
JOURNAL OF SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE
J. Softw. Maint: Res. Pract.2000;12:143–170

Research

Maintaining a legacy: towards
support at the architectural level

Reinder J. Bril1,∗,†, Loe M. G. Feijs2, André Glas3,
René L. Krikhaar4 and M. (Thijs) R. M. Winter5

1Philips Research Laboratories Eindhoven (PRLE), Prof. Holstlaan 4 (WL-01), 5656 AA Eindhoven,
The Netherlands
2Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3National Aerospace Laboratory (NLR), Voorsterweg 31 (20.1.06), 8316 PR Marknesse, The Netherlands
4Philips Medical Systems (PMS), P.O. Box 10000 (QR-1139), NL 5680 DA Best, The Netherlands
5Philips Business Communications (PBC), Anthony Fokkerlaan 5 (KOC-1), 1200 JD Hilversum,
The Netherlands

SUMMARY

An organization that develops large, software intensive systems with a long lifetime will encounter major
changes in the market requirements, the software development environment, including its platform, and the
target platform. In order to meet the challenges associated with these changes, software development has to
undergo major changes as well. Especially when these systems are successful, and hence become an asset,
particular care shall be taken to maintain this legacy; large systems with a long lifetime tend to become
very complex and difficult to understand. Software architecture plays a vital role in the development of
large software systems. For the purpose of maintenance, an up-to-date explicit description of the software
architecture of a system supports understanding and comprehension of it, amongst other things. However,
many large complex systems do not have an up-to-date documented software architecture. Particularly in
cases where these systems have a long lifetime, the (natural) turnover of personnel will make it very likely
that many employees contributing to previous generations of the system are no longer available. A need
to ‘recover’ the software architecture of the system may become prevalent, facilitating the understanding
of the system, providing ways to improve its maintainability and quality and to control architectural
changes. This paper gives an overview of an on-going effort to improve the maintainability and quality
of a legacy system, and describes the recent introduction of support at the architectural level for program
understanding and complexity control. Copyright  2000 John Wiley & Sons, Ltd.

KEY WORDS: architectural views; legacy systems; program understanding; complexity control; software
architecture; reverse architecting; visualization

∗Correspondence to: Reinder J. Bril, Philips Research Laboratories Eindhoven (PRLE), Prof. Holstlaan 4 (WL-01), 5656 AA
Eindhoven, The Netherlands.
†E-mail: Reinder.Bril@Philips.com

Received 26 June 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 24 February 2000



144 R. J. BRILET AL.

1. INTRODUCTION

Philips is an electronics company that operates worldwide and develops (high volume) consumer
systems, e.g. audio and televisions, as well as (low volume) professional systems, such as medical
systems and business communications systems. All these systems are becoming more and more
software intensive. Whereas hardware development dominated a product’s development lead time pre-
eminently a decade ago, software development is gradually taking over this role due to a continuous
growth of the software contents. This growth of the software has two main causes. Firstly, the
ever increasing power and decreasing cost of micro-electronics makes it possible to add significant
new functionality without increasing the manufacturing costs. Secondly, some of the desirable new
functions can only be realized in software, like an intuitive easy-to-use user interface and the integration
of stand-alone products into a system. The growth of the software contents in combination with the
long lifetime of a system implies that the stability and extensibility of the software in general and its
architecture in particular are determining the business success of the system.

Business communications systems, and especially the private branch exchanges (PBXs; i.e.
telephony systems in a business environment), are examples of large complex systems with a long
lifetime. These days, the economic lifetime of a delivered PBX is approximately 15 years. Software
development in the digital PBX area within Philips spans almost two decades and the maintenance
obligations for installed software packages may last over 10 years. The size and complexity of these
systems combined with their long lifetime has two main consequences.

Firstly, subsequent generations of systems are developed in an evolutionary way. Hence,
development may be viewed asmaintenanceandall categories of maintenance (see, for example, [1])
apply for these systems, not only the more commoncorrective, adaptiveand perfectivecategories
(which are explicitly covered by the definition of maintenance in [2]), but also the less common
preventivemaintenance category. For evolutionary development, program understanding is one of the
major subjects to be addressed in order to enable these systems to be developed efficiently and within
a short lead time, while preserving their quality.

Secondly, the software architecture of these systems is not only important, but its significance is
also growing rapidly due to new and changing market requirements, amongst others. The growing
importance of the software architecture of systems requires it to be sufficiently documented, clearly
communicated, well understood and explicitly controlled. New developers should learn the architecture
rapidly so as to become cost effective as fast as possible. They need to understand and comprehend
the system’s architecture in order to be able to maintain the system. Experienced developers as well,
however, feel the need for automated support to browse, analyze and comprehend the system, due to
the system’s size and complexity.

The quest for program understanding combined with the need to manage the software architecture
leads to the need for support at the architectural level.

Whereas software design received a great deal of attention in the early 1970s, software architecture
is still an emerging discipline [3,4]. Although special issues of journals have addressed the subject
(e.g. [5,6]), books are gradually appearing on the market (e.g. [7]) and research has been reporting
successful experiments in extracting the software architecture from a complex software system’s
implementation for at least ten years [8,9], commercial off-the-shelf (COTS) tools for either forward or
backward (i.e.reverse) software architecting are still scarcely available, if at all. Given the current state
of affairs of software architecture and the theoretical foundations laid and experience gained by Philips

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 145

Research [10–17], it was decided to develop a basic set of proprietary architecture comprehension
tools for SOPHO,‡ termed URSA,§ alleviating the pressing needs of software development. URSA is
dedicated to support program understanding and complexity control at thearchitecturallevel, leaving
support at theprogramminglevel to standard tools that are readily available on the market. URSA is
an integral part of the software development environment, available to each individual developer and
multiple developers simultaneously, and provides information for every build package, when deemed
appropriate.

This paper gives an overview of an on-going effort to improve the maintainability and the quality
of a family of PBXs developed and maintained within Philips Business Communications (PBC), and
describes the recent introduction of support at the architectural level for program understanding and
complexity control. This paper is structured as follows. In Section2 an overview of the application
domain is given, with examples of activities belonging to each of the maintenance categories. In
Section3, URSA is put into perspective. It is shown how the development of URSA is embedded
in an overall maintainability and quality ‘improvement’ program. Although improvements in the
software process are typically essential in order to be able to perform other improvements [18],
process improvement falls outside the scope of this paper. The support provided by URSA is the topic
of Section4. The experience gained with the development of URSA and its introduction so far are
addressed in Section5. The concluding remarks are given in Section6.

2. APPLICATION DOMAIN

2.1. Introduction

An organization that develops large, software-intensive systems with a long lifetime will encounter
major changes in the software development environment and in the market requirements. In order
to meet the challenges associated with these changes, software development has to undergo major
changes as well. Examples of environmental and market changes for the range of PBXs developed and
maintained by PBC are given in Section2.2and Section2.3, respectively. These examples are related
to activities belonging to the various maintenance categories. A characterization of the range of PBXs
is given in Section2.4.

2.2. Changing environment

In the early 1980s, the development of a new range of digital telephony systems for the business market
was started at Philips: SOPHO. At that time, it was not only customary but also ineluctable to build your
own hardware, embedded real time software (including an application domain specific programming
language and a proprietary operating system) and life cycle and management tools supporting large

‡SOPHO may be viewed as a family of PBXs developed by Philips Business Communications.
§URSA is an acronym for Understanding and Recovery of the Sopho Architecture.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



146 R. J. BRILET AL.

software developments. Times are changing, however, and in order to meet today’s challenges, our
software development had to undergo major changes, as exemplified below.

• Software Development Environment (SDE):Software development spanning almost 2 decades
will encounter changes in the (host) development environment (including the platform). Whereas
the initial SDE contained a suite of dedicated proprietary tools, the current SDE is to a large
extent (and increasingly) based on commercial tools.

• Operating system:Development started with a proprietary operating system, supporting a quite
sophisticated process model for those days, written in assembly. The process model of today
is still basically the same, although it has been enhanced considerably. This model requires
a dedicated layer (written in C++), which resides on top of a commercial real-time operating
system (RTOS).

• Programming language:Development started with a proprietary language derived from (i.e. an
extended subset of) CHILL,¶ a language dedicated to the telecommunications domain defined
and recommended by the CCITT‖ [19]. Use of a proprietary language implied the construction
and maintenance of a set of language support tools. Today the application is written entirely in
C++, giving all the advantages of a standard language such as commercial off-the-shelf tooling
and short learn-in times of (new and hired) staff.

