies 

System S is not layered



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

28

B

A

S

A3A1

B2B1

A2
A1 A2 A3B1 B2

B A

S

Decomposition tree

System S is balanced, and
the decomposition tree has 3 levels



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

29

B

A

S

A3A1

B2B1

A2
A1 A2 A3B1 B2

B A

S

Lifting (1)

Uses relation corresponds with a 
level (tree-cut)



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

30

B

A

S

A3A1

B2B1

A2
A1 A2 A3B1 B2

B A

S

Lifting (1)

Transform a relation to a higher level.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

31

B

A

S

A3A1

B2B1

A2
A1 A2 A3B1 B2

B A

S

Lifting (1)

Transform a relation to a higher level, i.e. 
replace both the source and the destination 
of each arrow by its enclosing entity.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

32

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Lifting (2)

→



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

33

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A
→

Lifting (2)



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

34

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A
→

Lifting (2)



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

35

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A
→

Lifting (2)



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

36

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A
→

Lifting (2)



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

37

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Lifting (2)

→



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

38

B

A

S

A3A1

B2B1

A2

B
S

A

Hiding

Hiding the decomposition structure 
of both A and B

→



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

39

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Lowering

both cases a complete graph.

←



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

40

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Lowering

Application: architectural verification,

e.g. layering

←



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

41

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Weights

Which value to be associated ?



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

42

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Weights

4: number of uses relations

size-oriented weight



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

43

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Weights

Fisheye view of the

size-oriented weight



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

44

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Weights

3: number of used entities (A1, A2 and A3)

fan-in-oriented weight



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

45

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Weights

2: number of using entities (B1 and B2)

fan-out-oriented weight



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

46

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

<1,1,1>
<2,4,3>

<1,1,1>

<2,2,1>

Weights

Each weight has its merits 
during architectural analysis



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

47

Overview

• Context and motivation
• Module architecture notions
• Relation algebra

– Usage
– Overview
– Examples
– Application

• Verification
• Conclusion
• References



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

48

Relation Algebra: Usage

• Visualisation and view calculations
– reverse architecting purposes

• Relational calculus
– software architecture analysis

• Architectural rules
– software architecture verification

• Architectural metrics
– software architectural quality assurance

• (formal basis of tools)



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

49

Relation Algebra: Overview

• Sets
– ø, ∪, ∩, −, ...

• Relations: sets of pairs
– ; (composition), -1, +, *, |,↑ (lifting), ↓ (lowering)

• Multi-sets: bags
– ⎡⎤, ⎣⎦

• Multi-relations: bags of pairs



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

50

B

A

S

A3A1

B2B1

A2

Set of Entities E:
E = { S, A, A1, A2, A3, B, B1, B2}

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

51

Part-of relation P:
P = { <B, S>, <A, S>,

, <B1, B>, <B2, B>

, <A1, A>, <A2, A>, <A3, A>

}A1 A2 A3B1 B2

B A

S

A part-of relation:

• describes the decomposition tree;

• is both: functional and a-cyclic.

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

52

Part-of relation P:
P = { <B, S>, <A, S>,

, <B1, B>, <B2, B>

, <A1, A>, <A2, A>, <A3, A>

}A1 A2 A3B1 B2

B A

S

Relation Algebra: Example

Carrier of P: car(P) = { B1, B2, B, A1, A2, A3, B, A, S } = E.

Range of P: ran(P) = { B, A, S }.

Domain of P: dom(P) = { B1, B2, B, A1, A2, A3, A }.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

53

A1 A2 A3B1 B2

B A

S Part-of relation P:
P = { <B, S>, <A, S>,

, <B1, B>, <B2, B>

, <A1, A>, <A2, A>, <A3, A>

}

Question: How to express the leafs of the 
decomposition tree in relation algebra using P?

