
1

EVALUATING SOFTWARE ARCHITECTURES

M.R.V. Chaudron
Technische Universiteit Eindhoven

Adapted by Tom Verhoeff for 2II45 in 2009

C S

CP SP

C CP SP S
C
CP

S
SP

C S
CPSP
CCPSPS CCP SSP

C S
CPSP
CCPSPS CCP SSP

If you haven’t analyzed it, don’t build it.

With slides from Rick Kazman

1

Topics in Part 2

1. From Req. to Arch.: Doing Design

2. From Arch. to Req.: Doing Evaluation

3. From Arch. to Code: Doing Implementation, code generation, testing
infrastructure, code configuration management

4. From Code to Arch.: Monitoring impl. work, Reverse Engineering,
Integration

5. Process, Documentation, Tools, Standards

USER

REQUIREMENTS

DEFINITION

SOFTWARE

DEFINITION

CODE

DETAILED UNIT

DESIGN TESTS

DESIGN

ARCHITECTURAL

REQUIREMENTS

INTEGRATION

TESTS

SYSTEM

TESTS

ACCEPTANCE

TESTS

SVVP/UT

SVVP/IT

SVVP/ST

SVVP/AT

Project Request

URD

SRD

ADD

DDD

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/DD

Tested Modules

Tested Subsystems

Tested System

Accepted Software

1

2

3

4

5

6

7

8

Product

Activity

Verification

Compiled Modules

9

SVVP Software Verification and Validation Plan

ESA Software Engineering Standards: Life Cycle Verification Approach

1.

3.

2.

4.5.

2

2

3

System Quality Attributes (Extra-Func. Req.)

• Performance
• Availability
• Usability
• Security

• Maintainability
• Portability
• Reusability
• Testability

End User’s
view

Developer’s
 view

• Time To Market
• Cost and Benefits
• Projected life time
• Targeted Market
• Integration with

Legacy System
• Roll back Schedule

Business
Community
view

3

4

Design of Software Architecture

Functional
Requirements

Extra-Functional
Requirements

Domain Knowledge
 and Requirements

User
Requirements

Group Functionality
in subsystems

Design approach for
 realizing extra-functional

quality properties

Synthesize

 Analyze refineRBD, QN, RMA,
ATAM, prototype

S.M.A.R.T.

Design Metrics

Model/DescribeUML, Views

Identify
•Trade-offs
•Sensitivity points

Select
•Architectural Style
•Reference Architecture
•Architecture Tactics

Standards

4

5

Why analyze architecture?
• In the majority of projects, the only model

available for measurement is the final
implementation

 This is far too late and causes excessive costs
and risks

• Every design involves tradeoffs
 A software architecture is the earliest life-

cycle artifact that embodies significant design
decisions with high risks

5

6

Heuristic (to avoid common pitfall)

Don’t evaluate
what can be done easily.

Do evaluate
what you need to know!

6

7

Types of Analysis
Quantitative: How much …?
• Analysis based on (mathematical) model
• Measurements

• Feasibility prototypes
• (Process) models
• Simulation

Qualitative: What if ...?
• Architecture Trade-off Analysis Method (ATAM),
• Cost-Benefit Analysis Method (CBAM), …

7

8

Architecture Tradeoff Analysis Method
(ATAM): Origin

•Software Engineering Institute (SEI) at Carnegie
Mellon University (CMU)

•Comparable to LaQuSo at TU/e
•Consulting role for (multi-party) projects
•Need to evaluate architectural designs independent

of how they were created
•Evaluate and report in a standardized format

8

9

Architecture Tradeoff Analysis Method
(ATAM): Overview

9

10

ATAM Reference

• “The Architecture Tradeoff Analysis Method.” Article ’98.

Rick Kazman et al. [Ex.: Remote Temperature Sensor System]

• ATAM: Method for Architecture Evaluation,

 Rick Kazman, Mark Klein, Paul Clements, August 2000,

 Technical Report CMU/SEI-2000-TR-004

[Ch. 9 & Appendix optional. Ex.: Battlefield Control System]

• Chapter 11 from the BCK book [Optional. Ex.: Nightingale]

10

11

ATAM Purpose
• Evaluate whether the design decisions satisfactorily

address the quality requirements.

• Elicit rationale of design decisions (traceability).

