
Model driven Engineering 
&
Model driven Architecture

Prof. Dr. Mark van den Brand

Software Engineering and Technology
Faculteit Wiskunde en Informatica
Technische Universiteit Eindhoven



/ Faculteit Wiskunde en Informatica PAGE 16-1-2010

Model driven software engineering

• Models
• often used for both hardware and software design
• probably manually translated into design 

documents and code
• no guarantee of consistency between model, 

design and resulting code 



/ Faculteit Wiskunde en Informatica PAGE 26-1-2010

Model driven software engineering

• Modeling languages
• whole range over the years:
− data oriented, e.g., E/R models, class diagrams
− behaviour oriented, e.g., use cases, state machines, 

sequence diagrams, activity diagrams
− architecture oriented, e.g., package diagrams, component 

diagrams
• standardization initiative of OMG:
− Unified Modeling Language



/ Faculteit Wiskunde en Informatica PAGE 36-1-2010

Model driven software engineering

• UML diagrams for architectural models:
• All UML diagrams can be useful to describe aspects of 

the architectural model
• Four UML diagrams are particularly suitable for 

architecture modelling: 
− Package diagrams
− Subsystem diagrams
− Component diagrams
− Deployment diagrams



/ Faculteit Wiskunde en Informatica PAGE 46-1-2010

Model driven software engineering

• Package diagram:

• Component diagram:

• Deployment diagram:



Model driven software engineering

• The following list is a minimal set of requirements for a 
language to be an ADL. The languages must :
• Be suitable for communicating an architecture to all interested 

parties
• Support the tasks of architecture creation, refinement and validation
• Provide a basis for further implementation, so it must be able to add 

information to the ADL specification to enable the final system 
specification to be derived from the ADL

• Provide the ability to represent most of the common architectural 
styles

• Support analytical capabilities or provide quick generating 
prototype implementations

/ Faculteit Wiskunde en Informatica PAGE 56-1-2010



Model driven software engineering

• ADLs have in common:
• Graphical syntax with often a textual form and a 

formally defined syntax and semantics
• Features for modeling distributed systems
• Little support for capturing design information, except 

through general purpose annotation mechanisms
• Ability to represent hierarchical levels of detail 

including the creation of substructures by instantiating 
templates

/ Faculteit Wiskunde en Informatica PAGE 66-1-2010



Model driven software engineering

• ADLs differ in their ability to:
• Handle real-time constructs, such as deadlines and 

task priorities, at the architectural level
• Support the specification of different architectural 

styles. Few handle object oriented class inheritance or 
dynamic architectures

• Support analysis
• Handle different instantiations of the same architecture, 

in relation to product line architectures

/ Faculteit Wiskunde en Informatica PAGE 76-1-2010



Model driven software engineering

• Positive elements of ADL
• ADLs represent a formal way of representing 

architecture
• ADLs are intended to be both human and machine 

readable
• ADLs support describing a system at a higher level 

than previously possible
• ADLs permit analysis of architectures – completeness, 

consistency, ambiguity, and performance
• ADLs can support automatic generation of software 

systems

/ Faculteit Wiskunde en Informatica PAGE 86-1-2010



Model driven software engineering

• Negative elements of ADL
• There is not universal agreement on what ADLs should 

represent, particularly as regards the behavior of the 
architecture

• Representations currently in use are relatively difficult 
to parse and are not supported by commercial tools

• Most ADLs tend to be very vertically optimized toward a 
particular kind of analysis

/ Faculteit Wiskunde en Informatica PAGE 96-1-2010



/ Faculteit Wiskunde en Informatica PAGE 106-1-2010

Model driven software engineering

• Automatic transformation of domain specific models 
into software models

• Automatic translation from software models into 
executable code

• Ingredients:
• syntax and semantics of modeling formalisms should be described
• correctness preserving transformation steps should be defined
• code generators should be developed



/ Faculteit Wiskunde en Informatica PAGE 116-1-2010

Model driven software engineering

• Software generation:
• Increase in productivity
• Increase in quality
• Based on existing formalisms

− UML
− domain specific extensions

• Prototyping of tooling
− model transformations
− code generation



Model driven software engineering

• Domain specific languages
• Little language for specific application domains
− Terminology of application domain

− domain concepts
− Restricted number of language constructs
− Easy to learn for domain engineers
− Examples:

− SQL
− YACC (compilers)
− Risla (modeling of financial products)
− WebDSL

/ Faculteit Wiskunde en Informatica PAGE 126-1-2010



Model driven software engineering

• “State-of-the-art” technology: component based 
software development
• Code Generation
• Aspect Oriented Programming
• Coordination Architectures
• Design Patterns