Relation Algebra: Example

Answer: leafs(E) = car(P) – ran(P) = { B1, B2, A1, A2, A3 }.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

54

Part-of relation P:
P = { <B, S>, <A, S>,

, <B1, B>, <B2, B>

, <A1, A>, <A2, A>, <A3, A>

}A1 A2 A3B1 B2

B A

S

Question: How to express the root of the decomposition 
tree in relation algebra using P?

Relation Algebra: Example

Answer: root(E) = car(P) – dom(P) = { S }.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

55

B

A

S

A3A1

B2B1

A2

Uses relation U:
U = { <A1, A2>, <A3, A2>,

, <B1, A1>, <B1, A2>, <B1, B2>

, <B2, A2>, <B2, A3>

, <A3, B2>

}

Relation Algebra: Example

Question: How to express the entities that use, but are 
not used by, entities in relation algebra ?

Answer: use_only = car(U) – ran(U) = { B1 }.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

56

B

A

S

A3A1

B2B1

A2

Uses relation U:
U = { <A1, A2>, <A3, A2>,

, <B1, A1>, <B1, A2>, <B1, B2>

, <B2, A2>, <B2, A3>

, <A3, B2>

}

Relation Algebra: Example

Question: How to express the leaf entities that neither 
use nor are used by entities in relation algebra ?

Answer: isolated = leafs(E) – car(U) = ø.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

57

B

A

S

A3A1

B2B1

A2
A1 A2 A3B1 B2

B A

S

Transform a relation to a higher level, i.e. 
replace both the source and the destination 
of each arrow by its enclosing entity.

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

58

B

A

S

A3A1

B2B1

A2
A1 A2 A3B1 B2

B A

S

Example: <B1, A1>

• replace source: B1 by B;

• replace destination: A1 by A.

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

59

B

A

S

A3A1

B2B1

A2

Lifting:
def.: U ↑ P ≡ P-1 ; U ; P

ex.: <B1, B>  ∈ P ⇔ <B, B1> ∈ P-1;

<B1, A1> ∈ U;

<A1, A>  ∈ P;

For U ↑ P, P must be a part-of relation

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

60

B

A

S

A3A1

B2B1

A2

Lifting:
def.: U ↑ P ≡ P-1 ; U ; P

ex.: <B1, B>  ∈ P ⇔ <B, B1> ∈ P-1;

<B1, A1> ∈ U;

<A1, A>  ∈ P;

<B, A1> ∈ P-1 ; U

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

61

B

A

S

A3A1

B2B1

A2

Lifting:
def.: U ↑ P ≡ P-1 ; U ; P

ex.: <B1, B>  ∈ P ⇔ <B, B1> ∈ P-1;

<B1, A1> ∈ U;

<A1, A>  ∈ P;

<B, A> ∈ P-1 ; U ; P

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

62

B

A

S

A3A1

B2B1

A2

B
S

A

Hiding the decomposition structure 
of both A and B

→

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

63

B

A

S

A3A1

B2B1

A2

B
S

A
→

Relation Algebra: Example

Question: How to express the set of entities E’ after 
hiding in relation algebra using P?

Answer: E’ = ran(P) = { S, A, B }.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

64

B

A

S

A3A1

B2B1

A2

B
S

A
→

Relation Algebra: Example

Question: How to express the part-of relation P’ after 
hiding in relation algebra ?

Answer: P’ = P |car E’ = { S, A, B }.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

65

Lowering:
def.: U ↓ P ≡ P ; U ; P-1

B

A

S

A3A1

B2B1

A2

For U ↓ P, P must be a part-of 
relation

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

66

Lowering:
def.: U ↓ P ≡ P ; U ; P-1

ex.: {<A, B>} ↓ P = {<A1, B1>, <A1, B2>

,<A2, B1>, <A2, B2>

,<A3, B1>, <A3, B2>

}

{<A, B>} ↓ P ∩ U = {<A3, B2>}

B

A

S

A3A1

B2B1

A2

Layering rule:

