
ABSTRACT
This paper presents the Architecture Tradeoff Analysis
Method (ATAM), a structured technique for understanding
the tradeoffs inherent in design. This method was developed
to provide a principled way to evaluate a software architec-
ture’s fitness with respect to multiple competing quality
attributes: modifiability, security, performance, availability,
and so forth. These attributes interact—improving one often
comes at the price of worsening one or more of the others as
is demonstrated in the paper. The ATAM is a spiral model of
design: one of postulating candidate architectures followed
by analysis and risk mitigation, leading to refined architec-
tures.

KEYWORDS
Software architecture analysis, Quality attributes

ARCHITECTURE TRADEOFF ANALYSIS
Quality attributes of large software systems are principally
determined by the system’s software architecture. That is, in
large systems, the achievement of qualities such as perfor-
mance, availability, and modifiability depends more on the
overall software architecture than on code-level practices
such as language choice, detailed design, algorithms, data
structures, testing, and so forth. This is not to say that choice
of algorithms or data structures is unimportant, but rather
that such choices are less crucial to a system’s success than
its overall software structure, it’s architecture. Thus, it is in
our interest to try and determine, before it is built, whether a
system is destined to satisfy its desired qualities.

Although methods for analyzing specific quality attributes
exist (e.g. [4], [5], [8]), these analyses have typically been
performed in isolation. In reality, however, the attributes of a
system interact. Performance impacts modifiability. Avail-
ability impacts safety. Security affects performance. Every-
thing affects cost. And so forth. While experienced designers
know that these tradeoffs exist, there is no principled method
for characterizing them and, in particular, for characterizing
the interactions among attributes.

For this reason, software architectures are often designed “in
the dark”. Tradeoffs are made—they must be made if the
system is to be built—but they are made in an ad hoc fash-
ion. Imagine a sound engineer being given a 28 band graphic
equalizer, where each of the equalizer’s controls has effects
that interact with some subset of the other controls. But the
engineer is not given a spectrum analyzer, and is asked to set

up a sound stage for optimal fidelity. Clearly such a task is
untenable. The only difference between this analogy and
software architecture is that software systems have far more
than 28 independent but interacting variables to be “tuned”.

There are techniques that designers have used to try to miti-
gate the risks in choosing an architecture to meet a broad pal-
ette of quality attributes. The recent activity in cataloguing
design patterns and architectural styles is an example of this.
A designer will choose one pattern because it is “good for
portability” and another because it is “easily modifiable”.
But the analysis of patterns doesn’t go any deeper than that.
A user of these patterns does not know how portable, or
modifiable, or robust an architecture is until it has been built.

To address these problems this paper introduces the Archi-
tecture Tradeoff Analysis Method (ATAM). ATAM is a
method for evaluating architecture-level designs that consid-
ers multiple quality attributes such as modifiability, perfor-
mance, reliability and security in gaining insight as to
whether the fully fleshed out incarnation of the architecture
will meet its requirements. The method identifies trade-off
points between these attributes, facilitates communication
between stakeholders (such as user, developer, customer,
maintainer) from the perspective of each attribute, clarifies
and refines requirements, and provides a framework for an
ongoing, concurrent process of system design and analysis.

The ATAM has grown out of work at the Software Engineer-
ing Institute on architectural analysis of individual quality
attributes: SAAM (Software Architecture Analysis Method)
[4] for modifiability, performance analysis [5], availability
analysis, and security analysis [6]. SAAM has already been
successfully used to analyze architectures from a wide vari-
ety of domains: software tools, air traffic control, financial
management, telephony, multimedia, embedded vehicle con-
trol, and so on.

The ATAM, as with SAAM, has both social and technical
aspects. The technical aspects deal with the kinds of data to
be collected and how it is analyzed. The social aspects deal
with the interactions among the system’s stakeholders and
area-specific experts, allowing them to communicate using a
common framework, to make the implicit assumptions in
their analyses explicit, and to provide an objective basis for
negotiating the inevitable architecture tradeoffs. This paper
will demonstrate the use of the method, and its benefits in
clarifying design issues along multiple attribute dimensions,
particularly the tradeoffs in design.

The Architecture Tradeoff Analysis Method

Rick Kazman, Mark Klein, Mario Barbacci,
Tom Longstaff, Howard Lipson, Jeromy Carriere

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

WHY USE ARCHITECTURE TRADEOFF ANALY-
SIS?
All design, in any discipline, involves tradeoffs; this is well
accepted. What is less well understood is the means for mak-
ing informed, and possibly even optimal tradeoffs. Design
decisions are often made for non-technical reasons: strategic
business concerns, meeting the constraints of cost and sched-
ule, using available personnel, and so forth.