• Discover risks: decisions that might create (future)
problems in some quality attribute.

• Discover sensitivity points: Alternatives for which a
slight change makes a significant difference in a
quality attribute.

• Discover tradeoffs: Decisions affecting more than one
quality attribute, in opposite direction.

11

12

ATAM Output
• Precise description of the architecture

• Articulation of the business goals

• Quality requirements in terms of Qu. Attr. Scenarios

• Relation between business goals and architecture
tactics (the rationale of the design)

+

• Risks

• Sensitivity points

• Tradeoff points

12

13

ATAM Qualifications (Reservations)

 Result depends on the quality of the specification of
the architecture

• garbage in, garbage out

 Not an attempt to predict resulting quality attributes

Quality properties that are not easily expressed
quantitatively, such as usability,
interoperability, …

13

14

ATAM Side-effect

• Improve the architecture documentation.
•Elicit/make precise a statement of
 the architecture’s driving quality
 attribute requirements

• Process benefit:
• Foster stakeholder communication & consensus

14

15

ATAM Preconditions
The ATAM relies critically on:
• Appropriate preparation by the customer
• Clearly-articulated quality attribute

requirements
• Active stakeholder participation
• Active participation by the architect
• Evaluator familiarity with architectural

styles and analytic models

15

16

ATAM STEPS

1. Explain the ATAM
2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

These slides
by Rick Kazman

16

17

1. PRESENT THE ATAM
Evaluation Team presents an overview of ATAM
• ATAM steps in brief
• Techniques

 Utility tree generation
 Architecture elicitation and analysis
 Scenario brainstorming

• Outputs
 Architectural approaches
 Utility tree
 Scenarios
 Risks and “non-risks”
 Sensitivity points and tradeoffs

17

18

ATAM customer representative describes the
system’s business drivers including:

• Business context for the system
• Time to market

• Most important functional requirements
• Most important quality attribute requirements

 Architectural drivers:
• Quality attributes that “shape” the architecture

 Critical requirements:
•Quality attributes most central to the system’s success

•High availability, high security, …

2. PRESENT BUSINESS DRIVERS

Understand the
requirements

18

19

• Architect presents an architecture overview incl:
 Technical context of the system

• systems with which the system must interact

• Technical constraints such as an OS, hardware, or

 middleware prescribed for use

 Architectural approaches/styles used to address
quality attribute requirements

• Evaluation team begins probing for and
capturing risks

3. PRESENT ARCHITECTURE

Understand the
architecture

19

20

• Start to identify parts of the architecture that
are key for realizing quality attribute goals

• Identify any predominant architectural styles,
tactics, guidelines & principles

• Examples:
 3-tier Client-server

 Watchdog, Redundant hardware

4. IDENTIFY* ARCHITECTURAL APPROACHES

*approaches are not yet analyzed

Understand the
architecture

20

21

5. GENERATE QUALITY
 ATTRIBUTE UTILITY TREE

• Identify, prioritize, and refine the most important
quality attribute goals by building a utility tree
 A utility tree is a top-down vehicle for characterizing

the “driving” attribute-specific requirements
 Select the most important quality goals to be the

high-level nodes (e.g. performance, modifiability,
security, availability)

 Scenarios are the leaves of the utility tree

• Output: A characterization and a prioritization of
specific quality attribute requirements

Prioritize
requirements

21

22

EXAMPLE UTILITY TREE

Utility

Performance

Modifiability

Availability

Security

Add CORBA middleware
in < 20 person-months
Change web user interface
in < 4 person-weeks
Power outage at site1 requires traffic
redirected to site2 in < 3 seconds.
Restart after disk failure in < 5 minutes

Network failure detected and recovered
in < 1.5 minutes

Reduce storage latency on
customer DB to < 200 ms.

Deliver video in real time

Customer DB authorization works
 99.999% of the time

Credit card transactions are secure
99.999% of the time

Data
Latency
Transaction
Throughput

New product
categories
Change
COTS

H/W failure

COTS S/W
failures

Data

Data
confidentiality

integrity

(H,L)

(H,M)

(M,M)

(M,L)

(L,H)

(L,H)

(H,M)

(L,H)

(L,H)

(Importance, Achievability)
H-High, M-Medium, L-Low

22

23

SCENARIOS
• Scenarios are used to:

 Represent stakeholders’ interests
 Understand quality attribute requirements

• Scenarios should cover a range of:
 Use case scenarios

• anticipated uses

 Evolution scenarios
• anticipated changes; e.g. growth

 Exploratory scenarios
•unanticipated stresses to the system

23

24

EXAMPLE SCENARIOS
• Use case scenario

A remote user requests a database report via the
Web during peak period and receives it within 5
seconds

• Evolution scenario
Add a new data server during peak hours within a
downtime of at most 8 hours.