From a software development point of view, the changes in the SDE may be considered asadaptive
maintenance, necessitated by the changing environment. Similarly, the changes in both the operating
system and the programming language may be considered aspreventivemaintenance, improving future
maintainability and reliability, and providing a better basis for future enhancements. Though said to
be ‘rare in the software world’ (see, for example [1]), we are convinced that our legacy system is still
successful due, amongst other things, to preventive maintenance.

One may also look at these changes from a business point of view rather than a software development
point of view. In that case, the environmental changes enabled a strategic move; standard components
are used where this is deemed appropriate, allowing a healthy focus on the core business of the company
which lies in the telecommunications domain.

2.3. Changing market requirements

Today the economic lifetime of a delivered PBX is approximately 15 years and thecorrective
maintenance obligations (solving reported bugs from the field) for installed packages may last over
10 years. The new and changing market requirements give rise toperfectivemaintenance. Until
recently PBXs were benchmarked on the basis of call-related features (like automatic ring-back, call-
forwarding-always, etc.), and PBX suppliers competed by providing a wealth of features, amongst
others. Notably, the market for PBXs is undergoing radical change. Apart from typical developments
in the telecommunications domain, like support for PVN (Private Virtual Network) and cordless

¶CHILL is an acronym for CCITT High Level Language.
‖CCITT is an acronym for Comit´e Consultatif International T´elégraphique et T´eléphonique (i.e. International Telegraph and
Telephone Consultative Committee). The CCITT is one of four permanent bodies of the ITU, where ITU is an acronym for
International Telecommunication Union.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 147

telephony (e.g. by means of DECT, Digital European Cordless Telephony), one may currently witness
the integration of the telecommunications and information technology (IT) domain, as exemplified by
CTI (Computer Telephony Integration) and IP-telephony (telephony via internet).

2.4. Characterization of SOPHO

SOPHO may be viewed as a family of PBXs, where the number of (telephone) lines may range from
one hundred in a small single system to one million in a fully integrated network (FIN) of systems.
Each of the members of the family effectively provides the same functionality, regardless of the size
of the system. The possibility to scale the system combined with the wealth of features as typically
provided by PBXs [20] gives rise to a highintrinsic complexity.

SOPHO is a large software-intensive system; the core of the switch consists of approximately:

• 5000 files, containing 2.5 MLOC written in C++;
• 8000 architectural entities (i.e. subsystems, components, modules and files), organized in an

unbalanced tree (representing the decomposition structure of the system) with a depth ranging
from 5 to 12;

• 35 000 includes between files; and
• 150–250 static processes and up to 3000 simultaneously executing dynamic processes.

Telephone calls are represented by means of (dynamic) processes in the system. The distinguishing
mark of these call processes is that they are all ‘alike’, and mainly consume processing time at the
start-up and hang-up of a call. Note that contemporary operating systems are still pushed to their limits
when they have to handle such large numbers of calls as separate tasks or processes.

3. URSA IN PERSPECTIVE

3.1. Introduction

The development of URSA is embedded in an overall maintainability and quality improvement
program within PBC. In this section, the relevant activities preceding the development of URSA
are described in brief, followed by a motivation for the development of URSA, and concluded by a
characterization of URSA.

3.2. Product specific course

Program understanding is said to be one of the greatest costs of software maintenance [21,22], taking
more than 50% of the effort. Experience within software development for the telecommunications
domain within Philips showed a similar figure. In order to reduce the apparent difference between the
perceivedcomplexity (due to a lack of understanding) and theintrinsic complexity of the system,
a product specific course was developed. The course covers the software architecture, the related
design rules and problem isolation techniques. The software architecture is illustrated by using
handmade diagrams and typical scenarios extracted from a running system and is visualized by means
of proprietary tools based on interworkings [23]. Explanation of the use of these extraction and

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



148 R. J. BRILET AL.

visualization means for program understanding and problem solving is part of the course. All people
involved in software development have attended the course (lasting approximately 50 hours) and new
staff will follow the course as part of their learn-in period.

3.3. Quality assurance tools

Although a course may minimize the apparent distinction between the perceived and the intrinsic
complexity of the system, education alone is clearly insufficient. In particular, it neither prevents the
increase of the intrinsic complexity of the system nor guarantees that the complexity stabilizes, let
alone that the complexity will be reduced. An appropriate set of metrics may be used to gauge the
maintainability and quality of the system [24]. The conversion of the code from the CHILL-derivative
to C++ allowed the application of ‘standard’ quality assurance tools at theprogramminglevel (such as
QACTM; see [25]). It is not self-evident, however, which sets of metrics and automated support to use
at thearchitecturallevel for our specific application.

In order to be accepted, architectural metrics shall match a developer’s subjective judgement of
modules. Some specific modules of the system were found to be relatively complex. An examination
of the history log of corrective maintenance efforts revealed that these modules were also the most fault-
prone modules. A preliminary investigation (inspired by Henryet al.[26]) yielded a satisfactory model
that identified the most fault-prone modules. This model is based on the length, the fan-in (in terms of
received signals and number of procedures used by other modules) and the fan-out (in terms of signals
sent and number of procedures used by other modules) of a module. This model matches a developer’s
subjective judgement of modules and may provide appropriate architectural metrics. Further study in
this area is needed, however.

3.4. Software architecture recovery and maintenance experiment

In the early 1990s, it was observed that the documentation of the software architecture of SOPHO was
not up-to-date, like many large software systems of a considerable age [27]. Although the description
of the software architecture can be recovered (as demonstrated by, for example, M¨uller et al. [8]),
recovery without its subsequent maintenance does not provide a structural solution. A small experiment
was therefore conducted to explicitlycontrol the software architecture during a perfective maintenance
activity. The activity concerned the creation of support for CTI by means of CSTA (Computer Sup-
ported Telecommunications Applications; see [28,29]), involving the development of a new component
of approximately 10 KLOCs and extension of about 10 components. The control of the software archi-
tecture was an additional constraint on that activity. Theintendedsoftware architecture (which has a
layered structure) was defined during an initial stage of the project, guided the implementation, and was
subsequently compared with theextracted(or as built) software architecture. The differences between
the intended and extracted architecture were either resolved (by adapting the intended architecture
and/or the implementation) or explicitly documented as optimizations performed at the (detailed)
design or implementation level. Note that quality control at the architectural level is introduced by using
the intended software architecture as a standard against which the extracted software architecture is
placed. Visualization of the software architecture was done by using a collection of small prototype ex-
traction and abstraction tools, mostly shell scripts, and an existing, experimental graph visualizer called
‘TEDDY’ as a means for presentation (TEDDY is a box-arrow visualizer developed within Philips

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 149

Research similar to Rigi, see [8]). The same set of tools was used toreversearchitect other components,
visualizing their (extracted) software architecture. Notably, the visualization of the architecture of the
component containing the most fault-prone modules revealed a relatively high deteriorated structure.

The experiment showed that it is possible to recover the software architecture, and to control
the software architecture during perfective maintenance, preventing deterioration. The results of the
experiment were favorably received within the organization, both from a program understanding as
well as a complexity control point of view. The prototypical nature and lacking functionality of the
set of tools used, the absence of COTS tools, and the estimated cost of developing a basic set of
tools prevented the incorporation of appropriate means in the development environment, however. The
experiment was concluded early 1995.

3.5. Motivation of URSA

The visualization of the scenarios extracted from a running system by means of the proprietary tools
based on interworkings, as described in Section3.2, aids program understanding considerably. The
gap between the scenarios on the one hand, and the actual code on the other, was felt to be very
large, however. Means that bridge this gap were felt to be a desirable improvement. Following this,
the organization urged the use of architectural support similar to that offered by the prototype tooling
used in the small experiment described in Section3.4. Due to the size of the system (see Section2.4),
tooling is a necessary pre-requisite for efficient control of its software architecture. The set of tools
used for the experiment were prototypes, and lacked desirable functionality. In particular, the tools
should support the visualization of arbitrary views of the system (rather than predetermined views).
This requires a systematic (rather than a seemingly ad hoc) approach for the extraction and abstraction
tools, especially because of the size of the system and the fact that the decomposition structure of the
system is anunbalancedtree. Furthermore, two main additional functionalities were desired from a
visualizer. Firstly, the automatic layout of graphs, because graphical formatting turned out to be very
laborious. Secondly, browsing (e.g. expanding boxes and/or arrows), in order to be able to investigate
the architecture and find the cause of unexpected and/or undesired dependencies between architectural
entities. Moreover, the experiment showed the occasional need for browsing up to entities at the
programming level. Finally, it was considered desirable to have additional means for quality control at
the architectural level, next to visual inspection.