 Having a structured method helps ensure that the right ques-
tions will be asked early, during the requirements and design
stages when discovered problems can be solved cheaply. It
guides users of the method—the stakeholders—to look for
conflicts in the requirements and for resolutions to these con-
flicts in the software architecture.

In realizing the method, we assume that attribute-specific
analyses are interdependent, and that each quality attribute
has connections with other attributes, through specific archi-
tectural elements. An architectural element is a component, a
property of the component, or a property of the relationship
between components that affects some quality attribute. For
example, the priority of a process is an architectural element
that could affect performance. The ATAM helps to identify
these dependencies among attributes; what we call tradeoff
points. This is the principal difference between the ATAM
and other software analysis techniques—that it explicitly
considers the connections between multiple attributes, and
permits principled reasoning about the tradeoffs that inevita-
bly result from such connections. Other analysis frame-
works, if they consider connections at all, do so only in an
informal fashion, or at a high level of abstraction (e.g. [7],
[8]). As we will show, tradeoff points arise from architec-
tural elements that are affected by multiple attributes.

THE ATAM
The ATAM is a spiral model of design [3], depicted in Figure
1. The ATAM is like the standard spiral model in that each

iteration takes one to a more complete understanding of the
system, reduces risk, and perturbs the design. It is unlike the
standard spiral in that no implementation need be involved:
each iteration is motivated by the results of the analysis and
results in new, more elaborated, more informed designs.

Analyzing an architecture involves manipulating, control-
ling, and measuring several sets of architectural elements,
environment factors and architectural constraints. The pri-
mary task of an architect is to lay out an architecture that will
lead to system behavior which is as close as possible to the
requirements within the cost constraints. For example, per-
formance requirements are stated in terms of latency and/or
throughput. However, these attributes depend on the archi-
tectural elements pertaining to resource allocation: the policy
for allocating processes to processors, scheduling concurrent
processes on a single processor or managing access to shared
data store. The architect must understand the impact of such
architectural elements on the ability of the system to meet its
requirements and manipulate those elements appropriately.

This task is typically approached with a dearth of tools how-
ever. The best architects use their hunches, their experience
with other systems, and prototyping to guide them. Occa-
sionally an explicit modeling step is also included as a
design activity, or an explicit formal analysis of a single
quality attribute is performed.

The Steps of the Method
The method is divided into four main areas of activities.
These are: scenario and requirements gathering, architectural
views and scenario realization, model building and analysis,
and tradeoffs. The method works, in broad brush, as follows:
once a system’s initial set of scenarios and requirements
have been elicited and an initial architecture (or small set of
architectures) is proposed, subject to environment and other
considerations, each quality attribute will be evaluated in
turn, and in isolation, with respect to any proposed design.

Figure 1: Steps of the Architecture Tradeoff Analysis Method

PHASE IV
Tradeoffs

PHASE II
Architectural Views
& Scenario Realization

PHASE I
Scenario &
Requirements
Gathering

PHASE III
Model Building
& Analyses

Identify
Tradeoffs

Identify
Sensitivities

Attribute
Specific
Analyses

Collect
Scenarios

Collect
Requirements,
Constraints,
Environment

Describe
Architectural
Views

Realize
Scenarios

After these evaluations comes a critique step. During this
step tradeoff points are found: elements that affect multiple
attributes. After the critique we can either: refine the models
and re-evaluate; refine the architectures, change the models
to reflect these refinements and re-evaluate; or change some
requirements. We now look at each these steps in more
detail.

Step 1 — Collect Scenarios
The first step in the method is to elicit system usage scenar-
ios from a representative group of stakeholders. This serves
the same purposes as it does in SAAM: to operationalize
both functional and quality requirements, to facilitate com-
munication between stakeholders, and to develop a common
vision of the important activities the system should support.

Step 2— Collect Requirements/Constraints/Environment
The second step in the method is to identify the attribute-
based requirements, constraints, and environment of the sys-
tem. A requirement can have a specific value or can be
described via scenarios of hypothetical situations. The envi-
ronment must be characterized for subsequent analyses (e.g.
performance or security) and constraints on the design space,
as they evolve, are recorded as these too affect attribute anal-
yses. This step places a strong emphasis on revisiting the
scenarios from the previous step to ensure that they account
for important quality attributes.

Step 3 — Describe Architectural Views
The requirements, scenarios, and engineering design princi-
ples together generate candidate architectures and constrain
the space of design possibilities. In addition, design almost
never starts from a clean slate: legacy systems, interoperabil-
ity, and the successes/failures of previous projects all con-
strain the space of architectures.

Moreover, the candidate architectures are described in terms
of the architectural elements that are relevant to each of the
important quality attributes. For example, voting schemes
are an important element for reliability; concurrency decom-
position and process prioritization are important for perfor-
mance; firewalls and intruder models are important for
security, and encapsulation is important for modifiability.

