
Software Architecture:
Introduction

2II45
Fall 2009

1

Background

• Tom Verhoeff, Mark van den Brand,
Alexander Serebrenik, Lou Somers

• SET = Software Engineering & Technology

• LaQuSo

• www.win.tue.nl/set

• www.win.tue.nl/~wstomv/edu/2ii45

2

http://www.win.tue.nl/set
http://www.win.tue.nl/set
http://www.win.tue.nl/~wstomv/edu/2ii45
http://www.win.tue.nl/~wstomv/edu/2ii45

You Are Expected to:

• Read literature (see last slides)

• Do small homework assignment(s)

• Write essay (more information next week)

• in couples

• Take written exam (1.5h in January)

• There is also 1.5h retry of Block 1 in Jan.

The Big Picture

• Software Engineering, and Architecture in
particular, is all about managing complexity

• Divide and Conquer

• Abstraction (deciding what to ignore when)

HW = ’Hello World!’;
document.writeln(HW);
document.writeln(HW);

function twice(s) {
 document.writeln(s);
 document.writeln(s);
}
twice(’Hello World!’);

Context of Software
Architecture

USER

REQUIREMENTS

DEFINITION

SOFTWARE

DEFINITION

CODE

DETAILED UNIT

DESIGN TESTS

DESIGN

ARCHITECTURAL

REQUIREMENTS

INTEGRATION

TESTS

SYSTEM

TESTS

ACCEPTANCE

TESTS

SVVP/UT

SVVP/IT

SVVP/ST

SVVP/AT

Project Request

URD

SRD

ADD

DDD

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/DD

Tested Modules

Tested Subsystems

Tested System

Accepted Software

1

2

3

4

5

6

7

8

Product

Activity

Verification

Compiled Modules

9

SVVP Software Verification and Validation Plan

ESA Software Engineering Standards: Life Cycle Verification Approach

5

System Engineering
From: M.J. Christensen, R.H. Thayer. The Project Manager's Guide to Software

Engineering's Best Practices. Wiley, 2002

1.4 Software Systems Engineering 17

The systematic application of methods, tools, and techniques to achieve a stated re-

quirement or objective for an effective and efficient software system.

These definitions would imply that software systems engineering is partly a subset of soft-

ware engineering. However, the above definitions do not focus on the needs of users, nor

do they explicitly encompass the full life cycle of support that is the dominant feature in the

definitions of systems engineering presented earlier.

Figure 1.4 illustrates the relationships between systems engineering, software systems

engineering, and software engineering functions. In this view, the systems engineering

function performs initial analysis and design and final system integration and testing. Dur-

ing the initial stages of software development, the software systems engineering function is

responsible for software requirements analysis and architectural design. Software systems

engineering is also responsible for the final testing of the software system and its delivery

to the systems function. Actual component engineering, implementation, and testing are

the dominion of software engineering in this view. A similar diagram can be drawn for any

hardware items of a system, if such items are being developed or procured. This diagram

should be contrasted with Figure 1.1, which shows the notional distribution of effort for

systems engineering during the development process.

Figure 1.4: Engineering Activities and Product Flow

System
Analysis

System
Design

Software Req
Analysis

System Engineering

SW System Engineering

System Integr

Testing

SW System
Testing

SW Integration

Testing

SW Engineering
SW Subsystem

Testing
Detailed SW

Design

Code & Unit
Test

6

Who Are You
(Going to Be)?

• Software Architect

• Requirements Engineer, Systems Engineer

• Software Engineer

• Test Engineer

• Project Manager

• Quality Engineer

• (Academic) Researcher

• Independent Consultant, Auditor
7

On What Side of the
Table Are You?

• Candidate in job interview (architect-to-be)

• Director of start-up, hiring staff

• Looking for a contractor to do architectural design
for your project

• Architect negotiating requirements

• Architect leading a design team

• Assistant in a project review or audit

8

Range of Project Sizes

• Small: one-person, one-month effort

• Large: >100 M€, >100 persons, >10 yrs

• Single-platform versus multi-platform, etc.

• Requires (very) different approaches

• “People problems” play a role

9

Existing Industrial
Architectural Frameworks

• IBM

• Oracle

• Microsoft

• Sun

Architecture Tooling

• Architecture Description Languages (ADLs)

• openArchitectureWare (in Eclipse)

• Acme (CMU)

• AADL

• …

• Lattix Architecture Management System

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://www.lattix.com/products
http://www.lattix.com/products

Course Goals
• Know the fundamental concepts in context

• Awareness of issues, approaches, and future
trends

• Ability to find and read relevant literature

• Ability to critically assess

• A quantitative, scientific/engineering
attitude

• NOT: Make you an architecture designer

12

Key Questions
• What to know? (Fundamentals vs. state of the art)

• What to do?

