
Reverse Engineering in practice

Joost Gabriels, Serguei Roubtsov, Alexander Serebrenik
LaQuSo & SET

/ LaQuSo / Mathematics & Computer Science PAGE 16-1-2010

Engineering principle

• Construct
• Improve
• Maintain
• Assess
• (Re)use

We need models!

/ LaQuSo / Mathematics & Computer Science PAGE 26-1-2010

Models?

• Model is an object similar to an original object in
important features:
• What is important?

• Modelling aims at new knowledge about the original
by analysing the model.

• Conclusion by analogy: If two objects are similar in
some features, then they are similar in other (yet
unknown) features.

/ LaQuSo / Mathematics & Computer Science PAGE 36-1-2010

• Physical (have the same physical nature as an original):
• e.g. a model of a plane tested for aerodynamics

• Abstract (may have different physical nature):
• Textual descriptions
"A line joining a planet and the sun sweeps out equal areas during

equal intervals of time ."
• Mathematical

• Graphical

Types of models

/ LaQuSo / Mathematics & Computer Science PAGE 46-1-2010

Software: Models, models and more models

• Structure
• UML deployment diagrams
• UML class diagrams
• Dependency graphs

• Behaviour
• UML sequence diagrams
• UML activity diagrams
• UML state diagrams
• (Coloured/timed) Petri nets
• Process algebras
• Flow charts
• Performance model
• Communication model

/ LaQuSo / Mathematics & Computer Science PAGE 56-1-2010

Sounds familiar? Kruchten’s 4+1 views

Static (structure) Dynamic (behaviour)

Abstract Logical Process

Concrete Development
(code in files)

Deployment
(processors)

+ Use case scenarios traced through the architecture

/ LaQuSo / Mathematics & Computer Science PAGE 66-1-2010

Reverse Engineering?

Deriving model from the code.

Ingolf Krüger, U. of California:
“We have been successful in moving from

models to code, the challenge is round-trip
engineering”

That’s what reverse engineering is about!

/ LaQuSo / Mathematics & Computer Science PAGE 76-1-2010

From Code to Models – Why?

• Consistency check
• Implementation vs. documentation

• Understanding software
• In absence of architectural documentation

• Software quality assessment
• Models may be easier to analyze
• Software models are often graphical

• Preliminary step for
• Re-engineering
• Migration
• High-level documentation generation

/ LaQuSo / Mathematics & Computer Science PAGE 86-1-2010

Reverse Engineering Approach

• Depends on
• What kind of model would we like?
− structure / behaviour
− precise / approximate

• What kind of code do we have?
− complete / incomplete
− compilable / executable / neither
− programming languages:

heterogeneous / homogeneous
− “special cases”:
− process models
− business rules

/ LaQuSo / Mathematics & Computer Science PAGE 96-1-2010

From code to model

/ LaQuSo / Mathematics & Computer Science PAGE 106-1-2010

Reverse Engineering Approach

• Code ⇒ Data
• Parsing
• Scripting
• Focused search (grep, …)

• Data ⇒ Model
• Fact extraction

• Model ⇒ Information
• Measurement
• Visualisation

• Code ⇒ Information
• Inspection
• Walkthrough

• Information ⇒
Knowledge:
• Review

/ LaQuSo / Mathematics & Computer Science PAGE 116-1-2010

Case studies

1000 facets of reverse engineering
based on LaQuSo case studies

/ LaQuSo / Mathematics & Computer Science PAGE 126-1-2010

LaQuSo?

/ LaQuSo / Mathematics & Computer Science PAGE 136-1-2010

Toy example: Bellflower

• What kind of code do we have?
• complete
• compilable
• programming languages: homogeneous: MS VS C++
• originates from Rational Rose models
− Original models vs. inferred models!

• What kind of model would we like?
• structure: UML class diagrams
• behaviour: UML sequence diagrams
• precise

/ LaQuSo / Mathematics & Computer Science PAGE 146-1-2010

What did we do? Approach

• Code ⇒ Data
• Parsing

• Data ⇒ Model
• Fact extraction:
− Filtering
− Diagram

extraction
• Model ⇒

Information
• Visualisation

• Information ⇒
Knowledge
• Review

/ LaQuSo / Mathematics & Computer Science PAGE 156-1-2010

Information (structure)

Inferred class diagram contains more details than the original one:

• Additional fields and methods in certain classes
• Additional relationship: aggregation

/ LaQuSo / Mathematics & Computer Science PAGE 166-1-2010

Information (behaviour)

Sequence diagrams:
• The inferred one

contains more detailed
behaviour: new() and
delete() methods and

• One more object derived
from implementation

Inferred model is
consistent wrt design.