Throughout our presentation of the method, we assume that
multiple, competing architectures are being compared. How-
ever, designers typically consider themselves to be working
on only a single architecture at a time. Why are these views
not aligned? From our perspective, an architecture is a col-
lection of functionality assigned to a set of structural ele-
ments, with constraints on the coordination model—the
control flow and data flow among those elements. Almost
any change will mutate one of these aspects, thus resulting in
a new architecture. While this point might seem like a split-
ting of hairs, these are important hairs to split in this context
for the following reason. The ATAM requires building and
maintaining attribute models (both quantitative models and
qualitative) that reflect and help to reason about the architec-
ture. To change any aspect of an architecture—functionality,
structural elements, coordination model—will change one or
more of the models. Once a change has been proposed, the
new and old architectures are “competing”, and must be

compared. Hence the need for new models that mirror those
changes. Using the ATAM, then, is a continual process of
choosing among competing architectures, even when these
look “pretty much the same” to a casual observer.

Step 4 — Attribute-Specific Analyses
Once a system’s initial set of requirements and scenarios has
been elicited and an initial architecture (or small set of archi-
tectures) is proposed, each quality attribute must be analyzed
in isolation, with respect to each architecture. These analyses
can be conducted in any order; no individual critique of
attributes against requirements or interaction between
attributes is done at this point. Allowing separate (concur-
rent) analysis is an important separation of concerns that
allows individual attribute experts to bring their expertise to
bare on the system.

The result of the analyses leads to statements about system
behavior with respect to values of particular attributes:
“requests are responded to in 60 ms. average”, “the mean
time to failure is 2.3 days”, “the system is resistant to known
attack scripts:, “the hardware will cost $80,000 per plat-
form”, “the software will require 4 people per year to main-
tain”, and so forth.

Step 5 — Identify Sensitivities
Here, the sensitivity of individual attribute analyses to par-
ticular architectural elements is determined. That is, one or
more attributes of the architecture are varied, the models are
then varied to capture these design changes, and the results
are evaluated. Any modelled values that are significantly
affected by a change to the architecture are considered to be
sensitivity points.

Step 6 — Identify Tradeoffs
The next step of the method is to critique the models build in
step 4 and to find the architectural tradeoff points Although
it is standard practice to critique designs, significant addi-
tional leverage can be gained by focussing this critique on
the interaction of attribute-specific analyses, particularly the
location of tradeoff points. Here is how this is done.

Once the architectural sensitivity points have been deter-
mined, finding tradeoff points is simply the identification of
architectural elements to which multiple attributes are sensi-
tive. For example, the performance of a client-server archi-
tecture might be highly sensitive to the number of servers
(performance increases, within some range, by increasing
the number of servers). The availability of that architecture
might also vary directly with the number of servers. How-
ever, the security of the system might vary inversely with the
number of servers (because the system contains more poten-
tial points of attack). The number of servers, then, is a
tradeoff point with respect to this architecture. It is an ele-
ment, potentially one of many, where architectural tradeoffs
will be made, consciously or unconsciously.

Iterations of the ATAM
When we have completed the above steps, we are then in a
position to compare the results of the analyses to the require-
ments. When the analyses show that the system’s predicted
behavior comes adequately close to its requirements, the
designers can proceed to a more detailed level of design or to

implementation. In practice, however, it is useful to continue
to track the architecture with analytic models; to support
development, deployment, and beyond to maintenance.
Design never ceases in a system’s life cycle, and neither
should analysis.

In the event that the analysis reveals a problem, we now
develop an action plan for changing the architecture, the
models, or the requirements. The action plan will draw on
the attribute-specific analyses and identification of tradeoff
points. This then leads to another iteration of the method.

It should be made clear that we do not expect these steps to
be followed linearly. They can and do interact with each
other in complex ways: an analysis can lead to the reconsid-
eration of a requirement; the building of a model can point
out places where the architecture has not been adequately
though out or documented. This is why we depict the steps
as wedges in a circle: at the center of the circle every step
touches (and exchanges information with) every other step.

AN EXAMPLE ANALYSIS
To exemplify the ATAM, we have chosen an example that
has already been extensively analyzed in the research litera-
ture, that of a remote temperature sensor (discussed in [8]
and elsewhere). We have chosen this example precisely
because it has already been heavily scrutinized. The exist-
ence of other analyses focuses attention on the differences of
the ATAM. We will analyze this system with respect to its
availability, security, and performance attributes.

System Description
The RTS (remote temperature sensor) system exists to mea-
sure the temperatures of a set of furnaces, and to report those
temperatures to an operator at some other location. In the
original example the operator was located at a “host” com-
puter. The RTS sends periodic temperature updates to the
host computer, and the host computer sends control requests
to the RTS, to change the frequency at which periodic
updates are sent. These requests and updates are done on a
furnace by furnace basis. That is, each furnace can be report-
ing its temperature at a different frequency. The RTS is pre-
sumably part of a larger process control system. The control
part of the system is not discussed in this example, however.