• Exploratory scenario
Half of the servers go down during normal
operation without affecting overall system
availability

24

25

STIMULI-ENVIRONMENT-RESPONSES

• Use case (performance) scenario
Remote user requests a database report via the Web
during peak period and receives it within 5 seconds

• Growth scenario
Add a new data server during peak hours within a
downtime of at most 8 hours.

• Exploratory scenario
Half of the servers go down during normal operation
without affecting overall system availability

‘Formula’ for scenarios

A good scenario makes clear what the stimulus is and
what the measurable response of interest is

25

General Qual. Attr. Scenario for Scalability

• Source: system owner

• Stimulus: request to accommodate more concurrent
users (usage parameter)

• Artifact: the system, incl. computing platforms

• Environment: normal operation, design/run time

• Response: add extra memory/servers (architectural
parameters)

• Response measure: cost of additional hardware,
change in performance

26

26

Specific Qual. Attr. Scenario for Scalability
• Source: system owner

• Stimulus: request to accommodate five times more
concurrent users over next two years

• Artifact: the main server cluster

• Environment: normal operation

• Response: increase number of servers no more than
sixfold, without recompiling the software

• Response measure: performance as measured by
average number of typical requests processed per
minute may not drop more than 10% 27

27

28

SAAM*: Rank Architectures

Architecture Scenario 1 Scenario 2 Scenario 3 Scenario 4 Contention

X 0 0 - - -

Y 0 0 + + +

Z - + 0 + -

* Software Architecture Analysis Method

Summary of
suitability

28

29

6. ANALYZE ARCHITECTURAL
 APPROACHES
The evaluation team probes architectural approaches

w.r.t. specific quality attributes to identify risks

• Identify the approaches that pertain to the highest
priority quality attribute requirements

• Generate quality-attribute specific questions for
highest priority quality attribute requirement

• Ask quality-attribute specific questions

• Identify and record risks and non-risks, sensitivity
points and tradeoffs

Analyze the
Architecture

29

30

Sensitivity Point

A system requires
• high performance

Suppose throughput depends on one channel

Sensitivity point is a parameter of the architecture
to which some quality attribute is highly related.

increase channel
speed

increase
performance

Subsystem 1 Subsystem 2

30

31

Trade-off point

A system requires
• high performance,
• high reliability
• high security

increase channel
speed

increase
performance

decrease
reliability&

A trade-off point is a parameter of the architecture that
affects multiple quality attributes in opposite directions.

increase encryption increase
security

decrease
performance&

Subsystem 1 Subsystem 2

31

32

QUALITY ATTRIBUTE QUESTIONS
• Quality attribute questions elicit architectural

decisions which bear on quality attribute
requirements

• Example: Performance
 How are priorities assigned to processes?
 What are the message arrival rates?

• Example: Modifiability
 Are there any places where layers/facades are circumvented ?
 What components rely on detailed knowledge of message

formats?

32

33

Characterization of Availability

From: CMU/SEI-2000-TR-004: ATAM: Method for Architecture Evaluation

Not Complete, but:
- a framework for thinking
- helps ensure coverage
- helps eliciting questions

33

34

Characterization of Modifiability

34

35

RISKS and NON-RISKS
• Risks are potentially important architectural decisions

that may cause problems

• Non-risks are good decisions frequently relying on
implicit assumptions

• Risk and non-risk constituents
 Architectural decision
 Quality attribute requirements
 Rationale

• Sensitivity points are candidate risks

35

36

EXAMPLE RISK and NON-RISK
• Example risk

Rules for writing business logic modules in the second tier of your 3-tier
style are not clearly articulated.
This could result in compromising modifiability.