/ LaQuSo / Mathematics & Computer Science PAGE 176-1-2010

Industrial case with CPP2XMI: Printer-
producing company’s software

• What kind of code do we have?
• complete
• compilable
• programming languages: homogeneous: C++
• 60 KLOC
• No documentation

• What kind of model would we like?
• structure: UML class diagrams
• behaviour: UML sequence diagrams
• precise

/ LaQuSo / Mathematics & Computer Science PAGE 186-1-2010

What did we do? Approach (continued)

• Model ⇒
Information
• Measurement
• Visualisation

• Information ⇒
Knowledge: Review

/ LaQuSo / Mathematics & Computer Science PAGE 196-1-2010

1 picture = 1000 words?

/ LaQuSo / Mathematics & Computer Science PAGE 206-1-2010

Metrics (1)

Metrics Subsystems
A B

Number of classes 176 70
Number of methods 1106 383
Avg. methods per class 6.28 5.45
Classes with > 30 methods 4 2
Max fan-in / Max fan-out 27 / 27 23 / 21

• Subsystem A is quite big.
• Big parts of functionality are implemented in a few files.
• Many files depend on these few.

/ LaQuSo / Mathematics & Computer Science PAGE 216-1-2010

Metrics (2)

• Models derived: (illegible) sequence diagrams

Metrics Subsystems
A B

Incoming and
outgoing messages
per class

Maximum 112 271
Classes with >
30 mess.

5 6

Max. depth of scenario 41 55

• A number of heavily used classes
• Scenarios’ depth: too high → functionality should be

differently distributed.

/ LaQuSo / Mathematics & Computer Science PAGE 226-1-2010

So far…

• Case studies:
• Code
− Complete, compilable, homogeneous (OO)

• Model
− UML class/sequence/activity
− precise

• Approach
• parsing, fact extraction, visualisation, measurement

• Results
• Precision ⇒ Illegibility (too many details)
− Metrics can be of great help!

/ LaQuSo / Mathematics & Computer Science PAGE 236-1-2010

Real life industrial systems

They are often:
• Not only OO (legacy systems)

• Heterogeneous (C/Assembler, Cobol/PL SQL,…)

• Incomplete (some code is in libraries and third-party
components)

• Not compilable and executable within analysis
environment (‘weird’ OS, proprietary development
environment, …)

/ LaQuSo / Mathematics & Computer Science PAGE 246-1-2010

Industrial case with SQuAVisiT: Embedded
System

• What kind of code do we have?
• Not OO
• Almost homogeneous: mostly C with embedded Assembler
• Complete
• Modules of interest are compilable (at least can be parsed)
• Medium size: 150 KLOC
• No documentation

• What kind of model would we like?
• Structure: dependencies and layering
• Approximate (function pointer calls and Assembler code

ignored)

/ LaQuSo / Mathematics & Computer Science PAGE 256-1-2010

What did we do?

• Code ⇒ Data
• parsing

• Data ⇒ Model
• Fact extraction:
− Dependencies

extraction
• Model ⇒

Information
• Visualisation

• Information ⇒
Knowledge
• Review

ExtravisCode
Repository

Matrix
Zoom

GCC
preprocessor

AV
Repository

Fact
extractors

GUI & Control

Converters

SQuAVisiT
parserDependencies

/ LaQuSo / Mathematics & Computer Science PAGE 266-1-2010

Structure (Matrix View, 2)

• system is poorly
layered

• unexpected cross-
dependencies exist
between components

/ LaQuSo / Mathematics & Computer Science PAGE 276-1-2010

Case conclusions

• Non OO systems demand different models:
• Dependencies

• Visualisation – key to understanding

/ LaQuSo / Mathematics & Computer Science PAGE 286-1-2010

Expert system

Industrial case: Insurance company’s expert
system

• What kind of code do we have?
• Not OO
• Heterogeneous: Javascript, PL SQL, C++, Java, Cobol
• Complete
• Not compilable (less relevant here)
• Medium size: 300 KLOC
• Scarce documentation

• What kind of model would we like?
• Structure: dependencies and layering with implications

for maintenance

/ LaQuSo / Mathematics & Computer Science PAGE 296-1-2010

What did we do? Alternative approach

• Code ⇒ Data
• Ad-hoc scripting
• ClearSQL tool

• Data ⇒ ModelS
• Fact extraction:
− Filtering
− Dependency

extraction
− Duplication

extraction
• ModelS ⇒ Information

• Visualisation
• Measurement

• Information ⇒
Knowledge
• Review

ExtravisCode
Repository

Matrix
Zoom

Metrics
Viewer

Preprocessors
AV

Repository
Fact
extractors

GUI & Control

Gemini

Converters

CCFinder

Clear
SQL &
scripts

Code duplication

Dependencies
& metrics

/ LaQuSo / Mathematics & Computer Science PAGE 306-1-2010

Dependencies Model: Matrix View (1)

• (Almost) layered:
good design

• BUT data layer is
accessed from
several layers

• Layers affected by
calls from top layer are
visible (red squares)

What are the
maintenance
implications of this
figure?