We are interested in analyzing the RTS for the qualities of
performance, security, and availability. To illustrate these
analyses we have made the model problem richer and more
complex that its original manifestation. In addition to the
original set of functional requirements, we have embedded
the RTS into a system architecture based on the client-server
idiom. The remote temperature sensor functionality is encap-
sulated in a server, that serves some number of clients. To
remain consistent with the original problem, our analysis
will assume that there are 16 clients, one per furnace.

The RTS server hardware includes an analog to digital con-
verter (ADC), that can read and convert a temperature for
one furnace at a time. Requests for temperature readings are
queued and fed, one at a time, to the ADC. The ADC mea-
sures the temperature of each furnace at the frequency speci-
fied by its most recently received control request.

Architectural Options
Since the ATAM was created to illustrate architectural
tradeoffs, we need some architectures to analyze. We will
consider three options: a simple Client-Server architecture, a
more complex version of this architecture, called Client-
Server-Server, where the server has been replicated, and
finally an option called Client-Intelligent Cache-Server.
Each of these architectures will use the identical server
architecture—all that changes is the ways in which the rest
of the system interacts with the server (or servers).

The server’s architecture contains three kinds of compo-
nents: furnace tasks (independently scheduled units of exe-
cution), that schedule themselves to run with some period; a
shared communication facility task, that accepts messages
from the furnace tasks and sends them to a specified client;
and the ADC task, which accepts requests from the furnace
tasks, interfaces with the physical furnaces to determine their
temperatures, and passes the result back to the requesting
furnace task.

Now that the server architecture has been described, we will
present the overall system architectures. In each of the sys-
tems a set of 16 clients interacts with one or more servers,
communicating via a network.

Architectural Option 1 (Client-Server)
Option 1 is the baseline; a simple and inexpensive client-
server architecture, with a single server serving all 16 clients,
as shown in Figure 3.

Architectural Option 2 (Client-Server-Server)
Option 2 differs from option 1 in that it adds a second server
to the system architecture. These servers interact with clients
as a “primary” server (indicated by the solid lines between
servers and clients) or as a “backup” server (indicated by the
dashed lines). As shown in Figure 4, each server has its own
set of independent furnace tasks, ADC and Comm, but com-

Furnace Task1

Furnace Task2

Furnace Task16

. .
 .

ADC Comm

to to

Figure 2: The Architecture of a Furnace Server

furnaces clients

. .
 .

RTS Server

Furnace Client 1

Furnace Client 2

Furnace Client 16

.

.

.
Furnace Client 15

Figure 3: Option 1’s Architecture

municates with the same furnaces and with the same set of
clients, although under normal operation each server only
serves 8 of the 16 clients.

Every client knows the location of both servers and if they
detect that the server is down (because it has failed to
respond for a prescribed period of time), they will automati-
cally switch to their specified backup.

Architectural Option 3 (Client-Intelligent Cache-Server)
Option 3 differs from option 1 in only one way: each client
has a “wrapper” that intercedes between it and the server.
This wrapper is an “intelligent cache”, shown as IC in Figure
5. The cache works as follows: it intercepts periodic temper-
ature updates from the server to the client, builds a history of
these updates, and then passes each update to the client. In
the event of a service interruption, the cache synthesizes
updates for the client. It is an intelligent cache because the
updates it provides take advantage of historical temperature
trends to extrapolate plausible values into the future. This
intelligence may be nothing more than linear extrapolation
or it might be a sophisticated model that analyzes changes in
temperature trends, or takes advantage of domain-specific
knowledge on how furnaces heat up and cool down.

As long as the furnaces exhibit regular behavior in terms of
temperature trends, then the cache’s extrapolated updates
will be accurate. Obviously, the cache’s synthesized updates
will become less meaningful over time.

These then are our three initial architectural alternatives. To
understand and compare them, we will analyze them using
the ATAM. This method will aid us in understanding not
only the relative strengths and weaknesses of each architec-
ture, but will also provide a structured framework for elicit-

ing and clarifying requirements. This is because each
analysis technique incorporates (often implicit) assumptions.
The use of several analysis techniques together helps to
uncover these assumptions and make them explicit.

PERFORMANCE ANALYSES
In the analyses that follow, we will not show the details of
doing performance, availability, security, or any other kind
of analysis in detail. We do this for two reasons. First, these
details can be found in [2]. Second, this paper is not intended
to propose or exemplify any particular analysis technique.
Indeed, any technique that meets the information require-
ments of the ATAM would do just as well. Our interest is in
how the techniques interact, and how this interaction mini-
mizes risk in a rational, documented design process.