• How to do it?

• What to deliver?

• Who does what when?

• Creating a Software Architecture is not an atomic
action, but involves various activities and kinds of
persons. You can’t do everything alone at once.

• (Un)fortunately: (too) many answers

13

Topics in Block 2

1. From Req. to Arch.: Doing Design

2. From Arch. to Req.: Doing Evaluation

3. From Arch. to Code: Doing Implementation, code generation, infrastructure
for testing, code configuration managment

4. From Code to Arch.: Monitoring impl. work, Reverse Engineering, Integration

5. Process, Documentation, Tools, Standards

USER

REQUIREMENTS

DEFINITION

SOFTWARE

DEFINITION

CODE

DETAILED UNIT

DESIGN TESTS

DESIGN

ARCHITECTURAL

REQUIREMENTS

INTEGRATION

TESTS

SYSTEM

TESTS

ACCEPTANCE

TESTS

SVVP/UT

SVVP/IT

SVVP/ST

SVVP/AT

Project Request

URD

SRD

ADD

DDD

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/DD

Tested Modules

Tested Subsystems

Tested System

Accepted Software

1

2

3

4

5

6

7

8

Product

Activity

Verification

Compiled Modules

9

SVVP Software Verification and Validation Plan

ESA Software Engineering Standards: Life Cycle Verification Approach

1.

3.

2.

4.
5.

14

With a Focus on Evaluation

Tentative Schedule

9. Introduction
10. Architecture & Implementation
11. Architecture & Requirements
12. Architecture Evaluation
13. Component-Based Architecture
14. Reverse Engineering an Architecture
15. Model-Driven Engineering/Architecture
16. Guest Lecture

Architecture (IEEE def.)

• The fundamental organization of a system

• embodied in its components,

• their relationships to each other and

• to the environment, and

• principles guiding its design and evolution.

16

Alternative definition: Set of high-level design decisions

Architectural Description of Sw-Intensive
Systems: IEEE Std 1471-2000

a) Expression of the system and its evolution

b) Communication among the system stakeholders

c) Evaluation and comparison of architectures in a
consistent manner

d) Planning, managing, and executing the activities of
system development

e) Expression of the persistent characteristics and
supporting principles of a system to guide
acceptable change

f) Verification of a system implementation’s
compliance with an architectural description

17

Conceptual model of architectural description

IEEE

ARCHITECTURAL DESCRIPTION OF SOFTWARE-INTENSIVE SYSTEMS Std 1471-2000

Copyright © 2000 IEEE. All rights reserved.

5

applied to these representations of the view. These languages and techniques are used to yield results rele-
vant to the concerns addressed by the viewpoint.

An architectural description selects one or more viewpoints for use. The selection of viewpoints typically
will be based on consideration of the stakeholders to whom the AD is addressed and their concerns.

A viewpoint definition may originate with an AD, or it may have been defined elsewhere. A viewpoint that is
defined elsewhere is referred to in this recommended practice as a

library viewpoint

.

A view may consist of one or more

architectural models

. Each such architectural model is developed using
the methods established by its associated architectural viewpoint. An architectural model may participate in
more than one view.

NOTE—In a complex system, ADs may be developed for components of the system, as well as for the system as a
whole. In this case, it may be that one AD will have a view corresponding to a particular viewpoint and another AD will
have a view corresponding to the same viewpoint. Although the system being described by these two views has the
whole-part relationship, this is not an instance of multiple views corresponding to one viewpoint. The ADs are consid-
ered separate even though they are related by the systems they describe.

NOTE—Figure 1 provides an informative summary of the key concepts introduced by this recommended practice and
their inter-relationships. The figure presents these concepts in the context of an architecture for a particular system and
an associated architectural description. This is not to assume or require that a system has only one architecture or that
there is only one architectural description depicting that architecture. In the figure, boxes represent classes of things.
Lines connecting boxes represent associations between things. An association has two roles (one in each direction). A

Environment System

Stakeholder

Architecture

Architectural
Description

Concern Viewpoint View

Model

influences

inhabits

has an

has 1..*
identifies
1..*

described by
1

is important to
1..*

has
1..*

selects
1..*

participates in
1..*

organized by
1..*

identifies
1..*

used to
cover 1..*

is addressed to
 1..*

conforms to

establishes methods for
1..*

aggregates
1..*

consists of
1..*

Mission

fulfills 1..*

Library
Viewpoint

Rationale

has source
0..1

provides

participates in

Figure 1—Conceptual model of architectural description
18

Architectural Description
b) Identification of the system stakeholders and their

concerns judged to be relevant to the architecture

c) Specifications of each viewpoint that has been
selected to organize the representation of the
architecture and the rationale for those selections

d) One or more architectural views

e) A record of all known inconsistencies among the
architectural description’s required constituents

f) A rationale for selection of the architecture

19

Example Viewpoints

• Structural viewpoints

• Behavioral viewpoints

• Physical interconnect viewpoint

• Link bit error rate viewpoint

• Decomposition and allocation, Enterprise,
Information, Computational, Engineering,
Technology