Due to a lack of COTS tools that support architectural comprehension, and given the theoretical
foundations laid and experience gained by Philips Research since the experiment described in
Section3.4 [12–15,17,30], it was decided in early 1997 to develop a basic set of proprietary tools
for SOPHO, termed URSA.

The development of URSA may come as a surprise, considering the desired focus on core business,
as described in Section2.2. As in the situation in the early 1980s, the means required are not available
at present, and the availability of those means is considered indispensable for the maintenance of our
legacy. Moreover, URSA is not developed by PBC in isolation, but as a joint effort between PBC
and Philips Research. Hence, although URSA has been developed for SOPHO, its application is not
restricted to the telecommunications domain; instantiations of the generic parts of each of the basic
tools are also applicable and used to support software developments of consumer and other professional
systems within Philips.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



150 R. J. BRILET AL.

Figure 1. ‘Extract–abstract–present’ paradigm.

3.6. Characterization of URSA

URSA is based on the ‘extract–abstract–present’ paradigm (inspired by [8]; see Figure1), which is
basically the same as the ‘repository-based-reverse-engineering’ approach as recommended in [31] for
the reverse-engineeringof large legacy systems. The three activities shown in Figure1are characterized
briefly as [32]:

• extract: extracting relevant information from system software, system history and system
experts;

• abstract: abstracting extracted information to higher (design) level; and
• present: presenting abstracted information in a developer-friendly way, taking into account his

or her current topic of interest.

In order to be able to describe the tools, the following definition of software architecture∗∗ is used:
the software architecture of a system comprises softwarecomponents, connections(or relationships)
between those components, andconstraintson the connections. A software architecture may be
described using different concurrent views (see [33] for an empirical or [34] for a synthesized model),
where each view addresses a specific set of concerns. The ‘4+ 1 view model’ described in [34]
distinguishes the following views (see also Figure2, which has been taken from [34]):

• the logical view, describing the services the system provides to its end users;
• theprocess view, describing the system’s concurrency and synchronization aspects;
• thedevelopment view, describing the system’s static organization;

∗∗There is no generally accepted definition of software architecture. According to [7], this definition lacks the notion of
externally visible properties. Nevertheless, the definition serves our purposes for this document.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 151

Figure 2. The 4+ 1 view model.

• the physical view, describing the mapping of the software onto the hardware, reflecting its
distributed aspect; and

• scenarios, showing how the other four views work together.

Note that in the definition of software architecture given above the interpretation of thecomponents,
connectionsandconstraintsdepends on the particular view. For example, for the development view,
the components are the modules, the connections are the uses and part-of relations between modules
[17], and the constraints are the restrictions imposed on these relations.

Using the terminology of [34], URSA contains the following tools:

• Jolly Jumper: a Clickable MSC (Message Sequence Chart) Viewer, visualizing a scenario in
terms of actors and their communication, and providing (hyper-)links to the source code. The
Jolly Jumper linksscenarioswith theprocess viewanddevelopment view[35];

• MAB: a Module Architecture Browser, visualizing the structure of the system (expressed in terms
of a part-of and uses relation) by means of tables. The MAB supports thedevelopment view
[36]. The term ‘MAB’ is inspired by the term ‘Module (Interconnection) Architecture’ of [33].
The notionmodule architecturemay be considered to be part of thedevelopment view[32]. The
distinction between module architecture and development view is not relevant for this document,
however; and

• ArchiSpy: a module architecture verifier, determining whether or not the software conforms to
a set of architectural rules (or constraints) for thedevelopment view, and reporting breaches.
ArchiSpy is basically a quality assurance tool at the architectural level, and is based on a
relational calculator [12].

4. SUPPORT PROVIDED BY URSA

4.1. Introduction

In [32] a software architecture improvement approach is described that is termed ‘Software
Architecture Reconstruction’. This approach provides the foundation for URSA from a process
perspective. The approach covers both forward and backward (orreverse) engineering in the software
development cycle and has been proven to be applicable for various complex systems in different
domains within Philips (see also [13]). Parts of the approach have also been evaluated by independents

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



152 R. J. BRILET AL.

outside Philips [37]). The approach distinguishes different levels of reconstruction (which have been
inspired by the levels in Humphrey [18]). Systems that are barely documented and whose software
architecture is implicit are at theinitial level of reconstruction. By making the software architecture
of such systems explicit (byreverse architectingthe system), thedescribed level is reached.
Improvements of the architecture are necessary when the gap between the described architecture and
the ideal architecture is too large. Byre-architectingthe system, theredefinedlevel is reached. By
means ofarchitectural verification, the software architecture becomes explicitly controlled during the
evolution of the system and themanagedlevel is reached. The final level, termedoptimized, may be
reached by taking future extensions into account.

URSA provides means that support thedescribedandmanagedlevel.

• Described level: The Jolly Jumper and the MABvisualizearchitectural information, making the
software architecture of a system explicit usingreverse architectinginformation. Visualization
is typically part of an architectural analysis activity, either implicit or explicit. Whereas the
Jolly Jumper is primarily meant for program understanding, the MAB is used for both program
understanding and (qualitative) complexity control.

• Managed level: ArchiSpycheckscompliance of a system to a defined set of architectural rules,
supporting thearchitectural verificationof a software architecture. ArchiSpy is exclusively used
for (quantitative) complexity control. ArchiSpy currently supports an initial set of approximately
15 rules. The intention is for it to support a set of metrics at the architectural level in due course.

URSA provides no means for support at theredefinedlevel (i.e. for re-architecting a system). Re-
architecting will not be dealt with in this paper either. Note that the software bookshelf [38], which is
meant to capture, organize, and manage information about a legacy system, only supports thedescribed
level for the module architecture view.

Reverse architecting approaches reported upon in the literature are typically applied in the context of
the module architecture [8,27,39,40]. The MAB fits in with this tradition, providing basically the same
support for similar purposes. The distinguishing mark of the MAB forms its theoretical foundations
and the quantitative information it provides along with the connections between components. Although
there exist many tools that visualize the dynamic behavior of systems [41], none compare with the Jolly
Jumper with respect to its ability to link scenarios with code.

Relation algebra with multi-relations [14,15,32] provides the theoretical foundation for both the
MAB and ArchiSpy. The relational approach supports the analysis of software architectures and
provides options for visualization, view calculations and software architecture verification (i.e.
checking the conformance of an existing architecture to a set of architectural rules). Although the
underlying machinery is quite different, our approach in the area of the module architecture is basically
the same as those reported upon in [9,42].

The Jolly Jumper and MAB are considered in more detail in Section4.2and Section4.3, respectively.

4.2. Bridging the gap between scenarios and code

4.2.1. Motivation

Most maintenance activities start with a request for enhancing or changing the dynamic behavior of
(small parts of) the system. Although our product-specific course gives an introduction to this dynamic

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 153

behavior in terms of the relevant software architectural artifacts and some typical scenarios, the size and
the complexity of the system are such that for most maintenance requests, on its own, the information
provided is far from sufficient for the developers.

Instead of the (global) architectural principles and the typical scenarios, detailed understanding of
the existing dynamic behavior including knowledge of the corresponding ‘responsible’ software is
a prerequisite for the successful realization of the requested enhancement or change. The existing
proprietary tools, which are based on interworkings [23], visualize scenarios extracted from a running
system in MSC (Message Sequence Chart) like diagrams. These diagrams relate the external behavior
of the system with internal actions performed by the system. The most important lack of information,
however, is still the link to the actual software parts that correspond with the visualized dynamic
behavior. In a large system with many interacting features, which is what our legacy system currently
is, people lacking the in-depth knowledge of the feature under maintenance cannot easily find this link.
To be able to spread the maintenance work and also to assign maintenance work to less experienced
developers or developers who are experienced in other parts of the system, extra tooling is required
that assists the developer in finding the links between visualized dynamic behavior and code.

Let us take a closer look at the process model in order to understand why the link to the actual
software parts that correspond with the visualized dynamic behavior is needed. The diagrams depict all
theprocessesinvolved and their communication behavior related to one or more specific features. The
diagrams are based on the ITU standard for MSCs [43]. MSCs are a standard for the description of the
communication behavior between concurrent processes. MSCs are an addition to SDL (Specification
and Description Language) [44], the ITU standard for the specification and description of the behavior
of telecommunications systems. Similar to SDL [45], the proprietary process model for the legacy
system also allows for signals to be sent from and received in (separate states in)procedures. The
sending and receiving may occur in a procedure at an arbitrary level of nested procedure calls. Because
the nested procedure calls are not shown in MSCs, the link between the signals exchanged between the
processes shown in the diagram and the corresponding code is not always obvious. The same holds for
other internal actions performed by the system and visualized in the diagrams.