In doing a performance analysis, we will consider require-
ments that typically are derived from scenarios generated
through interviews with the stakeholders. In this case the
performance requirements are:

PR1: Client must receive a temperature reading within F
seconds of sending a control request.
PR2: Given that Client X has requested a periodic update
every T(i) seconds, it must receive a temperature on the
average every T(i) seconds.
PR3: The interval between consecutive periodic updates
must be not more than 2T(i) seconds.

In addition to these requirements, we will assume that the
behavior patterns and execution environment as follows:

• Relatively infrequent control requests

• Requests are not dropped

• No message priorities

• Server latency = de-queuing time (Cdq = 10 ms) + fur-
nace task computation (Cfnc = 160 ms)

• Network latency between client and server (Cnet = 1200
ms)

Because attributes “trade off” against each other, each
assumption is subject to inspection, validation, and question-
ing as a result of the ATAM.

Performance Analysis of Option 1
The performance characteristics of architectural option 1 are
summarized in Table 1.1

A worst case control latency of 41.12 seconds sounds like a
bad thing. However, is it? To answer this question we must
understand the requirement better. How often will the worst
case occur? Is it ever tolerable to have the worst case occur?
For a safety-critical application, the answer might be “no”.
For an interactive Web-based application, the answer might
be “yes”, because the price of ensuring a smaller worst case

1. WCCL = worst-case control latency, ACPL = average-case
periodic latency, and BCPL = best-case periodic latency.

. .
 .

Furnace Server 2

Furnace Client 1

Furnace Client 2

Furnace Client 16

.

.

.
Furnace Client 15

. .
 .

Furnace Server 1

Figure 4: Option 2’s Architecture

. .
 .

Furnace Server

Furnace Client 1

Furnace Client 2

Furnace Client 16

.

.

.

Furnace Client 15

Figure 5: Option 3’s Architecture (with Cache)

IC

IC

IC

IC

WCCL ACPL Jitter

41,120 ms 5,100 ms 20,400 ms

Table 1: Performance Analysis for Option 1

is prohibitive. Doing an analysis of a single quality attribute
forces one to consider such requirements issues.

The worst case periodic latency is 37.12 seconds. However,
the worst case scenario is unlikely: it assumes that all fur-
naces are queried at the maximum rate (T(1) = 10), that all
periodic updates are issued simultaneously, and that the
update being measured (the worst case update) is the last one
in the queue. More importantly, in this application the cost of
a missed update is not great—another one will arrive in the
next T(i) seconds. Given these facts, we calculate the aver-
age case latency, to see if the system can meet its deadlines
under more normal conditions, and accept the fact that an
occasional periodic update might be missed.

Finally, we turn to PR3, the “Jitter” requirement. Jitter is the
amount of time variation that can occur between consecutive
periodic temperature updates. The requirement is that the jit-
ter be not more than 2T(i), which is a minimum of 20 sec-
onds for T(i) = 10. The interval between consecutive
readings will be not more than 2T(i) if the difference
between best case and worst case latency is not more than
2T(i), for this is an expression of jitter. So, the worst case jit-
ter = BCPL - WCPL = 21,760 - 1,360 = 20,400 ms. This is
greater than the minimum 2T(1) of 20 seconds, and so option
1 cannot meet PR3.

However, in evaluating architectural option 1’s response to
PR3, we must ask “What is the cost of a missed update?”. Is
it ever acceptable to violate this requirement? In some
safety-critical applications the answer would be “no”. In
most applications, the answer would be “yes”, providing that
this occurrence was infrequent. The results of this evaluation
force one to reconsider the importance of meeting PR3.

Performance Analysis of Option 2
The performance characteristics of architectural option 2 are
summarized in Table 2.

One point should be noted here, and will be returned to later
in this discussion: if one of the servers fails, option 2 has the
performance and availability characteristics of option 1.

Performance Analysis of Option 3
The performance characteristics of architectural option 3 are
summarized in Table 3.

For this analysis, we have added a new factor: servicing the
intelligent cache (adding a new update and recalculating the
extrapolation model) takes 100 ms. In this case, the worst
case jitter is exactly the same as for option 1, 20,400 ms.
However, the intelligent cache exists to protect the client
against some amount of lost data. As a consequence, it can
bound the worst case jitter. When some pre-set time period

elapses, the intelligent cache can pass a synthesized update
to the client. When the actual update arrives, the cache
updates its state accordingly. Thus, if we trust the intelligent
cache, we can bound the worst case jitter to any desired
value. The smaller the bounding value the more likely a
given update will be synthesized by the intelligent cache
rather than coming directly from the server.

