Software Architecture:
Introduction

21145
Fall 2009

Background

Tom Verhoeff, Mark van den Brand,
Alexander Serebrenik, Lou Somers

SET = Software Engineering & Technology
LaQuSo LaQuSo

www.win.tue.nl/set

www.win.tue.nl/~wstomv/edu/2ii45

http://www.win.tue.nl/set
http://www.win.tue.nl/set
http://www.win.tue.nl/~wstomv/edu/2ii45
http://www.win.tue.nl/~wstomv/edu/2ii45

You Are Expected to:

® Read literature (see last slides)

® Do small homework assighment(s)

® Write essay (more information next week)
® in couples

® Take written exam (|.5h in January)

® There is also |.5h retry of Block | in Jan.

The Big Picture

® Software Engineering, and Architecture in
particular, is all about managing complexity

® Divide and Conquer

® Abstraction (deciding what to ignore when)

HW = 'Hello World!’; function twice(s) {
document.writeln (HW) ; document.writeln(s);
document.writeln(HW) ; document.writeln(s);

}
twice('Hello World!');

Context of Software
Architecture

\P:ﬂect Request

USER
REQUIREMENTS
1 DEFINITION

¥,
URD . SVVP/SR

2

SOFTWARE

REQUIREMENTS

DEFINITION

Product

.
SRD » SVVP/AD

ARCHITECTURAL

3 DESIGN

Activity

Verification

SVVP

<

O,
ADD N \SVVP/DD

DETAILED
DESIGN

Software Verification and Validation Plan

SVVP/AT

SVVP/ST

SVVPAT

SVVP/UT
<l

Accepted Softway

9

ACCEPTANCE
TESTS

Tested SysteV(

8

SYSTEM
TESTS

Tested Subsysteny(

7

INTEGRATION
TESTS

Tested Moduky(

UNIT
TESTS

CODE

4 6
>,
DDD N \SVVP/DD Compiled Modules

ESA Software Engineering Standards: Life Cycle Verification Approach

5

System Engineering

From: M.). Christensen, R.H.Thayer. The Project Manager's Guide to Software

System
Analysis

Engineering's Best Practices.Wiley, 2002

System
Design

System Engineering

System
Testing

System Integr

Testing

Software Req

Analysis

SW System Engineering

Architectural
SW Design

SW System
Testing

SW integration

Testing

SW Engineering

Detailed SW
Design

SW Subsystem | -
Testing 5

Code & Unit
Test

SW Engineering

Figure 1.4: Engineering 4ctivities and Product Flow

Who Are You
(Going to Be)!

Software Architect

Requirements Engineer, Systems Engineer

Software Engineer

Test Engineer

Project Manager
Quality Engineer
(Academic) Researcher

Independent Consultant, Auditor

7

On What Side of the
Table Are You?

Candidate in job interview (architect-to-be)

Director of start-up, hiring staff

Looking for a contractor to do architectural design
for your project /ﬂ

Architect negotiating requirements

Architect leading a design team

Assistant in a project review or audit

" MAYEE YOU SHOULD RECONSIDER THOSE PLACE CARDS , HARRIS 7"

Range of Project Sizes

Small: one-person, one-month effort
Large: >100 M€, >100 persons, >10 yrs
Single-platform versus multi-platform, etc.
Requires (very) different approaches

“People problems™ play a role

Existing Industrial
Architectural Frameworks

e |BM
® Oracle
® Microsoft

® Sun

Architecture Tooling

® Architecture Description Languages (ADLs)

® openArchitectureVWare (in Eclipse)

® Acme (CMU)
o AADL

® | attix Architecture Management System

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://www.lattix.com/products
http://www.lattix.com/products

Course Goals

Know the fundamental concepts in context

Awareness of issues, approaches, and future
trends

Ability to find and read relevant literature

Ability to critically assess

A quantitative, scientific/engineering
attitude

NOT: Make you an architecture designer

12

Key Questions

What to know? (Fundamentals vs. state of the art)

What to do!

How to do it!

What to deliver?

Who does what when?

Creating a Software Architecture is not an atomic
action, but involves various activities and kinds of
persons. You can’t do everything alone at once.

(Un)fortunately: (too) many answers

|3

Topics in Block 2
I . SRNE\EYVP/AD 2.

ARCHITECTURAL SVVP/IT
DESIGN §

¥,
3 ADD \\SVVP/DD

From Req. to Arch.: Doing Design

From Arch. to Req.: Doing Evaluation

From Arch. to Code: Doing Implementation, code generation, infrastructure
for testing, code configuration managment

From Code to Arch.: Monitoring impl. work, Reverse Engineering, Integration
Process, Documentation, Tools, Standards

With a Focus on Evaluation

| 4

Tentative Schedule

9. Introduction

10. Architecture & Implementation

| |. Architecture & Requirements

|2. Architecture Evaluation

| 3. Component-Based Architecture

| 4. Reverse Engineering an Architecture

|5. Model-Driven Engineering/Architecture
|6. Guest Lecture

Architecture (IEEE def.)