Data layer
Model ⇒ Information

/ LaQuSo / Mathematics & Computer Science PAGE 316-1-2010

Dependencies Model: Extravis

• Huge green
‘bubbles’ reflect some
controversial coding
approach: getting rid
of parameters by
means of naming like
f(1,3) -> f_1_3

• Absence of
dedicated data access
layer is confirmed

/ LaQuSo / Mathematics & Computer Science PAGE 326-1-2010

Dependencies Model: Metrics

• ‘Change
propagators’ -
modules with big
Fan-in & Fan-out
–bottlenecks

• Modules with
zero fan-in – dead
code?

/ LaQuSo / Mathematics & Computer Science PAGE 336-1-2010

Code duplication model: CCFinder/Gemini

• Code is polluted
with
duplication:
restructuring
would improve
maintainability
but may change
the architecture

/ LaQuSo / Mathematics & Computer Science PAGE 346-1-2010

Quality model: Metrics

MI = 171 - 5.2 * ln(aveV) - 0.23 * aveV(g') -
16.2 * ln (aveLOC) + 50 * sin (sqrt(2.4 * perCM))

Long and (or) complex functions should be refined
or better commented

/ LaQuSo / Mathematics & Computer Science PAGE 356-1-2010

Case conclusions

• Analysis required multiple models:

• Dependency model

• Code duplication model

• Quality model

/ LaQuSo / Mathematics & Computer Science PAGE 366-1-2010

What about behaviour? Performance issues
with pension fund’s ‘Calculation engine’

• What kind of code do we have?

• complete
• not compilable in analysis environment but
executable at the customer‘s site
• heterogeneous: PL SQL, Cobol with SQL*Plus
inside
• large size: ~3000 KLOC of Cobol code only
• abundant sources: Cobol traces, Oracle logs

• What kind of model would we like?
• Behavioural to explain why the system is so slow

/ LaQuSo / Mathematics & Computer Science PAGE 376-1-2010

What did we do?

• Running system ⇒ Data
• Scripting & Focused search in Oracle logs
• Cobol code instrumentation to obtain traces

• Data ⇒ ModelS
• Fact extraction:
− Filtering

• Model ⇒ Information
• Testing
• Visualisation

• Information ⇒ Knowledge
• Code review & visualization analysis

/ LaQuSo / Mathematics & Computer Science PAGE 386-1-2010

Running system ⇒ Data

EXEC #5:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568305
FETCH #5:c=0,e=0,p=0,cr=2,cu=0,mis=0,r=1,dep=0,og=3,tim=1112568305
EXEC #153:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568305
FETCH #153:c=0,e=0,p=0,cr=2,cu=0,mis=0,r=1,dep=0,og=3,tim=1112568305
FETCH #153:c=0,e=0,p=0,cr=1,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568305
EXEC #179:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568305
FETCH #179:c=0,e=0,p=0,cr=5,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
EXEC #181:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
FETCH #181:c=0,e=0,p=0,cr=3,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
EXEC #113:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
FETCH #113:c=0,e=0,p=0,cr=4,cu=0,mis=0,r=1,dep=0,og=3,tim=1112568306
EXEC #201:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
FETCH #201:c=0,e=0,p=0,cr=4,cu=0,mis=0,r=1,dep=0,og=3,tim=1112568306
EXEC #5:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
FETCH #5:c=0,e=0,p=0,cr=2,cu=0,mis=0,r=1,dep=0,og=3,tim=1112568306
EXEC #6:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306
FETCH #6:c=0,e=0,p=0,cr=4,cu=0,mis=0,r=1,dep=0,og=3,tim=1112568306
EXEC #7:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1112568306

Oracle time

UNIX program ‘time’ was used
to determine execution time
for Cobol side

Environment:
Cobol application and Oracle DBMS run on the same machine
under AIX OS