Critique of the Analysis
This simple performance analysis gives insight into the char-
acteristics of each solution early in the design process, as
befits an architectural level analysis. As more details are
required, the analyses can be refined, using techniques such
as RMA [5], SPE [8], simulation, or prototyping. More
importantly, a high-level analysis guides our future investi-
gations, highlighting potential performance “hot-spots”, and
allowing us to determine areas of architectural sensitivity to
performance, which lead us to the location of tradeoff points.

The ATAM thus promotes analysis at multiple resolutions as
a means of minimizing risk at acceptable levels of cost.
Areas of high risk are analyzed more deeply (perhaps simu-
lated or prototyped) than the rest of the architecture. And
each level of analysis helps determine where to analyze more
deeply in the next iteration.

AVAILABILITY ANALYSES
We will initially only consider a single availability require-
ment for the RTS system:

AR1: System must not be unavailable for more than 60
minutes per year.

The availability analysis considers a range of component
failure rates, from 0 to 24 per year. We only present the
results for the case of 24 failures per year. We also consider
two classes of repairs, depending on the type of failure:

• major failures, such as a burned-out power supply, that
require a visit by a hardware technician to repair, taking
1/2 a day; and

• minor failures, such as software bugs, that can be
“repaired” by rebooting the system, taking 10 minutes.

To understand the availability of each of the architectural
options, we built and solved a Markov model. In this analy-
sis, we only considered server availability.

Availability Analysis of Option 1
Solving the Markov model for option 1 gives the results
shown in Table 4: 279 hours of down time per year for the
burned-out power supply and almost 4 hours down per year
for the faulty operating system.

Availability Analysis of Option 2
We would expect option 2 to have better availability than
option 1, since each server acts as a backup for the other, and
we expect the probability of both servers being unavailable

WCCL ACPL Jitter

20,560 ms 2,550 ms 9,520 ms

Table 2: Performance Analysis for Option 2

WCCL ACPL Jitter

41,120 ms 5,200 ms ≤20,400 ms

Table 3: Performance Analysis for Option 3

Repair Time Failures/yr Availability Hrs down/yr

12 hours 24. 0.96817 278.833

10 minutes 24. 0.99954 3.9982

Table 4: Availability of Option 1

to be small. Solving the Markov model for this architecture,
we get the results shown in Table 5.

Table 5 shows that option 2 now suffers almost 18 hours of
down time per year in the burned-out power supply case.
This indicates that architectural option 2 might still suffer
outages if it encounters frequent hardware problems. On the
other hand, option 2 shows near-perfect availability in the
operating system reboot scenario. The availability is shown
as perfect 1.0 (the calculations were performed to 5 digits of
accuracy). In the worst case of 24 annual failures option 2
exhibits only 13 seconds of down time per year.

Availability Analysis of Option 3
Considering architectural option 3, we expect that it will
have better availability characteristics than option 1, but
worse than option 2. This is because the intelligent cache,
while providing some resistance to server failures, is not
expected to be as trustworthy as an independent server. Solv-
ing the Markov model, we get the results shown in Table 6
for a cache that is assumed to be trustworthy for 5 minutes.

The results in Table 6 show that the 5 minute intelligent
cache does little to improve option 3 over option 1 in the sce-
nario with the burnt-out power supply. Option 3 still suffers
over 277 hours of down time per year. However, the results
for the reboot scenario look more encouraging. The cache
reduces down time to 2.7 hours per year. Thus, it appears
that the intelligent cache, if its extrapolation was improved,
might provide high availability at low cost (since this option
uses a single server, compared with the replicated servers
used in option 2). We return to this issue shortly.

CRITIQUE OF THE OPTIONS
Now that we have seen two different attribute analyses, one
part of the method can be commented on: the level of granu-
larity at which a system is analyzed. The ATAM advocates
analysis at multiple levels of resolution as a means of mini-
mizing risk at acceptable investments of time and effort.
Areas that are deemed to be of high risk are analyzed and
evaluated more deeply than the rest of the architecture. And
each level of analysis helps to determine “hot spots” to focus
on in the next iteration. We will illustrate this point next.

The three architectures can be partially characterized and
understood by the measures that we have just derived. From
this analysis, we can conclude the following:

• Option 1 has poor performance and availability. It is also
the least expensive option (in terms of hardware costs;

the detailed cost analyses can be found in [2]).

• Option 2 has excellent availability, but at the cost of extra
hardware. It also has excellent performance (when both
servers are functioning), and the characteristics of option
1 when a single server is down.

• Option 3 has slightly better availability than option 1,
better performance than option 1 (in that the worst case
jitter can be bounded), slightly greater cost than Option
1, and lower cost than Option 2.

The conclusions that our analyses lead us to also cause us to
ask some further questions.