The fundamental organization of a system
embodied in its components,
their relationships to each other and

to the environment, and

principles guiding its design and evolution.

Alternative definition: Set of high-level design decisions

|6

Architectural Description of Sw-Intensive
Systems: |[EEE Std 1471-2000
a) Expression of the system and its evolution
Communication among the system stakeholders

Evaluation and comparison of architectures in a
consistent manner

Planning, managing, and executing the activities of
system development

Expression of the persistent characteristics and
supporting principles of a system to guide
acceptable change

f) Verification of a system implementation’s

compliance with an architectural description
|7

Conceptual model of architectural description

Mission

fulfills 1..*

influences
Environment Architecture

inhabits

described by

has 1..* 1

is important to identifies
1.7 1.. Architectural provides

Stakeholder - Rationale
Description

is addressed to participates in
1.%

organized by
selects 1.”
1.*

identifies
1.7

conforms to

Concern Viewpoint

used to
cover 1..*

participates in consists of
has source 1.” 1.*

0..1 aggregates

1.*

Library

. : establishes methods for
Viewpoint

1.*

|18

Architectural Description

b) Identification of the system stakeholders and their
concerns judged to be relevant to the architecture

c) Specifications of each viewpoint that has been
selected to organize the representation of the
architecture and the rationale for those selections

d) One or more architectural views

e) A record of all known inconsistencies among the
architectural description’s required constituents

f) A rationale for selection of the architecture

Example Viewpoints

Structural viewpoints
Behavioral viewpoints

Physical interconnect viewpoint
Link bit error rate viewpoint

Decomposition and allocation, Enterprise,
Information, Computational, Engineering,
Technology

Kruchten’s 4+ | Views

Process View Logical View

Diagrams: Diagrams:

- Sequence - Class

- Communication - Object

- Composite Structure
1: foo

" e

\
/

|eoibo /
|enydaosuo)

Scenario View

- Use Case
- User Stories
e ="

Implementation View Physical View

|edIsAyd

Diagrams: Diagrams:
- Component - Deployment
- Package - Nettwork Topology (not UML)

leuonelado /

Implementation View = Development View Physical View = Deployment View

http://wiki.community.objectware.no/display/smidigtonull/4+plus+1+View+Model
http://wiki.community.objectware.no/display/smidigtonull/4+plus+1+View+Model

Why Architecture!

Organizes communication about solution domain.
Facilitates parallel construction by a team.
Improves ability to plan work, track progress.
Improves verifiability (facilitates getting it to work):
- Allows early review of design.

- Allows unit testing of separate components.

- Allows stepwise integration (no “big bang”).

Improves maintainability: changes affect few components.

Improves possibilities for reuse.
22

Economy of Defects

The longer a defect is undiscovered, the higher its
cost: cost grows exponentially in amount of time
between injection and removal of a defect.

Defects decrease the predictability of a project.
Cost and time of defect localization and repair are
extremely variable.

Defects concern risks (uncertainty); product could
be defect-free at once, but defects are likely.

The likelihood of defects increases rapidly with
higher system complexity.

23

Quality Chain

Product-in-use qualities: Car gets end-user
how quickly/reliably from A to B? ...

External product qualities: Max. speed of
car! Garage bills ...

Internal product/design qualities: Engine
specs, choice of materials, ...

Process qualities: Factory organization ...

Lack-of-Quality Chain

Product-in-use: failures

Product itself (before use): defects, faults
Product Design: defects, faults

Process: (human) mistakes

Read: Ariane 5 Failure Report

http://www.win.tue.nl/~wstomv/edu/2ip30/references/ARIANE%25205%2520Failure%2520-%2520Full%2520Report.html
http://www.win.tue.nl/~wstomv/edu/2ip30/references/ARIANE%25205%2520Failure%2520-%2520Full%2520Report.html

Modularization:
Divide and Conquer

Define subsystems/components/modules
and their interfaces

How to decide what goes where

How to describe: IEEE Std 1016-1998

Programming languages offer facilities for
modularization, but these are often
unsuitable for describing an architecture

Sw Design Description

IEEE Std 1016-1998

Recommended Practice for SDD

SDD describes structure of Sw solution
Design entities & attributes

Necessary, intrinsic attributes

Design Entity Attributes

|dentification (unique name, for reference)
Type (nature of the component, e.g. library)
Purpose (why, traced to requirements)
Function or data type (what it does/stores)

Subordinates (constituting components of
composite entities)

Design Entity Attributes

(2)

Dependencies (relation to other entities:
uses, requires)