20

Kruchten’s 4+1 Views

Implementation View = Development View Physical View = Deployment View

http://wiki.community.objectware.no/display/smidigtonull/4+plus+1+View+Model
http://wiki.community.objectware.no/display/smidigtonull/4+plus+1+View+Model

Why Architecture?
• Organizes communication about solution domain.

• Facilitates parallel construction by a team.

• Improves ability to plan work, track progress.

• Improves verifiability (facilitates getting it to work):

- Allows early review of design.

- Allows unit testing of separate components.

- Allows stepwise integration (no “big bang”).

• Improves maintainability: changes affect few components.

• Improves possibilities for reuse.
22

Economy of Defects
• The longer a defect is undiscovered, the higher its

cost: cost grows exponentially in amount of time
between injection and removal of a defect.

• Defects decrease the predictability of a project.
Cost and time of defect localization and repair are
extremely variable.

• Defects concern risks (uncertainty); product could
be defect-free at once, but defects are likely.

• The likelihood of defects increases rapidly with
higher system complexity.

23

Quality Chain

• Product-in-use qualities: Car gets end-user
how quickly/reliably from A to B? …

• External product qualities: Max. speed of
car? Garage bills …

• Internal product/design qualities: Engine
specs, choice of materials, …

• Process qualities: Factory organization …

24

Lack-of-Quality Chain

• Product-in-use: failures

• Product itself (before use): defects, faults

• Product Design: defects, faults

• Process: (human) mistakes

• Read: Ariane 5 Failure Report

25

http://www.win.tue.nl/~wstomv/edu/2ip30/references/ARIANE%25205%2520Failure%2520-%2520Full%2520Report.html
http://www.win.tue.nl/~wstomv/edu/2ip30/references/ARIANE%25205%2520Failure%2520-%2520Full%2520Report.html

Modularization:
Divide and Conquer

• Define subsystems/components/modules
and their interfaces

• How to decide what goes where

• How to describe: IEEE Std 1016-1998

• Programming languages offer facilities for
modularization, but these are often
unsuitable for describing an architecture

26

• IEEE Std 1016-1998

• Recommended Practice for SDD

• SDD describes structure of Sw solution

• Design entities & attributes

• Necessary, intrinsic attributes

Sw Design Description

27

• Identification (unique name, for reference)

• Type (nature of the component, e.g. library)

• Purpose (why, traced to requirements)

• Function or data type (what it does/stores)

• Subordinates (constituting components of
composite entities)

Design Entity Attributes

28

• Dependencies (relation to other entities:
uses, requires)

• Interfaces (provided to other entities, incl.
protocols)

• Resources (used from outside design)

• Processing (algorithmic details of function)

• Data (stored/maintained inside entity)

Design Entity Attributes
(2)

29

Non-Intrinsic
Attributes

• Designer names

• Design status

• Revision history

30

Design View: Subset of design
entity attribute information

6

Copyright © 1998 IEEE. All rights reserved.

IEEE

Std 1016-1998 IEEE RECOMMENDED PRACTICE FOR

This clause introduces the notion of

design views

 to aid in organizing the design attribute information defined in

Clause 5. It does not supplement Clause 5 by providing additional design information nor does it prescribe the format

or documentation practice for design views.

A recommended organization of design entities and their associated attributes are presented in this clause to facilitate

the access of design information from various technical viewpoints. This recommended organization is flexible and

can be implemented through different media such as paper documentation, design languages, or database management

systems with automated report generation, and query language access. A sample table of contents is given in Annex A

to illustrate how an access structure to a design description may be prepared.

6.2 Design views

Entity attribute information can be organized in several ways to reveal all of the essential aspects of a design. In so

doing, the user is able to focus on design details from a different perspective or viewpoint. A

design view

 is a subset of

design entity attribute information that is specifically suited to the needs of a software project activity.

Each design view represents a separate concern about a software system. Together, these views provide a

comprehensive description of the design in a concise and usable form that simplifies information access and

assimilation.

A recommended organization of the SDD into separate design views to facilitate information access and assimilation

is given in Table 1. Each of these views, their use, and representation are discussed in detail.

Table 1—Recommended design views

6.2.1 Decomposition description

6.2.1.1 Scope

The decomposition description records the division of the software system into design entities. It describes the way the

system has been structured and the purpose and function of each entity. For each entity, it provides a reference to the

detailed description via the identification attribute.