Further Investigation of Option 2
For example, we need to consider the nature of option 2 with
a server failure. Given that option 2 is identical to option 1
when one server fails, and we have already concluded that
option 1 has poor performance and availability, it is impor-
tant to know how much time option 2 will be in that reduced
state of service. When we calculate the availability of both
servers, using our worst-case assumption of 24 failures per
year, we expect to suffer over 22 days of reduced service.

Action Plan
Given this understanding of options 2 and 3, we see that
none of these completely meet their requirements. While
option 2 meets its availability target (for failures that involve
rebooting the server), it leaves the system in a state where its
performance targets can not be met for more than 22 days
per year. Perhaps a combination of options 2 and 3—dual
servers and intelligent cache on clients—will be a better
alternative. This option will provide the superior availability
and performance of option 2, but during the times when one
server has failed, we mitigate the jitter problems of the single
remaining server by using the intelligent cache.

We could not have made these design decisions without
knowledge gained from the analysis. Performing a multi-
attribute analysis allows one to understand the strengths and
weaknesses of a system, and of the parts of a system, within
a framework that supports making design decisions.

SENSITIVITY ANALYSES
Given that the performance and availability of option 2 were
so much better than option 1, we would suspect that these
attributes are sensitive to the number of servers. Sensitivity
analysis confirms this: performance increases linearly as the
number of servers increases (up to the point where there is 1
server per client) and availability increases by roughly an
order of magnitude with each additional server [2].

Given that option 3 has some desirable characteristics in
terms of cost and jitter, we might ask if we can improve the
intelligent cache sufficiently to make this option acceptable
from an availability perspective. To answer this, we plot
option 3’s availability against the length of time during
which the intelligent cache’s data is trusted. This plot is

Repair Time Failures/yr Availability Hrs down/yr

12 hours 24. 0.99798 17.7327

10 minutes 24. ~1.0 0.0036496

Table 5: Availability of Option 2

Repair Time Failures/yr Reliability Hrs down/yr

12 hours 24. 0.96839 276.91

10 minutes 24. 0.9997 2.66545

Table 6: Availability of Option 3

shown in Figure 6.

As we can see, an improved intelligent cache does improve
availability. However, the rate of improvement in availability
as a function of cache life is so small that no reasonable,
achievable amount of cache improvement will result in the
kind of availability demonstrated for option 2. In effect, the
intelligent cache is an architectural barrier with respect to
availability, because it can not be made to achieve the levels
of utility required of it. To put it another way, the availability
of option 3 is not sensitive to cache life. To increase the
availability substantially, other paths must be investigated.

SECURITY ANALYSES
Although we could have been conducting security analyses
with the performance and availability analyses from the
start, the ATAM does not require that all attributes be ana-
lyzed in parallel. The ATAM allows the designer to focus on
those attributes that are considered to be primary, and then
introduce others later on. This can lead to cost benefits in
applying the method, since what may be costly analyses for
some secondary attributes need not be applied to architec-
tures that were unsuitable for the primary attributes. Though
all analyses need not occur “up-front and simultaneously”,
the analyses for the secondary attributes can still occur well
before implementation begins.

We will now analyze our three options in terms of their secu-
rity. In particular, we will examine the connections between
the furnace servers and clients, since this could be the sub-
ject of an attack. The object at risk is the temperature sent
from the server to the client, since this information is used by
the client to adjust the furnace settings. If the temperature is
tampered with it could be a significant safety concern. Thus
we have the security requirement:

SR1: The temperature readings must not be corrupted
before they arrive to the client.

Our initial security investigation of the architectural options
must, once again, make some environmental assumptions.
These assumptions are dependent on the operational envi-
ronment of the delivered system and include factors such as
operator training and patch management. These dependen-
cies are out of scope for the analysis at this level of detail,
but must be considered later in the design process.

So, to calculate the probability of a successful attack within

an acceptable window of opportunity for an intruder, we
define initial values that are reasonable for the functions
provided in the RTS architectures. These are:

In addition, we will posit two attack scenarios: one where the
intruder uses a “man in the middle” (MIM) attack, and one
where the intruder uses a “spoof server” attack.

For the MIM attack, the attacker uses a TCP intercept tool to
modify the values of the temperatures during transmission.
Since there are no specific security countermeasures to this
attack, the only barrier is the 60 minute window of opportu-
nity and the 0.5 probability of success for the TCP intercept
tool. Thus the rate of successful attack is 0.025 systems/
minute, or about 1.5 successful attacks expected in the win-
dow of opportunity.

For the spoof-server attack, there are three possible ways to
succeed. The intruder could wait for a server to fail, then
spoof that server’s address and take over the client connec-
tions. This presumes that the intruder can determine when a
server has failed and can take advantage of this before the
clients time out. Another successful method would be to
cause the server to fail (the “kill server” attack), then take
over the connections. A third is to disrupt the connections
between the client and server, then establish new connec-
tions as a spoofed server (the “kill connection” attack). For
this analysis, it is presumed that the intruder is equally likely
to attempt any of these methods in a given attack and the
results are summarized in Table 8. Of course, these numbers
appear precise, but must be treated as estimates given the
subjective nature of the environmental assumptions.