No tooling is currently available that supports the linking of MSC ‘actions’ to code fragments. If any
link to code were to be supported, the link to SDL designs (either graphical or textual representation)
would be the most natural to expect. Although the proprietary process model of the legacy system
is similar to the process model of SDL in many respects, no one-to-one mapping between SDL and
the proprietary process model is possible (the details fall outside the scope of this paper, however).
Therefore, within the context of URSA, specialized tooling has been developed for the above purposes.
The extended MSC language CMSC (Clickable MSC) plays a special role in this tooling.

4.2.2. The tooling exemplified

Because the details of the system are proprietary, only a general description of the functionality of the
system is given, using a simplified example of a ‘basic call’ for illustration purposes. Technical details
of the tooling fall outside the scope of this paper; see [35], covering the technical details in depth.

Initially, the system starts a number of service processes and a generic call process. The generic call
process is responsible for creating a dynamic process for each telephone call. A call process consists
of a number of cooperating tightly coupled sub-processes, where extension (i.e. telephone set) specific

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



154 R. J. BRILET AL.

Figure 3. Basic call.

Figure 4. Jolly Jumper.

information is encapsulated in a proxy and generic functionality is dealt with in a general controller;
see Figure3.

The dynamic behavior of the system is visualized with the Jolly Jumper by means of a ‘CMSC’
(Clickable MSC) diagram. Figure4 shows a small fragment of such a diagram that corresponds with
a call set-up. The ruler at the top contains the identifications of the (sub-) processes involved in the

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 155

Figure 5. Source code viewer.

scenario. The ruler at the left contains the time stamps at which the various actions occur. In Figure4,
these time stamps have been replaced with successive numbers.

Let us consider the fragment in the scrollable window in more detail. When an extension (say A)
goes off-hook, the environment (‘EnvA’) sends an ‘SOffHook’ signal to the generic call process.
The signal is received in the (generic) proxy (‘GenProxy’) of the generic call process. The proxy
sends an ‘SInitialCallRequest’ signal to the (generic) controller (‘GenControl’). Upon receipt of the
signal, the controller process creates a new sub-process, consisting of a proxy (‘ProxyA’) for this
particular kind of extension and a general controller (‘ControlA’), and sends an ‘SPassOfControl’
signal to the controller of the newly created sub-process. Note that the dashed line, that corresponds
with the creation of the sub-process, representssynchronization, a feature that is not available in MSCs.
The proxy and controller of the newly created sub-process have initial states ‘InitialProxyState’ and
‘InitialControlState’, respectively. Upon receipt of the ‘SPassOfControl’ signal, the newly created sub-

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



156 R. J. BRILET AL.

Figure 6. Connection between tools and related artifacts.

process separates itself (and its related proxy) from the generic call process and becomes independent.
The dashed line from ‘GenProxy’ to ‘Control A’ corresponds with the separation.

CMSC is a graphical language, in the tradition of MSC [43]. The most distinguishing feature of
CMSC is that nodes, edges (vertical lines connecting nodes) and messages (represented by labeled
arrows in Figure4) have an associated URL (Universal Resource Locator). By clicking the URL,
‘jumps’ to the source code can be made and other relevant information can be visualized (hyper linking)
via your own Web browser.

A ‘source code viewer’ presents the source code upon jumping (see Figure5, which shows the
situation that corresponds to the creation of the sub-process). The source code viewer highlights the
corresponding code and presents the stack of nested procedure calls that dynamically embed the code.
Each of the procedures in this stack may be clicked, causing the frame containing the source code to
be updated. The frame above the source code contains the file name with a hyperlink to the ‘MAB’,
the module architecture browser, which is described in the next section.

The connection between the various tools and the related artifacts is shown in Figure6. Let us
consider the source code as the starting point in this figure. In order to be able to extract information
from a running system, extra functionality that provides the means to create a logging of the internal
actions performed by the system has been added to (i.e.instrumented[46]) the source code. This source
code resides in the dedicated layer supporting our proprietary process model on top of the commercial
operating system (see Section2.2). By running a particular scenario on the system involving one or
more features, a logging is created. This low-level logging, which contains hexadecimal codes only, is
translated in a CMSC using ‘mapping tables’ generated by the compiler to allow for symbolic (rather

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 157

than hexadecimal) identifications of processes, signals, etc. The Jolly Jumper is subsequently used as
a presentation tool for the CMSC. Clicking may be viewed as ‘closing the diagram’ by jumping to
the corresponding code presented by the source code viewer. Possible click actions are indicated by a
bear’s claw in Figure6 (URSA means bear in Latin).

4.3. Module architecture visualization

4.3.1. Motivation

Unless descriptions of the software architecture of a system are maintained, they will become out-
of-date due to maintenance activities during the evolution of the system. Just like many large
software systems of a considerable age, the description of the software architecture of SOPHO was
not up-to-date. Without a well-documented software architecture, large and complex systems are
hard to understand and maintain. Recovery of the software architecture is therefore the first step
towards improving the understanding of a system at the architectural level. Once the architecture
has been recovered (by means of reverse architecting), it may be (optionally) improved (by means
of re-architecting), and is preferably controlled to prevent it from becoming out-of-date again. The
experiment described in Section3.4showed that control of the software architecture is feasible during
perfectivemaintenance activities.

The (module) architecture of SOPHO has a layered structure. Structuring architectures by means of
layers has a long tradition. The notion of a layered structure and its advantages with respect to ease
of development and maintenance have already been described in [47]. The benefits of systems with a
layered architecture in terms of development effort and costs have been verified empirically in [48].
A module architecture comprehension tool shall therefore support the systematic investigation of a
module architecture and the identification of connections violating the layered structure.

During re-engineering work of a large (medical) software system [15] the usefulness of quantitative
information (or ‘weights’) on the connections between architectural entities was discovered. Given
this information, one can distinguish between important and minor or even accidental connections in
a module architecture view. Support for weights is therefore a requirement for a module architecture
comprehension tool.

Unlike the (specification and) description of the behavior of telecommunications systems by means
of SDL [44] and the additional description of communication behavior between concurrent processes
by means of MSCs [43], there are no standards for the description of a module architecture. A
module architecture is typically drawn as a nested set of boxes (where the nesting represents the
decomposition structure of the system and the boxes the architectural entities) and arrows (representing
the connections between those entities). Before addressing the functionality provided by the MAB, the
description of a module architecture is addressed briefly and the approach taken to extract the module
architecture information for SOPHO is described.

4.3.2. Towards the description of a module architecture

Figure 7(a) shows a module architecture view of a (very simple) system S. S consists of two
subsystems, A and B, where A consists of a component A2 (which in turn consists of two modules A21
and A22) and two modules A1 and A3, and B consists of two modules B1 and B2. This decomposition

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



158 R. J. BRILET AL.

Figure 7. Module architecture views of S.

structure of S is visualized in Figure7(a)using a ‘boxes-in-boxes’ representation [49]. Note that the
decomposition structure of S is an unbalanced tree. The arrows in Figure7(a)visualize the uses of the
finest grain architectural entities, e.g. B1 uses A1.

Using a relational approach, a module architecture view of the system S as shown in Figure7(a)can
be captured by:

(i) a set of architecturalentitiesE, representing the Universe of Discourse:

E = {S, A, A1, A2, A21, A22, A3, B, B1, B2};
(ii) a part-of relationP onE × E, representing the decomposition structure of S:

P = {〈A, S〉, 〈A1, A〉, 〈A2, A〉, 〈A21, A2〉, 〈A22, A2〉, 〈A3, A〉, 〈B, S〉, 〈B1, B〉, 〈B2, B〉};
(iii) a usesrelationU onE × E, representing the uses of modules:

U = {〈A1, A21〉, 〈A22, A21〉, 〈A3, A22〉, 〈A3, B2〉, 〈B1, A1〉,
〈B1, A21〉, 〈B2, A21〉, 〈B2, A3〉, 〈B1, B2〉}; and

(iv) a layout relationL, representing the placement of entities in a view. The layout relation is not
considered in more detail for this figure.

The part-of relation allows for the use of terms for relatives, such as parent (e.g. A is a parent of A1,
A2, and A3), children, siblings and ancestors.