Model driven software engineering

• Program Generators
• Automatic production of programs by means of 

other programs
• A program generator reads meta-data and produces 

well-formed source code
− Grammars
− Database model
− UML diagrams

• A program generators makes your project “agile”



Model driven software engineering

• Advantages
• Increase in productivity:

− generating tedious and boring parts of the code 
− code generators produce thousands of lines of code in seconds
− changes are quickly propagated
− agile development

• Increase of quality: 
− bulky handwritten code tend to have inconsistent quality 

because increase of knowledge during development
− bug fixes and code improvements can be consistently roled out 

using a generator



Model driven software engineering

• Advantages
• Increase of Consistency: 

− in API design and naming convention
− single point of definition
− explicit documented design decisions

• Architectural consistency:
− Programmers work within the architecture
− Well-documented and -maintained code generator provides a 

consistent structure and approach
• Abstraction: language-independent definition

− Lifting problem description to a higher level
− Easier porting to different languages and platforms
− Design can be validate on an abstract level



Model driven software engineering

Models of program generators:
• Code munging: given information in some input 

code, one or more output files are generated, e.g., 
scanner or parser

• Inline-code expander: take source code with 
special mark-up code as input and creates 
production code in separate output file, e.g., 
imbedded SQL is replaced by C

• Mixed-code generation: take source code with 
special mark-up code as input and replace this 
inline



Model driven software engineering

Examples of program generators:
• Programming environment generators
• API generators
• UML based generators
• Domain Specific Languages



Domain specific languages

• DSLs & Model driven software engineering:
• Domain specific variants of UML
− profiles: extending/adapting existing UML diagrams, e.g., 

SysML
− meta modeling: entirely new diagrams

/ Faculteit Wiskunde en Informatica PAGE 196-1-2010



Domain specific languages

• SysML offers improvements over UML, which tends to be 
software-centric:
• SysML's semantics are more flexible and expressive

− two new diagram types:
− requirement and 
− parametric diagrams for performance analysis and quantitative analysis

• SysML removes many of UML's software-centric constructs
• SysML has allocation tables for

− requirements allocation, 
− functional allocation, and 
− structural allocation 

• This capability facilitates automated verification and validation and 
gap analysis

/ Faculteit Wiskunde en Informatica PAGE 206-1-2010



Domain specific languages

• Example of a newly developed DSL
• Specifying, Simulating, Verifying and Implementing the 

Controllers of a Conveyor Belt using model transformations
− We defined a domain specific language (DSL) for modeling 

communicating systems
− Simulation via transformation from our DSL to POOSL
− Stepwise refinement to adapt the characteristics of the 

communication channels to the Lego Mindstorms platform

/ Faculteit Wiskunde en Informatica PAGE 216-1-2010



Domain specific languages

• Specifying, Simulating, Verifying and Implementing the 
Controllers of a Conveyor Belt using model transformations
• To verify the system, we implemented a transformation from our 

DSL to Promela, the language used by the model checker Spin
• We implemented a transformation from our DSL into Not Quite C 

(NQC), a programming language for Lego Mindstorms’ controllers

/ Faculteit Wiskunde en Informatica PAGE 226-1-2010



Domain specific languages

• Concurrent objects
• Controllers
• Hardware

− Conveyors
− Motors
− Sensors

• Communication
• Wireless
• Wired



Domain specific languages

• State machine based
• Combination of:

− graphical models and
− textual models

• Conditional message 
exchange
− plus activities

• No data yet
• No timing yet



Domain specific Languages



Domain specific languages

• Platforms
• Simulation
− POOSL

• Execution
− NQC

• Verification
− PROMELA/SPIN

Synchronous/
Asynchronous

Lossless/
Lossy #Objects

DSL Both Both Unlimited

POOSL Synchronous Lossless Unlimited

NQC Asynchronous Lossy Limited

PROMELA Both Lossless Unlimited



Domain specific languages

• Model transformations
T1DSL DSL

(Asynchronous)

Execution

DSL
(Limited number 

of objects)

VerificationSimulation

T2 T3DSL
(Lossless

Communication)T1’ T2’ T3’



Domain specific languages

• Requirements for a DSL:
• Unambiguous semantics
• Formal composition rules
• Unambiguous transformability
• Strongly-typed and deterministic IO
• Encapsulation
• Expressiveness
• Readability



Model Driven Architecture



MDA

• Today's Software Environment:
• Worldwide distributed systems
• Heterogeneous platforms, languages, and 

applications
• Increasing interconnectivity within and between 

companies
• New technologies: XML, .NET and web services



MDA

• Heterogeneous platforms and languages
• Programming languages

− ~3 million COBOL programmers
− ~1.6 million VB programmers
− ~1.1 million C/C++ programmers

• Operating systems
− Unix, MVS, VMS, MacOS, Windows (about 10), PalmOS…
− Windows 3.1: it’s still out there!
− Embedded devices (mobile, set-top, etc.)