The attribute descriptions for identification, type, purpose, function, and subordinates should be included in this design

view. This attribute information should be provided for all design entities.

Design view Scope Entity attributes Example representations

Decomposition
description

Partition of the system into
design entities

Identification, type,
purpose, function,
subordinates

Hierarchical
decomposition diagram,
natural language

Dependency description Description of the
relationships among
entities and system
resources

Identification, type,
purpose, dependencies,
resources

Structure charts, data flow
diagrams, transaction
diagrams

Interface description List of everything a
designer, programmer, or
tester needs to know to use
the design entitites that
make up the system

Identification, function,
interfaces

Interface files, parameter
tables

Detail description Description of the internal
design details of an entity

Identification, processing,
data

Flowcharts, N-S charts,
PDL

31

There are various logical/development (sub)views

Mini Example: Anagrams Requirements as
Problem Frame (Context Diagram)

AnagramsUser

Game Rules

32

Architecture: Logical
View (Decomposition)

Anagrams

UI LibUser

33

Dict

What is the most (?) important information
conveyed in this diagram?

That User is not directly related to Dict

Package Dependencies:
Development View

UI Lib

34

Dict

Keep It Simple, Stupid (KISS):
Development view can mimic logical view

Kakuro Architecture

© 2005, Tom Verhoeff

General

NumSpecs

Geometry

Puzzle

Statistics

Bags

Undo

BacktrackTechniques

Solve BatchSolve

<<impl>>

SysUtils

<<impl>>

<<impl>>

35

What evolution can
do to you!

(Some arrows were
omitted to avoid clutter!)

Elevator Control

Elevator

Control

Elevator

Users

Behavior Rules

Elevator

Hardware

• Single-cage four-floor elevator

• Separate cage doors and floor doors

• Cage and floor buttons with lights

• Display in cage

36

Elevator Users do not interact directly with Elevator Control!

Elevator Control Architecture:
Logical View

elevator
hardware
(ehw)

service (srv)

driver (drv)
doors level

requestscage

scheduling (sch)

elevator control (ect)

37

I N
 C

 O
 M

 P
 L

 E
 T

 E

W
 h

 a
 t

 i
 s

 m
 i

s s
 i

n g
 ?

I N
 T

 E
 R

 F
 A

 C
 E

 S
 !

Android: Development View

Evaluate Modularization

• Number and size of components

• Number of relations (less is better)

• Coupling: how components depend on others

• Cohesion: similar items in same component

• Complexity/nature of interfaces

• Fan-in, fan-out

39

Kinds of Cohesion

• Coincidental cohesion (worst)

• Logical cohesion (e.g. input module)

• Temporal cohesion (e.g. initialization)

• Procedural cohesion (e.g. batch processes)

• Communicational cohesion

• Sequential (output-to-input) cohesion

• Fuctional cohesion (best)

http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Kinds of Coupling
• Content: via internals, not using specified interfaces

(high/bad)

• Common (via global variables)

• External (via a file format, common protocol)

• Control (via command parameter)

• Stamp (passing too much information)

• Message coupling (low)

• Routine call, call-back

• Type use

• Inclusion/import

• No coupling (lowest)
41

http://www.win.tue.nl/~wstomv/
http://www.win.tue.nl/~wstomv/

Homework Assignment 6

• About coupling & cohesion (will be made
available on webpage and in peach)

Main Book for Part 2

• L. Bass, P. Clements, R. Kazman. Software
Architecture in Practice (2nd Ed.). Addison-
Wesley, 2007.

• R.N. Taylor, N. Medvidovic, E.M. Dashofy.
Software Architecture: Foundations, Theory,
Practice. Wiley, 2010.

Supplementary (more recent) textbook:

Reading Material
• M.J. Christensen, R.H. Thayer. The Project

Manager's Guide to Software Engineering's
Best Practices. Wiley, 2002. Chapter 1.

• ARIANE 5: Flight 501 Failure. Report by the
Inquiry Board. July 1996.

• IEEE Recommended Practice for Architectural
Description of Software Intensive Systems. Std
1471-2000.

• M.W. Maler, D. Emery, and R. Hilliard.
Software Architecture: Introducing IEEE
Standard 1471, IEEE Computer, April 2001.

44

http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf

Reading Material (2)

• D.L. Parnas. On Criteria To Be Used in
Decomposing Systems into Modules. CACM
15(12), Dec. 1972.

• [Optional] E. Yourdon and L.L. Constantine.
Structured Design: Fundamentals of a
Discipline of Computer Program and System
Design. Prentice-Hall, 1979.

• [Optional] IEEE Recommended Practice for
Software Design Descriptions. Std 1016-1998.

45