By hiding the decomposition structure of both A and B, Figure7(b) is derived from Figure7(a).
The uses relations from the constituents of B to the constituents of A in Figure7(a) (e.g. from B2 to
A3) give rise to a uses relation from B to A in Figure7(b). Similarly, the uses relation from A3 (a
constituent of A) to B2 (a constituent of B) in Figure7(a)gives rise to uses relation from A to B in
Figure7(b). The intra subsystem uses relations in Figure7(a)(e.g. from B1 to B2) give rise to reflexive

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 159

uses relations in Figure7(b) (e.g. from B to itself). The notion of hiding is formalized in [50] using a
liberal kind of lifting termed ‘oblique lifting’. Oblique lifting has as important advantage (compared
to lifting as described in [14]) that it can be used for unbalanced systems. The notion of hiding and
its application to visualizing system structure has already been described informally in [9]. Hiding is
termedcondensationin that paper. An informal description of hiding may also be found in [40].

4.3.3. Module architecture extraction

The decomposition structure of SOPHO is an unbalanced tree, with a depth ranging from 5 to 12.
The decomposition structure of SOPHO has been stored in the configuration management system, an
advantage that can clearly be attributed to the original proprietary configuration management tool.
Although the decomposition structure is amenable to improvements, the availability of a well-defined
structure simplifies the recovery of the architecture considerably; i.e. the rediscovery of the architecture
of legacy systems is stated to be a critical research area [7], and research experience shows that
rediscovery of the decomposition structure of a system requires a human’s judgement [27].

The part-of relation of SOPHO is derived from the information stored in the configuration
management system. The uses relation of SOPHO is extracted from its source code. The set of
architectural entities may be derived by calculating the carrying set of the part-of relation (i.e. the
union of its domain and range).

4.3.4. Functionality of the MAB

4.3.4.1. Tabular representation.Means for graphical representations are clearly preferred for the
visualization of the module architecture. A graphical representation does however cause a major
problem in terms of the layout. A fully automatic graph layout will typically yield graphs that will
appear unnatural to a system developer, simply because the algorithms lack the information concerning
the ‘logical’ relation between entities. So, although automatic graph layout may provide an initial
approximation, manual post-processing is still necessary. Considering the huge amounts of different
graphs (in the order of magnitude of millions given the number of architectural entities for SOPHO),
where each graph requires its own layout, manual adjustments of these graphs is not feasible within a
reasonable period of time.

For a tabular representation, the number of layouts is considerably less (in the order of magnitude
of thousands). Next, table layout is a one-dimensional problem, whereas graph layout is a two-
dimensional problem. Finally, the overall structure of a table does not change when a few rows and
columns are not at their most self-evident position.

4.3.4.2. Weight of a uses relation.In many situations it is helpful to have quantitative information on
the uses relations between architectural entities [15]. Considering Figure7(b), there are variousweights
(or multiplicities) which could be associated with the uses relation from subsystem B to subsystem A;
see [32]:

• existence-orientedweight: a value of 1, denoting that thereexistsa uses relation between finest
grain entities;

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



160 R. J. BRILET AL.

• fan-out-orientedweight: a value of 2, which is the number ofusing(finest grain) entities (i.e.
B1, B2);

• fan-in-orientedweight: a value of 3, which is the number ofused(finest grain) entities (i.e. A1,
A21, A3);

• size-orientedweight: a value of 4, which is the number ofusesfrom (finest grain) entities of B
to those of A (i.e.〈B1, A1〉, 〈B1, A21〉, 〈B2, A21〉, 〈B2, A3〉).

The various weights of a uses relation may be calculated for unbalanced systems by means of oblique
lifting (see [50] for a formalization based on Feijset al. [15] and Krikhaar [32]).

The use of (the combination of) weights is briefly illustrated by means of an example of a scenario;
the replacement of a component (e.g. a proprietary RTOS by a COTS version). Let’s assume that files
are the smallest grain architectural entities. The size-oriented weight (associated with the uses relation
from the applications to the RTOS) indicates how many include statements must be replaced. The fan-
out-oriented weight indicates how many files (from the applications) are affected. The fan-in-oriented
weight indicates how many files (from the proprietary RTOS) contribute to its used interface, and,
hence, which functionality is required from the new version.

4.3.4.3. Presentation and navigation.The basic form in which the MAB displays information is a
table, displaying uses relations from oneusingentity to oneusedentity. There is a row for each child
of the using entity and a column for each child of the used entity. The cells of the table contain the
weight of the uses relation between the two corresponding children, where the specific kind of weight
displayed is selectable by a user. Next to the names of the using and used entities, the part-of relations
of these entities are displayed, i.e. all ancestors of these two entities up to an artificialtop (T)††; see the
table at the left-top of Figure8 for an example of a table where both the using and used entity are the
system S, and the cells contain a size-oriented weight (e.g. subsystem B uses subsystem A four times).

Next to the names of the using and uses entities, their siblings can be displayed. As displaying all
siblings of an entity may clutter a table, the number of visible sibling entries is adjustable by a user.

The layout of a table is determined by the order of its rows and columns. For this, each coarse-grain
entity has an order relation over all its children. Whenever such an entry acts as a using or used entity
in a table, the rows and columns are ordered according to this relation. The user may provide a layout
relation. The MAB will generate a default layout relation in cases where no such relation is provided.

Note that the information shown by the MAB is confined to the uses relations from the children of
oneusing entity to the children ofoneused entity. Hence the MAB prevents the creation of cluttered
module architecture views, which may easily arise when expanding multiple architectural entities. The
largest table shown by the MAB for a particular system is the one having the parent with the highest
number of children of that system as both using and used entity.

In order to be able to draw conclusions based on a module architecture view, one needs to know
what is shown and, more importantly, what is not shown (or hidden). In other words, this means that a
completenesscriterion for the information presented in a view is desired. Such a criterion gives rise to
a quality requirement for the MAB. For the MAB, this criterion may be characterized as follows: given
a part-of and uses relation, the MAB will display:

††Thetop is required in order to show the intra uses relations of a system.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 161

Figure 8. Zoom-in and zoom-out.

• the names of a selected pair of using and used entities;
• all children of both the using and used entity;
• the uses relation from every child of the using entity to every child of the used entity; and
• any ancestor of the using and used entity (including the artificial topT).

The MAB provides, amongst others, the following means to navigate through the tables:

• zoom-inandzoom-outon rows, columns and cells of the table;
• exchangerows and columns of a table;
• list thecompoundof a uses relation (which is the uses relations between the finest grain entities

that give rise to this uses relation); and
• displaythe source code.

Consider Figure8 as an example. The table at the left-top of this figure has the system S as both
using and used entity. It is possible tozoom-inby ‘clicking’ on subsystem A or B (in either the row or
the column) or on any of the values in the cells of the table (which implies a zoom-in on both its row
and column).

Similarly, it is possible tozoom-outby clicking on the topT (in the row at the left or the column at
the bottom) or onx (which implies a zoom-out of both the rows and columns). Zoom-in and zoom-out
are just ways to traverseverticallythrough the decomposition structure. In addition to vertical traversal,
it is possible to traverse horizontally through the decomposition structure by clicking on the names of

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



162 R. J. BRILET AL.

siblings (when made visible according to a user preference). In Figure8, the siblings are shown in
italics (e.g.B is a sibling of A in the column at the bottom of the table at the right-top of that figure).

Given an appropriate requirement for completeness, a graph will presentall uses relations between
entities. The asymmetric nature of a table (in those cases where the using and used entities are different)
causes only those uses relations to be shown from the entities in the rows to the entities in the columns.
It is therefore possible toexchangethe rows and columns of a table, yielding the uses relations in the
other direction.

The compoundof a uses relation from an entity E1 to E2 is the list of all uses relations from the
finest grain entities contained by E1 to those of E2. E.g. the compound of the uses relation from B to A
yields〈B1, A1〉, 〈B1, A21〉, 〈B2, A21〉, and〈B2, A3〉.

By clicking on a finest grain entity (e.g. B1 in Figure8), a window pops updisplayingits source
code.

4.3.4.4. Manipulation. Whereas ‘navigation’ is related to the ‘present’ stage of the ‘extract-
abstract-present’ paradigm, ‘manipulation’ refers to either performing a filter operation or changing
the data during the ‘abstract’-stage. The MAB provides, amongst others, the means to:

• strip empty rows and columns;
• iconizerows and columns that are of no interest; and
• manuallychange the layout(i.e. the order of the elements in a row and/or column).

The need for stripping and iconizing is not obvious for small-scale examples, but we found that it
becomes pressing when investigating large complex legacy systems, where parents may have many
(� 10) children. Tables that look like sparse matrices become considerably more appealing as a result
of the stripping of empty rows and columns. Iconizing all children of all but one yet unidentified parent
may simulate lacking abstractions (i.e. lacking intermediate entities within a decomposition structure).
Note that care shall be taken to properly represent stripped and iconized rows and columns and to
formulate the completeness criterion in order to deal with stripping and iconizing.