- A quality concerns is not addressed / has not been analyzed
- Some tactics interact in an unknown manner

• Example non-risk
Assuming message arrival rates of once per second, a processing time of
less than 30 ms, and the existence of one higher priority process, a 1
second soft deadline seems reasonable

– Risk may also occur in the project organization.
Engineer X has never heard of requirement Y.

36

37

7. BRAINSTORM AND
 PRIORITIZE SCENARIOS
 Stakeholders generate scenarios using

a facilitated brainstorming process
• Examples are used to facilitate the step

• The new scenarios are added to the leaves
of the utility tree

Essentially a process step:
• include a larger group of stakeholders
• extend consensus (esp. on priorities)
• extend confidence in completeness of scenario’s

37

38

8. ANALYZE ARCHITECTURAL
APPROACHES

• Identify the architectural approaches impacted
by the scenarios generated in the previous step

• This step continues the analysis started in step
6 using the new scenarios

• Continue identifying risks and non-risks
• Continue annotating architectural information

Essentially a process step:
• include a larger group of stakeholders
• extend consensus
• extend confidence in completeness of scenario’s

38

39

9. PRESENT RESULTS
• Recapitulate steps of the ATAM

• Present ATAM outputs
 Architectural approaches

 Utility tree

 Scenarios

 Risks and “non-risks”

 Sensitivity points and tradeoffs

39

40

• ATAM ‘buys’ time to think about an architecture while
 development processes are often under time-pressure
• Identification of risks early in the life-cycle
• Focuses on features that are essential for the

stakeholders and not on technical details
• Improved architecture documentation

• Forces stakeholders to:
• think about qualitative requirements
• prioritize qualitative requirements

• Documented basis for architectural decisions

ATAM BENEFITS

The results are improved architectures
40

41

ATAM – Cost/Benefit

• Cost
– 1 – 2 weeks of time for 8 – 10 highly paid people, 2 days for another 10-12

people (for full formal process!)
– Delays project start
– Forces development of architecture up front

• Benefit
– Financial – saves money
– Forces preparation / documentation / understanding
– Captures rationale
– Catch architectural errors before built
– Make sure architecture meets scenarios
– More general, flexible architecture
– Reduces risk

41

42

• Subjective judgement
that depends on the experience of the participants

• No guidelines for definition of useful change cases

• Risk: check-list thinking

ATAM WEAKNESSES

42

– Certification

LaQuSo Software Product Certification Model

43

!"#$%&'%&()*"+,'-+&.$/)'0,+)1(1/")1&2'3&.,4'

-"5,'6'&('67'

! !"#$%&'(#!%""

!#! $%&'%()*&$+"*&*,-./."

!"#$%& '()*+)#$,*("'& ,*-& '()$./0,*("'& ,#"&)+1"*& 0*1"#(2,*3"-& 0*& (4##"*1&
%)+15,#"&0*-4%1#6&.#,(10("&,*-&#"%",#(2&7"838&9:",#&;<<<&()*+)#$,*("=&,*-&9:",#&
;<<<& ()$./0,*("=&)+& %6%1"$%>8& ?/12)432& 12"#"& $0321& @"& %4@1/"& -0++"#"*("%& 0*&
$",*0*3A&5"& ()*%0-"#& 12"& 15)& 1"#$%& %6*)*6$%&$",*0*3B& 12"& %0$0/,#016& #"/,10)*&
@"15""*& 15)&)@C"(1%& 5012& #"%."(1& 1)& ,& ("#1,0*& (2,#,(1"#0%10(8& !2"%"&)@C"(1%& (,*&
"012"#&@"&%."(0+0(,10)*%A&0$./"$"*1,10)*%A&%1,*-,#-%&)#&C4%1&%0$./"&.#)."#10"%&7%""&
D034#"& E>8&F"&50//& #"+"#& 1)& 120%& 16."&)+& G"#0+0(,10)*%& 5012& 12"& 1"#$&0&2(&+8"2/,'
92"4:;1;8&