Cobol time
Cobol ‘system’ time

/ LaQuSo / Mathematics & Computer Science PAGE 396-1-2010

1. Cobol time: pension calculation, query
parameters/return processing

2. System time for Cobol: Communication
with Oracle, disk usage

3. System time for Oracle: communication
with Cobol, disk usage

4. Oracle time for the Cobol application:
search in the database

Data ⇒ Communication model

Tijdverdeling tussen Cobol en Oracle

0,00

50,00

100,00

150,00

200,00

250,00

300,00

55 58 61 64 65 peildatum

Pensioen leeftijd

Se
co

nd
en

Systeem voor Oracle

Oracle rekentijd

Systeem voor Cobol

Cobol rekentijd

Cobol Oracle
Query call

Query return

System time (context
switches) was largely
underestimated

System time (context
switches) was largely
underestimated

Oracle logs show very moderate execution time. Where is the rest?

Avg
31%

20%

13%
36%

/ LaQuSo / Mathematics & Computer Science PAGE 406-1-2010

Data ⇒ Performance model

100 ms:
Oracle
logging
sensitivity

Different colours – different types of queries

• Types can be chosen on the fly
• Adaptable model (or a class of models)

Which queries are most time consuming ?

/ LaQuSo / Mathematics & Computer Science PAGE 416-1-2010

Information ⇒ Knowledge

• Get rid of parameter ‘up-to-datedness’ control

• Make use of Cobol ‘static memory’
before after

before

after

Drop orange

/ LaQuSo / Mathematics & Computer Science PAGE 436-1-2010

Case conclusions

• Behavioural model

• Data is obtained
• From a running system
• By different means

• Multiple models
• Communication
• Performance

Cobol Oracle

/ LaQuSo / Mathematics & Computer Science PAGE 446-1-2010

Industrial case: Certificate issuing

• What kind of code do we have?
• Workflow system log
• Context:
− Certificates are requested
− Data is analysed
− Certificates are granted (or not)

• What kind of models would we like?
• Process models: granted certificates only
• Task transfer model
• Performance model

/ LaQuSo / Mathematics & Computer Science PAGE 456-1-2010

Process Model

• Thickness of
arrows shows
frequency
• Thin lines =

anomalies (?)

• Closely
interrelated
tasks are
clustered

/ LaQuSo / Mathematics & Computer Science PAGE 466-1-2010

Task transfer

• Height: incoming arcs
• Width: outgoing arcs

• 3-7: flat
• Process initiators

• 14: tall
• Process finalisers

• 13, 26: disconnected
• Incidental

participants
• 8: many in/out-arcs

• Process facilitators

/ LaQuSo / Mathematics & Computer Science PAGE 476-1-2010

Performance Model

• Throughput times of traces

/ LaQuSo / Mathematics & Computer Science PAGE 486-1-2010

Case conclusions

• From detailed log files we can extract information
• Process model
• Task transfer model
• Performance model

• Models beyond the software: organizational context!

• Answering the question:
• Does my company actually work the way I thought?

/ LaQuSo / Mathematics & Computer Science PAGE 496-1-2010

Conclusions

• Reverse engineering = getting models from existing
system

• Models are useful if they give additional knowledge
about software system

• The choice of models depends on the task in hand
(the knowledge we want to obtain)

• Visualisation is important BUT

• Numbers really matter

	Reverse Engineering in practice
	Engineering principle
	Models?
	Types of models
	Software: Models, models and more models
	Sounds familiar? Kruchten’s 4+1 views
	Reverse Engineering?
	From Code to Models – Why?
	Reverse Engineering Approach
	From code to model
	Reverse Engineering Approach
	Case studies
	LaQuSo?
	Toy example: Bellflower
	What did we do? Approach
	Information (structure)
	Information (behaviour)
	Industrial case with CPP2XMI: Printer-producing company’s software
	What did we do? Approach (continued)
	1 picture = 1000 words?
	Metrics (1)
	Metrics (2)
	So far…
	Real life industrial systems
	Industrial case with SQuAVisiT: Embedded System
	What did we do?
	Structure (Matrix View, 2)
	Case conclusions
	Expert system
	What did we do? Alternative approach
	Dependencies Model: Matrix View (1)
	Dependencies Model: Extravis
	Dependencies Model: Metrics
	Code duplication model: CCFinder/Gemini
	Quality model: Metrics
	Case conclusions
	What about behaviour? Performance issues with pension fund’s ‘Calculation engine’
	What did we do?
	Running system Data�
	Data Communication model �
	Data Performance model
	Information Knowledge
	Case conclusions
	Industrial case: Certificate issuing
	Process Model
	Task transfer
	Performance Model
	Case conclusions
	Conclusions