4.3.5. Identification of connections violating a layered structure

In [48], it has been verified empirically that systems with layered architectures have benefits in terms of
development effort and cost. It will be shown below that the tabular representation of the MAB allows
for the verification whether or not a system is (still) layered by means of a simple visual inspection and
supports the systematic investigation of breaching uses relations.

In the table at the left-top of Figure8 (which has S as both using and used entity) the cells on the
diagonal from left-top to bottom-right represent the ‘intra-subsystem’ uses relations. Whenever S was
meant to be a layered system, the bottom-left triangle (degenerating to a single cell) of the table should
be empty (i.e. A should not use B). The breaching uses relation may be found by clicking that cell.

Figure9 shows module architecture views of a strictly layered system S’, in a graphical and tabular
representation (using an existence-oriented weight). The fact that S’ is a strictly layered system follows
immediately from the table: the bottom-left triangle is empty and the top-right triangle contains only
values adjacent to the diagonal.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 163

Figure 9. Strictly layered system S’.

4.3.6. User interface of the MAB

Figure10shows a view of the system S that corresponds with the bottom-right table of Figure8 using
the MAB. Note that ‘World’ is used rather than the ‘T’ for the top.

4.3.7. Design of the MAB

The MAB is client-server based, using state-of-the-art web technologies, such as JavaScript‡‡ and CGI-
scripts (CGI is an abbreviation of Common Gateway Interface). The part-of, uses and layout relations
of the various versions of the system are located at the server. A dedicated server process is created for
each version of the system upon the first request, and that process will terminate itself when it remains
idle for a pre-determined time. At start-up, a server process reads the part-of, uses and layout relations
(amongst others), and builds up an internal representation containing all relevant information (including
the various weights forall uses relations). Although this implies some lead time at start-up, it simplified
the design considerably, and provided a short response time upon subsequent requests. Multiple clients
inquiring about information relating to a single version of the system communicate with a single server
process. Presentation (and navigation) is done at the client side of the MAB. Manipulation is also done
at the client side and only involves the server side when the changed layout has to be made persistent.
Note that because of the size of SOPHO (3 K coarse-grain architectural entities, giving rise to 9 M
tables with an average size of 10 KB, requiring 90 GB disk space for a single version of the system), it
is clearly out of the question for these tables to be generated statically for multiple versions.

Although the MAB has primarily been designed to visualize the uses and part-of relations between
architectural entities, it is occasionally used for entities at the programming level. One should be very
careful with the memory occupation when crossing the architectural/programming boundary, however,
because the number of programming entities is typically one to two orders of magnitude larger than
the number of architectural entities.

‡‡JavaScript and Java are trademarks of Sun Microsystems, Inc.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



164 R. J. BRILET AL.

Figure 10. Module Architecture Browser (MAB).

5. EXPERIENCE

5.1. Introduction

URSA is based on matured principles, has a proper theoretical foundation and has been developed
using state-of-the-art technology. As a consequence, the provision of support at the architectural level
is technically feasible and turned out to be straightforward (but certainly not trivial). In our experience,
organizational issues are considerably more demanding than technical issues when developing and
subsequently introducing a toolset like URSA.

The development of URSA is described briefly in Section5.2. The introduction of URSA is
described in Section5.3 in some more detail. The following subjects are covered: the involvement
of the end-users, the first experiences with the usage of the program understanding and complexity
control support to which URSA is dedicated, and the necessity of change in the development process.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 165

5.2. Development of URSA

URSA has been developed using state-of-the-art technology (i.e. it has a client-server architecture and
is based upon modern Web technologies, such as JavaScriptTM, CGI-scripts, and JavaTM where deemed
appropriate), similar to the approach reported upon in Finniganet al. [38].

The development of the MAB went through a succession of three prototype versions before the final
version was made from scratch. Each of the prototypes contributed to the final version by experimenting
with either the user interface or technology. This clear separation between prototyping on the one hand
and regular development on the other resulted in a well-engineered tool.

Unlike the MAB, the Jolly Jumper was developed in an incremental fashion, where experience with
the user interface and the technology was gained during the development of the intermediate versions.
Although the result is considered acceptable, the Jolly Jumper did not reach the same level of quality
as the MAB.

The development of URSA was carried out in a multi-disciplinary team; as a joint effort between
PBC and Philips Research. PBC kept watch over the applicability for the specific application, the
usability by the intended end users, the proper engineering, and the possibility to embed the set of tools
in both the development and the product generation (i.e. build) process. Philips Research kept watch
over a proper theoretical foundation, the use of state-of-the-art technology and the applicability of the
tools comprising URSA in multiple development environments within Philips (rather than within the
development environment of SOPHO only). In our view, the toolset would not have reached its current
level of maturity without this co-development.

5.3. Introduction of URSA

5.3.1. Involvement of end-users

Changes are hard to carry through, even when these changes are for the better (see, for example [18]).
Knowledgeable representatives of URSA’s target group (the ‘early adopters’) were therefore involved
right from its early conception and their requirements and feedback on intermediate versions was
treated as those of regular customers, and concluded with an acceptance test. Whereas the feedback
on the intermediate versions mainly focused on functionality, user-friendliness turned out to be the
main concern during the acceptance test. In particular, the number of manual steps to be performed
for the creation of a scenario should be minimized, and the generation of architectural information for
packages presented by the MAB and ArchiSpy should be automated. Furthermore, all documentation
(i.e. user manuals) should also be available on-line, preferably by means of Web-technology (just like
URSA itself). Moreover, URSA should not only be available on a system on a developer’s desk, but
also on the test systems located next to (and connected with) the target systems (allowing, for example,
immediate visualization by means of the Jolly Jumper of scenarios generated on a target system).
For performance reasons, the latter requirement demanded for an improvement of the communication
bandwidth between the test systems and target systems and an upgrade of some of the test systems.
Finally, two serious omissions were identified for the Jolly Jumper. Firstly, it did not support dynamic
scaling (i.e. means for zooming). As a consequence, scenarios involving many actors were felt to
be hard to grasp. Secondly, Jolly Jumper did not support printing. These two omissions came as
unexpected surprises during the acceptance test, and required non-trivial updates of the Jolly Jumper.
URSA became available to all developers by the end of 1998.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



166 R. J. BRILET AL.

5.3.2. Program understanding

The program understanding support of URSA is meant forall software developers. By providing an
interactive user-interface and a link between the scenarios on the one hand and the actual code on the
other hand, Jolly Jumper is a (considerable) improvement with respect to the existing tool support.
The application of the Jolly Jumper requires only minor changes in the way of working, implying a
low threshold and easing acceptance. The product-specific course is based on the Jolly Jumper and its
use is explained within the course. The Jolly Jumper is used for program understanding during both
corrective maintenance and perfective maintenance activities.

5.3.3. Complexity control

The complexity control support of URSA is in the first instance aimed primarily at software architects
and designers; the average developer currently has less affiliation with this support of URSA. The MAB
has been used for a number of perfective maintenance activities, and has proven to serve its purposes.
The tabular representation of the MAB is an efficient and effective way to investigate the module
architecture, and is sufficient to control the module architecture (in a way as described in Section3.4).
Typically, these maintenance activities involve many tables (in the order of magnitude of tens) rather
than a few. The visualization of the structure even encouraged designers to improve the module
architecture of existing components upon extensions as part of perfective maintenance activities.

The output of the MAB turns out to be less suitable for (static) documentation. As an example,
it takes multiple tables to visualize mutual dependencies between multiple architectural entities
especially at several levels of the decomposition structure (like the dependencies between subsystems A
and B as shown in Figure7(a)). As a consequence, graphical representations of selected views are
typically created for documentation purposes.

The MAB has also been used to study SOPHO its current module architecture. Many unexpected
dependencies were investigated in detail, and various undesirable dependencies identified. Re-
architecting has only been performed in the context of perfective maintenance activities, however.

For the time being, it is not common practice that the consequences of maintenance activities on
the module architecture are mapped out from the beginning and explicitly controlled during all stages
of these activities. As a consequence, the current initial set of basic checks performed by ArchiSpy
regularly reveals breaches asreflectionon the result of a maintenance activity.