Interfaces (provided to other entities, incl.

protocols)

Resources (used from outside design)
Processing (algorithmic details of function)

Data (stored/maintained inside entity)

29

Non-Intrinsic
Attributes

® Designer names
® Design status

® Revision history

Design View: Subset of design
entity attribute information

Table 1—Recommended design views

Design view

Scope

Entity attributes

Example representations

Decomposition
description

Partition of the system into
design entities

Identification, type,
purpose, function,
subordinates

Hierarchical
decomposition diagram,
natural language

Dependency description

Description of the
relationships among
entities and system
resources

Identification, type,
purpose, dependencies,
resources

Structure charts, data flow
diagrams, transaction
diagrams

Interface description

List of everything a
designer, programmer, or
tester needs to know to use
the design entitites that
make up the system

Identification, function,
interfaces

Interface files, parameter
tables

Detail description

Description of the internal
design details of an entity

Identification, processing,
data

Flowcharts, N-S charts,
PDL

There are various logical/development (sub)views

31

Mini Example: Anagrams Requirements as
Problem Frame (Context Diagram)

Anagrams

Architecture: Logical
View (Decomposition)

What is the most (?) important information
conveyed in this diagram!?

That User is not directly related to Dict

33

Package Dependencies:
Development View

Keep It Simple, Stupid (KISS):
Development view can mimic logical view

34

-

Iitecture

Kakuro Arc

8 /3

Solve BatchSolve

10

1

Techniques Backtrack

1 1]

|
|
|
'<<impl>>
|
|
|
|

v

Undo

What evolution can
do to you!

(Some arrows were
Genera ssuis | omitted to avoid clutter!)

i

Elevator Control

Single-cage four-floor elevator

Separate cage doors and floor doors

Cage and floor buttons with lights

Display in cage

Elevator Elevator Elevator
Users Hardware Control

Elevator Users do not interact directly with Elevator Control!

36

Elevator Control Architecture:
Logical View

elevator control (ect)

scheduling (sch)

03*

-

i"m‘q’u ests

elevator
hardware
(ehw)

Android: Development View

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media Core Libraries
Framework

OpenGL | ES FreeType M

Machine

SGL SSL

LINUX KERNEL

Display

Driver

Flash Memory Binder (IPC)

mera UDriver :
Camera Drive Driver Driver

WiFi Driver Audio Power

Keypad Driver Drivers Management

Evaluate Modularization

Number and size of components

Number of relations (less is better)

Coupling: how components depend on others
Cohesion: similar items in same component
Complexity/nature of interfaces

Fan-in, fan-out

Kinds of Cohesion

Coincidental cohesion (worst)

Logical cohesion (e.g. input module)
Temporal cohesion (e.g. initialization)
Procedural cohesion (e.g. batch processes)
Communicational cohesion

Sequential (output-to-input) cohesion

Fuctional cohesion (best)

http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Kinds of Coupling

Content: via internals, not using specified interfaces
(high/bad)

Common (via global variables)

External (via a file format, common protocol)
Control (via command parameter)

Stamp (passing too much information)
Message coupling (low)

Routine call, call-back

Type use

Inclusion/import

No coupling (lowest)

http://www.win.tue.nl/~wstomv/
http://www.win.tue.nl/~wstomv/

Homework Assignment 6

® About coupling & cohesion (will be made
available on webpage and in peach)

Main Book for Part 2

® L.Bass, P Clements, R. Kazman. Software
Architecture in Practice (2nd Ed.). Addison-
Wesley, 2007.

Supplementary (more recent) textbook:

® R.N.Taylor, N. Medvidovic, E.M. Dashofy.
Software Architecture: Foundations, Theory,
Practice. Wiley, 2010.

Reading Material

® M.]. Christensen, R.H.Thayer. The Project
Manager's Guide to Software Engineering's

Best Practices. Wiley, 2002. Chapter |.

® ARIANE 5:Flight 501 Failure. Report by the
Inquiry Board. July 1996.

® |[EEE Recommended Practice for Architectural

Description of Software Intensive Systems. Std
1471-2000.

® M.W. Maler, D. Emery, and R. Hilliard.
Software Architecture: Introducing |IEEE
Standard 1471, IEEE Computer, April 2001.

http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-std1471-2000.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf
http://www.win.tue.nl/~wstomv/edu/sep/ieee/software-architecture-intro.pdf

Reading Material (2)

® D.L.Parnas. On Criteria To Be Used in
Decomposing Systems into Modules. CACM
15(12), Dec. 1972.

® [Optional] E.Yourdon and L.L. Constantine.
Structured Design: Fundamentals of a
Discipline of Computer Program and System
Design. Prentice-Hall, 1979.

® [Optional] IEEE Recommended Practice for
Software Design Descriptions. Std 1016-1998.

45