&

&
)*+,-./01/&*22.-.34/#56.7/82/(8328-9:3;./<3:=57*7/

&

H)*+)#$,*("&?*,/6%0%& +)#$%& 12"& ("*1#,/&.,#1&)+& %)+15,#"&I4,/016& ,%%4#,*("&,%& 01&
.#)G0-"%&$",*%&)+&(2"(J0*3&52"12"#&12"&%)+15,#"&@"0*3&-"G"/)."-&()##"%.)*-%&1)&
12"& -"G"/)."#&)#& "*-K4%"#& "L."(1,10)*%A& /"30%/,10G"& ,(1%&)#& %1,*-,#-%8&F"& -)& *)1&
,0$& ,1& 0*G"%103,10*3& %)+15,#"& "*30*""#0*3& 1"(2*0I4"%& "*%4#0*3& ()*+)#$,*("&
#,12"#& 5"& 0*G"%103,1"& 1"(2*0I4"%& ,//)50*3& 4%& 1)& (2"(J& ()*+)#$,*("8& M*&)12"#&
5)#-%A& 12"& H)*+)#$,*("& ?*,/6%0%& 5"& ."#+)#$& 0%& ,0$"-& ,1& ,#10+,(1%& #"/,1"-& 1)&
%)+15,#"&.#)-4(1%A&*)1&,1&%)+15,#"&"*30*""#0*3&.#)("%%"%&7%""&D034#"&E>8&&

F"&(,*&0-"*10+6&12#""&-0++"#"*1&(/,%%"%&)+&0*.41&,#10+,(1%B/

E8 %&()*"+,'9+)1("/);N&12"%"&50//&@"&"L./,0*"-&0*&$)#"&-"1,0/8&
;8 -+&<,+)1,;N&12"%"&(,*&@"&,*6&J0*-&)+&.#)."#16&,../0(,@/"&1)&)@C"(1%&+#)$&(/,%%&

E8&OL,$./"%&,#"B&9-)"%&12"&.#)3#,$&1"#$0*,1"P=A&9,#"&12"&#"I40#"$"*1%&
1"%1,@/"P=&,*-&90%&12"&,(10G016&-"%03*&,&%)4*-&5)#J+/)5P=&

Q8 %)"2."+.;='>$1.,412,;'"2.'?,5$4")1&2;N&12"%"&,#"&3"*"#0(&%"1%&)+/"%&)#&
#"I40#"$"*1%&,../0(,@/"&1)&12"&"*10#"&(/,%%&)+&%)+15,#"&,#10+,(1%&,*-&4%4,//6&
5#011"*&@6&,&-0++"#"*1&.,#16&12,*&12"&)*"&12,1&(#",1"-&12"&)@C"(1&+#)$&(/,%%&
E8&OL,$./"%&,#"&DR?&#"34/,10)*%A&?STM&HA&,*-&,&()$.,*6U%&()-0*3&
%1,*-,#-%8&

?%&(,*&,/%)&@"&%""*&0*&D034#"&E&)*"&)+&12"&0*.41&)@C"(1%&0%&4%4,//6&)+&(/,%%&EA&520/"&
12"&)12"#&(,*&@"&)+&,*6&)+&12"&12#""&(/,%%"%8&

T)$"10$"%&%)+15,#"&,#10+,(1%&*""-&1)&@"&1#,*%+)#$"-&@"+)#"&12"&,*,/6%0%&(,*&1,J"&
./,("8& D)#& 0*%1,*("& ,& #"I40#"$"*1%& -)(4$"*1&$4%1& @"& 1#,*%/,1"-& 0*1)& ,& +)#$,/&
$)-"/& @"+)#"& ,*6& .#)."#16&)+& 01& (,*& @"& .#))+"-8& V#& %)4#("& ()-"& 2,%& 1)& @"&
1#,*%+)#$"-&0*1)&,&%"1&)+&.#"-0(,1"%&1)&,../6&12")#"$&.#)G0*38&&

• Consistency, Functional, Behavioral, Quality, Compliance

• Certification Criteria: Formality, Uniformity, Conformance

• 6 Product Areas: Context Description, User Requirements,
High-level Design, Detailed Design, Implementation, Tests

• Results in an Achievement Level
43

http://www.laquso.org/
http://www.laquso.org/
http://www.laquso.com/certification/wiki/images/0/00/SoftwareProductCertificationModel.pdf
http://www.laquso.com/certification/wiki/images/0/00/SoftwareProductCertificationModel.pdf

Relationship between design & evaluation

• Why (not) use the same method for design and
evaluation?

• Should not only design to pass the evaluation;
evaluation is often limited

• If evaluation includes important considerations, then
these should also have played a role in design

• Evaluation is part of design, not an add-on

44

44