5.3.4. Impact on development process

The observation that ArchiSpy regularly reveals breaches as reflection on the result of a maintenance
activity is a clear indication that, though necessary, the introduction of the tool support alone is
insufficient. Changes in the development process are also necessary and essential for the control of
the complexity. The visualization of the extracted module architecture of the system by means of the
MAB is considered a first step towards such a change. The identification of breaches to the defined
set of architectural rules represents a second step. Note that the breaches represent a state of affairs,
which should preferably improve and at least not deteriorate (i.e. be secured). The active participation
of those avowing the underlying principles is the next step towards complexity control. In order to give
all involved in software development a common basic understanding of the role of architecture within
PBC in general and within software development in particular, an architecture awareness course was

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 167

developed. The need to control architectural changes and use of the MAB is also explained within the
course. All people involved in software development have attended the course (lasting approximately
1 day).

The impact on and the lead-time of introduction in the development process should not be
underestimated, in particular when maintaining large, complex software systems that involve multiple
project teams at different stages in their development life cycle. Introduction does not happen
‘overnight’, especially when software architecture is involved; after all, software architecture is still
considered an art [51] rather than a matured engineering discipline.

The space of time from the start of the experiment described in Section3.4and the completion of the
dissemination of the approach through the awareness course is about 5 years. Time will tell whether or
not the envisioned changes in the development process are sustainable.

6. CONCLUSIONS

In this paper, the on-going efforts to improve the quality and maintainability of a large software system
with a long lifetime have been described. It has been shown that changes in the market requirements,
and the software development and target platform during this lifetime gave rise to activities inall
categories of maintenance, including the less common preventive maintenance category.

The price to be paid for the success of any legacy system is its steadily growing complexity and
the related difficulty to understand the system. In the literature [3,4,52], it is stressed that software
architecture plays a vital role in the development (and hence maintenance) of large software systems.
Large systems with a long lifetime typically do not have an up-to-date well-documented software
architecture, however. Although research has reported successful experiments to extract the software
architecture from a complex system’s implementation for a decade [8,9], commercial off-the-shelf tools
for either forward or backward (i.e.reverse) software architecting for large complex (legacy) systems
are still scarcely available, if at all.

The quest for program understanding combined with the need to manage the software architecture
led to the development of URSA. URSA is a set of tools that support program understanding and
complexity control at thearchitectural level, leaving support at theprogramminglevel to standard
tools that are readily available on the market.

In this paper, the support provided by URSA is described in detail. URSA bridges the gap between
scenarios on the one hand and the process and development views of software architecture [34] on
the other hand (by means of the Jolly Jumper). Next, it provides a means to visualize the module
architecture (which is part of the development view) of a system (through the MAB) and to report non-
conformances of the system to a set of architectural rules (through ArchiSpy). We found no evidence of
another single toolset supporting scenarios, architectural visualization and verification, nor of the usage
of a tabular representation for the presentation of the module architecture as provided by the MAB.

URSA is based on matured principles (requiring a minimal amount of innovation), and built using
state-of-the-art technologies. The development of URSA was carried out in a multi-disciplinary-team
as a joint effort between Philips Research and Philips Business Communications. The development
of URSA has been embedded in an overall quality and maintainability improvement program of
a PBX. Although URSA has been developed for a PBX, its application is not restricted to the
telecommunications domain, however; instantiations of the generic parts of each of the tools are also
used to support software development of other systems within Philips.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



168 R. J. BRILET AL.

The approach taken and first experiences with the introduction of URSA within Philips Business
Communications have been touched upon briefly. In our experience, organizational issues are
considerably more demanding than technical issues when developing and subsequently introducing
a toolset like URSA.

ACKNOWLEDGEMENTS

The authors would like to thank L´eon Huijsdens, Roel P. de Jong, M. (Rien) J. Jordaan, Cees M. Klik, Ron L. C.
Koymans, Jeroen P. Medema, Rob C. van Ommering, and Gerard J. J. M. van de Ven for the support, cooperation,
help and discussions on the subject of this paper. We thank Angelo E. M. Hulshout, J¨urgen K. Müller, and André
Postma and the three anonymous referees of JSM for their valuable feedback on a previous version of this paper.

REFERENCES

1. Pressman RS.Software Engineering—A Practitioner’s Approach(2nd edn). McGraw-Hill Book Co.: Singapore, 1987.
2. IEEE.IEEE Software Engineering Standards Collection. Institute of Electrical and Electronics Engineers: New York NY,

1993.
3. Perry DE, Wolf AL. Foundations for the Study of Software Architecture.ACM, Software Engineering Notes1992;

17(4):40–52.
4. Shaw M, Garlan D.Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall Inc.: Upper Saddle River,

NJ, 1996.
5. IEEE Software. 1995;12(6). (Special issue on Software Architecture).
6. IEEE.Transactions on Software Engineering1995;21(4). (Special issue on Software Architecture).
7. Bass L, Clemens P, Kazman R.Software Architecture in Practice. Addison-Wesley Longman Inc.: Reading, MA, 1998.
8. Müller HA, Klashinsky K. Rigi—A system for programming-in-the-large.Proceedings 10th International Conference on

Software Engineering, Raffles City, Singapore, April 1988. ACM, 1988; 80–86.
9. Schwanke RW, Altucher RZ, Platoff MA. Discovering, visualizing, and controlling software structure.ACM Software

Engineering Notes1989;14(3):147–150.
10. van Ommering RC. TEDDY user’s manual.Technical Report 12NC 4322 2730176 1, Department for Information and

Software Technology, Philips Research, Eindhoven, the Netherlands, 1993.
11. Roosen M. Design visualization definition and concepts.IST Report RWB-508-re-94040, Department for Information and

Software Technology, Philips Research, Eindhoven, the Netherlands, 1994.
12. Feijs LMG, van Ommering RC. The theory of relations and its applications to software structuring.IST Report RWB-508-

re-95011, Department for Information and Software Technology, Philips Research, Eindhoven, the Netherlands, 1995.
13. Krikhaar RL. Reverse architecting approach for complex systems.Proceedings International Conference on Software

Maintenance’97, Bari, Italy, 1997. IEEE Computer Society Press: Los Alamitos, CA, 1997; 4–10.
14. Feijs L, Krikhaar R, van Ommering RC. A relational approach to support software architecture analysis.Software–Practice

and Experience1998;28(4):371–400.
15. Feijs L, Krikhaar RL. Relation algebra with multi-relations.International Journal of Computer Mathematics1998;70:57–

74.
16. Feijs L, de Jong R. 3D visualization of software architectures.Communications of the ACM1998;41(12):73–78.
17. Feijs L, van Ommering RC. Relation partition algebra—mathematical aspects of uses and part-of relations.Science of

Computer Programming1999;33:163–212.
18. Humphrey WS.Managing the Software Process. Addison-Wesley Publishing Company: Reading, MA, 1989.
19. CCITT High Level Language (CHILL)—Recommendation Z.200. Red Book, Volume VI—Fascicle VI.12. ITU: Geneva,

Switzerland, 1985.
20. Keck DO, Kühn PJ. The feature and service interaction problem in telecommunications systems—a survey.IEEE

Transactions on Software Engineering1998;24(10):779–796.
21. Corbi TA. Program understanding: Challenge for the 1990s.IBM Systems Journal1989;28(2):294–306.
22. Ning JQ, Engberts A, Kozacynski WV. Automated support for legacy code understanding.Communications of the ACM

1994;37(5):50–57. (Special issue on Reverse Engineering.)
23. Mauw S, Winter T. A prototype toolset for interworkings.Philips Telecommunication Review1993;51(3):41–45.
24. Pearse T, Oman P. Maintainability measurements on industrial source code maintenance activities.Proceedings

International Conference on Software Maintenance’95, Opio, France, 1995. IEEE Computer Society Press: Los Alamitos,
CA, 1995; 295–303.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



MAINTAINING A LEGACY: TOWARDS SUPPORT AT THE ARCHITECTURAL LEVEL 169

25. QACTM 3.1 User Guide and Reference Manual. Programming Research Ltd.: Hersham, UK, 1993.
26. Henry S, Kafura D. The evaluation of software systems’ structure using quantitative software metrics.Software—Practice

and Experience1984;14(6):561–573.
27. Bowman IT, Holt RC, Brewster NV. Linux as a case study: Its extracted software architecture.Proceedings 21st

International Conference on Software Engineering, Los Angeles CA, May 1999. ACM, 1999; 555–563.
28. Standard ECMA-179.Services for Computer Supported Telecommunications Applications (CSTA)—Phase I. ECMA:

Geneva, Switzerland, June 1992.
29. Standard ECMA-190.Protocol for Computer Supported Telecommunications Applications (CSTA)—Phase I. ECMA:

Geneva, Switzerland, June 1992.
30. Feijs LMG. Architecture visualization and analysis: motivation and example.IST Report RWB-510-re-95042. Philips

Research: Eindhoven, the Netherlands, 1995.
31. Chen Y-FR, Fowler GS, Koutsofios E, Wallach RS. Ciao: A graphical navigator for software and document repositories.