{<A, B>} ↓ P ∩ U = ø

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

67

Size-oriented lifting:
def.: UM ↑ P ≡ ⎡P-1⎤ ; UM ; ⎡P⎤

where UM = ⎡U⎤

ex.: <B, A> 4 times in UM ↑ P

B

A

S

A3A1

B2B1

A2

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

68

Fan-out-oriented lifting:
UM ↑> P ≡ ⎡P-1⎤ ; ⎡⎣UM⎦ ; P⎤

<B, A> 2 times in UM ↑> P

Fan-in-oriented lifting:
UM ↑< P ≡ ⎡P-1 ; ⎣UM⎦⎤ ; ⎡P⎤

<B, A> 3 times in UM ↑< P

B

A

S

A3A1

B2B1

A2

Relation Algebra: Example



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

69

Relation Algebra: Application
• Analytical techniques:

– lifting,
– checking of rules,
– impact analysis,
– finding unused and unavailable components,
– identification of top and bottom layers,
– study of alternative component groupings,
– improvement of presentation by suppressing elements,
– improvement of locality,
– checking of linearity,
– analysis of cycles,
– improvement of presentation by transitive reduction.

[Feijs et al 98]



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

70

Verification

System S’ consists of 3 levels, and 
is layered.

Answer: Layering rule LR for S’:

LR(S’): {<A, B>, <A, C>, <B, C>} ↓ P ∩ U = ø

Question: How to express layering rule LR for S’ in 
relation algebra?

S’

C

B

A



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

71

Verification
S’

C

B

A

System S’ consists of 3 levels, and
is strictly layered.

Answer: Strictly layering rule SLR for S’:

SLR(S’): {<A, B>, <A, C>, <B, C>, <C, A>} ↓ P ∩ U = ø

Question: How to express strictly layering rule SLR for 
S’ in relation algebra?



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

72

Verification
S’

C

B

A

Answer: Delete specific uses relation between modules !

{<A, B>, <A, C>, <B, C>, <C, A>} ↓ P ∩ U – {<Cx, Ay>}   = ø

Question: How to express the exception to the strictly layering rule 
SLR(S’) for S’ in relation algebra?

Intended

S’

C

B

A

Derived

S’

C

B

A

Cx

Ay



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

73

Conclusion

Goals revisited
• Student understands:

– the need for module architecture control;
• diversion of intended and derived architecture over time 

– how module architecture control can be 
performed;

• describe the architecture in terms of rules, check 
compliance of the derived architecture, and adapt

– the basics of relation algebra.
• Student can apply relation algebra on a 

simple example.



Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

74

References
• [Bass et al 98] L. Bass, P. Clemens, and R. Kazman, Software 

Architecture in Practice, Addison-Wesley, 1998.
• [Boehm 1995] Engineering context (for software architecture), invited 

talk, 1st Int. Workshop on Architecture for Software Systems, Seattle, 
Washington, April 1995.

• [Bril et al 2000] R.J. Bril, L.M.G. Feijs, A. Glas, R.L. Krikhaar, an 
M.R.M. Winter, Maintaining a legacy: towards support at the 
architectural level, Journal of Software Maintenance, 12(3): 143 – 170, 
May/June 2000.

• [Feijs et al 98] L. Feijs, R. Krikhaar, and R. van Ommering, A relational 
approach to support software architecture analysis, Software – Practice 
and Experience, 28(4): 371 – 400, April 1998.

• [Kruchten 95] P. Kruchten, The 4 + 1 View Model of Architecture, IEEE 
Software, 12(6): 42 – 50, November 1995.

• [Lange et al 05] C. Lange and M. Chaudron, Experimentally 
investigating effects of defects in UML models, TU/e, CS-Report 05-07, 
2005.

• [Muskens et al 05] J. Muskens, R.J. Bril, and M.R.V. Chaudron, 
Generalizing consistency checking between software views, 5th 
Working IEEE/IFIP Conference on Software Architecture (WICSA’05), 
IEEE Computer Society Press, pp. 169 – 180, November 2005.