MDA

• Good News
• Increased standarization
− Internet protocols, SQL, UML

• Increased openness
− Linux, apache, etc.

• Less custom specific development
− Component reuse, ERP applications



MDA

• Bad news
• Legacy applications and databases
• ERP applications that are difficult to adapt
• Multiple, competing middleware
• Develop software for the future: adaptable to future 

modifications



MDA

• MDA is a more sophisticated way of using UML
• Raising level of abstraction:

• General trend
• Already well-established for front and back ends
− WYSIWYG GUI modeling and data modeling
− Hand coding no longer predominates
− Tuning allowed



MDA: what is it?

• The Model-Driven Architecture approach defines system 
functionality using a platform-independent model (PIM) using 
an appropriate domain-specific language:
• Then, given a platform definition model (PDM) corresponding to 

CORBA, .NET, the Web, etc., the PIM is translated to one or more 
platform-specific models (PSMs) that computers can run

• The PSM may use different Domain Specific Languages, or a 
General Purpose Language

• Automated tools generally perform this translation or 
mapping



MDA: what is it?

• MDA is related to multiple standards: 
• Unified Modeling Language (UML),
• Meta-Object Facility (MOF),
• XML Metadata Interchange (XMI),
• Enterprise Distributed Object Computing (EDOC), 
• Software Process Engineering Metamodel (SPEM), and 
• Common Warehouse Metamodel (CWM)

• The term “architecture” in Model-driven architecture does 
not refer to the architecture of the system being modeled, but 
to the architecture of the various standards and model forms 
that serve as the technology basis for MDA



MDA

• Informal UML models provide
• Informal modeling
• Used to sketch out basic concepts
• Advantages over other informal diagram techniques: 

it has some form of semantics
• Not suited for code generators and interpretation
− Analogously informal text can not be compiled and 

executed as 3GLs



MDA

• Formal UML models provide
• Precise:
− Precision and details are not the same

• Computationally complete
− Missing properties and unresolved references are 

not acceptable
− 3GL analogy ...
− Incomplete programs can not be compiled

• executable UML



MDA: how does it work?

• Platform Independent Model (PIM) in UML is 
developed by architect, no assumptions
• on platform
• on programming language
• on databases
• on architecture (2-tier vs 3-tier)

• High level of abstraction 



MDA: how does it work?

• PIM model is mapped to XMI, XML representation of 
UML

• PIM model is transformed into Platform Specific 
Model (PSM)

• Architectural decisions are resolved/instantiated
• 2 tier vs 3 tier
• CORBA
• .NET



MDA: how does it work?

• The architecture implementation contains a 
series of declarative XML-based templates that 
generate “PSM” code 

• Template resolves architectural issues for a 
certain layer

• Layers can be exchanged with other ones
• Mechanisms to provide architecture code 

extensions



MDA: does it work?

• Important to model-driven architecture is the 
notion of model transformations:
• QVT (Query/View/Transformation)
• Xtend (openArchitectureWare)
• ATL (ATLAS Transformation Language)
• Plain Java
• XSLT



MDA

• Various MDA implementations:
• Commercial: 
− OptimalJ from CompuWare (dead as far as I know)
− Rational Rose (IBM)
− OSLO (Microsoft) DSL based

• Open Source Eclipse based: 
− OAW 
− ATLAS



Architecture-Driven Modernization

• ADM is the inverse of MDA
• Process of understanding and evolving existing software 

assets for the purpose of
• Software improvement
• Modifications
• Interoperability 
• Refactoring
• Restructuring
• Reuse
• Porting 
• Migration
• Translation into another language
• Enterprise application integration
• Service-oriented architecture 
• MDA migration

/ Faculteit Wiskunde en Informatica PAGE 446-1-2010


	Model driven Engineering �&�Model driven Architecture
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Model driven software engineering
	Domain specific languages
	Domain specific languages
	Domain specific languages
	Domain specific languages
	Domain specific languages
	Domain specific languages
	Domain specific Languages
	Domain specific languages
	Domain specific languages
	Domain specific languages
	Model Driven Architecture
	MDA
	MDA
	MDA
	MDA
	MDA
	MDA: what is it?
	MDA: what is it?
	MDA
	MDA
	MDA: how does it work?
	MDA: how does it work?
	MDA: how does it work?
	MDA: does it work?
	MDA
	Architecture-Driven Modernization