Proceedings International Conference on Software Maintenance’95, Opio (Nice), France, 1995. IEEE Computer Society
Press: Los Alamitos, CA, 1995; 66–75.

32. Krikhaar RL. Software architecture reconstruction.Doctoral dissertation, Faculty of Mathematics, Informatics, Physics
and Astronomy, University of Amsterdam (UvA), 1999.

33. Soni D, Nord R, Hofmeister C. Software architecture in industrial applications.Proceedings 17th International Conference
on Software Engineering, Seattle, 1995. ACM, 1999; 196–210.

34. Kruchten P. The 4+ 1 view model of architecture.IEEE Software1995;12(6):42–50.
35. Krikhaar RL, de Jong RP, Medema JP, Feijs LMG. Architecture comprehension tools for a PBX system.Proceedings 3rd

European Conference on Software Maintenance and Reengineering (CSMR), 1999. IEEE Computer Society Press: Los
Alamitos, CA, 1999; 31–39.

36. Glas A. A module architecture browser—visualization of architectural information in support of reverse engineering.Final
Report of the Postgraduate Program Software Technology, Stan Ackermans Institute, Department of Software Technology,
Eindhoven University of Technology, 1998.

37. von Mayrhauser A, Wang J, Li Q. Experience with a reverse architecture approach to increase understanding.Proceedings
International Conference on Software Maintenance, Oxford, England, 1999. IEEE Computer Society Press: Los Alamitos,
CA; 131–138.

38. Finnigan PJ, Holt RC, Kalas I, Kerr S, Kontogiannis K, M¨uller HA, Mylopoulos J, Perelgut SG, Stanley M, Wong K. The
software bookshelf.IBM Systems Journal1997;36(4):564–593.

39. Carmichael I, Tzeropos V, Holt RC. Design maintenance: Unexpected architectural interactions.International Conference
on Software Maintenance’95, Opio (Nice), France, 1995. IEEE Computer Society Press: Los Alamitos, CA; 1995; 134–
139.

40. Holt RC. Structural manipulations of software architecture using Tarski relation algebra.Proceedings 5th Working
Conference on Reverse Engineering (WCRE’98), Honolulu, Hawaii, 1998. IEEE Computer Society Press: Los Alamitos,
CA, 1998; 210–219.

41. Eick SG, Ward A. An interactive visualization for message sequence charts.4th Workshop on Program Comprehension
(WPC’96), Berlin, March 1996. IEEE Computer Society Press: Los Alamitos, CA, 1996; 2–8.

42. Murphy GC, Notkin D, Sullivan K. Software reflection models: Bridging the gap between source and high-level models.
ACM Software Engineering Notes1995;20(4):18–28.

43. ITU Recommendation Z.120—Message Sequence Chart (MSC). ITU: Geneva, Switzerland, 1996.
44. ITU Recommendation Z.100: Functional Specification and Description Language SDL Blue Book, Volume X, X.1–X.5.

ITU: Geneva, Switzerland, 1989.
45. Belina F, Hogrefe D, Sarma A.SDL with Applications from Protocol Specification. Prentice Hall International (UK) Ltd.:

Hertfordshire, UK, 1991.
46. Kazman R, Carri`ere SJ. View extraction and view fusion in architectural understanding.Proceedings 5th International

Conference on Software Reuse (ICRS’98), Victoria, BC, June 1998. IEEE Computer Society Press: Los Alamitos, CA,
1998; 200–299.

47. Dijkstra EW. The structure of the multi-programming system.Communications of the ACM1968;11(5):341–346.
48. Zweben S, Edwards S, Weide B, Hollingsworth J. The effects of layering and encapsulation on software development cost

and quality.IEEE Transactions on Software Engineering1995;21(3):200–208.
49. Harel D. On visual formalisms.Communications of the ACM1988;31(5):514–530.
50. Bril RJ, Feijs LMG, Glas A, Krikhaar RL, Winter T. Hiding expressed using relation algebra with multi-relations—oblique

lifting and lowering for unbalanced systems.4th European Conference on Software Maintenance and Reengineering
(CSMR), February 29–March 3, Zurich, Switzerland, 1999. IEEE Computer Society Press: Los Alamitos, CA, 1999; 33–
43.

51. Rechtin E, Maier MW.The Art of Systems Architecting. CRC Press: Boca Raton, FL, 1997.
52. Clemens P, Northrop L. Software architecture: An executive overview.Technical Report CMU/SEI-96-TR-003, Software

Engineering Institute, Pittsburgh, PA, 1996.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170



170 R. J. BRILET AL.

AUTHORS’ BIOGRAPHIES

Reinder J. Bril was a software architect at Philips Business Communications (PBC) and
had a leading role in the work described in this article. He has recently joined Philips
Research Laboratories Eindhoven (PRLE) and is currently working as a senior scientist
in the area of Quality of Service (QoS) for consumer devices (such as digital TV-sets
and set-top boxes), with a focus on dynamic resource management. He received a B.Sc.
and a M.Sc. (both with honours) from the Department of Electrical Engineering of the
University of Twente, the Netherlands. E-mail: Reinder.Bril@philips.com

Prof.dr.ir. Loe M.G. Feijs obtained his Master’s degree in Electrical Engineering from
the Eindhoven University of Technology (TUE) in 1979 and his Dr. degree in 1990.
For many years, he worked on formal specification techniques at Philips Research. He
has contributed to the design of COLD, worked on various industrial applications of
formal specifications, and is the (co-) author of three books on formal specification. Since
1994, he has been part-time professor at the TUE, chair: industrial applications of formal
methods. From 1998 onwards Feijs has been the scientific director of the EESI. His present
research interests include message sequence charts, software component technology and
applications of Internet technology to embedded systems.

Andr é Glasgraduated in computer science at the University of Twente. After that, he went to the University of
Eindhoven to follow a two year post-graduate programme, also in computer science. It was during his final project
for this post-graduate programme, that he worked on the project described in this paper. From 1998 onwards, he
has been a software engineer at the National Aerospace Laboratory of the Netherlands. E-mail: glas@nlr.nl.

René Krikhaar is a software architect for Magnetic Resonance Systems at Philips
Medical Systems in Best, the Netherlands. His (research) interests include software
engineering, software architecture modeling and software architecture verification.
Krikhaar earned a Ph.D. in computer science from the University of Amsterdam, the
Netherlands. His thesis concerns software architecture reconstruction based on relation
partition algebra. This theory has been applied on several industrial systems in different
domains. Contact him at rene.krikhaar@philips.com.

M. (Thijs) R.M. Winter worked as a software architect at Philips Business Communications. Now he works at
Philips Software Centre in Bangalore India. He received a M.Sc. in mathematics from the University of Utrecht
and he received a post graduate certification in Information and Communication technology from the Technical
University Eindhoven. After that he worked at the Philips Research Laboratories were he was active in the area
of formal design methods and protocol specification and verification. At Philips Business Communications he
participated in the development of new ISPBX features. His contact address is thijs.winter@philips.com.

Copyright 2000 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.2000;12:143–170


	1 INTRODUCTION
	2 APPLICATION DOMAIN
	2.1 Introduction
	2.2 Changing environment
	2.3 Changing market requirements
	2.4 Characterization of SOPHO

	3 URSA IN PERSPECTIVE
	3.1 Introduction
	3.2 Product specific course
	3.3 Quality assurance tools
	3.4 Software architecture recovery and maintenance experiment
	3.5 Motivation of URSA
	3.6 Characterization of URSA

	4 SUPPORT PROVIDED BY URSA
	4.1 Introduction
	4.2 Bridging the gap between scenarios and code
	4.2.1 Motivation
	4.2.2 The tooling exemplified

	4.3 Module architecture visualization
	4.3.1 Motivation
	4.3.2 Towards the description of a module architecture
	4.3.3 Module architecture extraction
	4.3.4 Functionality of the MAB
	4.3.4.1 Tabular representation.
	4.3.4.2 Weight of a uses relation.
	4.3.4.3 Presentation and navigation.
	4.3.4.4 Manipulation.

	4.3.5 Identification of connections violating a layered structure
	4.3.6 User interface of the MAB
	4.3.7 Design of the MAB


	5 EXPERIENCE
	5.1 Introduction
	5.2 Development of URSA
	5.3 Introduction of URSA
	5.3.1 Involvement of end-users
	5.3.2 Program understanding
	5.3.3 Complexity control
	5.3.4 Impact on development process


	6 CONCLUSIONS