It should be noted that if the system must deal with switching
servers and reconnecting clients when a server goes in and
out of service, it will be easier for an intruder to spoof a
server and convince a client to switch to the bogus server.
We will return to this point in the sensitivity analysis.

The results of this analysis show that in each case, it is
expected that a penetration will take place within 60 min-
utes. For the MIM scenario, the expected number of success-

D
ow

n
ti

m
e

(h
ou

rs
/y

ea
r)

Cache life (minutes)

Figure 6: Down time vs. Intelligent Cache Life

Attack Components Value
Attack Exposure Window 60 minutes

Attack Rate 0.05 systems/min
Server failure rate 24 failures/year

Prob of server failure
within 1 hour

0.0027

Pr
ob

 o
f

su
cc

es
sf

ul TCP Intercept 0.5
Spoof IP address 0.9
Kill Connection 0.75

Kill Server 0.25

Table 7: Environmental Security Assumptions

Attack Type Expected Intrusions in 60 Mins

Kill Connection 2.04

Kill Server 0.66

Server Failure 0.0072

Table 8: Anticipated Spoof Attack Success Rates

ful attacks is 1.5, indicating that an intruder would have
more than enough time to complete the attack before detec-
tion. For the spoof attack, the number of successful attacks
ranges from 0.0072 to just over 2, again showing that a pene-
tration using this technique is also likely.

Refined Architectural Options
To address the apparent inadequacy of the three options, we
need to cycle around the steps of the ATAM, proposing new
architectures. The modified versions of the options include
the addition of encryption/decryption and the use of the
intelligent cache as an intrusion detection mechanism, as
shown in Figure 7.

Encryption/decryption needs little explanation; it is the most
common security “bolt on” solution. The other security
enhancement is not a topological change, but rather a change
in the function of the intelligent cache. In this design, the
cache uses its predictive values to determine if the tempera-
tures supplied by the network are reasonable. A temperature
that is significantly outside a reasonable change range is
deemed to be generated by an intruder and thus the cache
aids the operator in detecting an intrusion. Adding encryp-
tion adds some new environmental assumptions. These are:

Based on these assumptions, we can calculate the expected
number of intrusions. Not surprisingly, the addition of
encryption has reduced these substantially—by at least an
order of magnitude—in each option:

Our analysis of the intelligent cache changes only one envi-
ronmental assumption: the “Attack Exposure Window” goes
down to 5 minutes, since we assume that an operator can
detect and respond to an intrusion in that time. Using this

form of intrusion detection reduces the number of expected
intrusions by 1-2 orders of magnitude, giving a result com-
parable to encryption, but at substantially lower performance
and software/hardware costs:

At this point, new performance and availability analyses will
need to be run to account for the additional functionality and
hardware required by the intelligent cache or encryption
modifications, thus instigating another trip around the spiral.

SENSITIVITIES AND TRADEOFFS
Following the ATAM, we are now in a position to do further
sensitivity analysis. In particular, we noted earlier that both
availability and performance highly positively correlated to
the number of servers. A sensitivity analysis respect to secu-
rity shows just the opposite: security is negatively related to
the number of servers. This is for two reasons:

• going from one to multiple servers requires additional
logic within the clients, so that they are able to switch
between servers. This provides an entry point for spoof-
ing attacks that does not exist when a client is “hard-
wired” to a single server;

• the probability of a server failure within 1 hour increases
linearly with the number of servers, thus increasing the
opportunities for server spoofing.

At this point we have discovered an architectural tradeoff
point, in the number of servers. Performance and availability
are positively correlated, while security and presumably cost
are negatively correlated, with the number of servers. We
cannot maximize cost, performance, availability, and secu-
rity simultaneously. Using this information, we can make
informed tradeoff decisions regarding the level of the vari-
ous attributes that we can achieve at an acceptable cost, and
we can do so within an analytic framework.

THE IMPLICATIONS OF THE ATAM
For every assumption that we make in a system’s design, we
trade cost for knowledge. For example, if a periodic update
is supposed to arrive every 10 seconds, do we want it to
arrive exactly every 10 seconds, on average every 10 sec-
onds, some time within each 10 second window? To give
another example, consider the requirement detailing the
worst case latency of control packets. As discussed earlier, is
this worst case ever acceptable? If so, how frequently can we
tolerate it? The process of analyzing architectural attributes
forces us to try to answer these questions. Either we under-
stand our requirements precisely or we pay for ignorance by
over-engineering or under-engineering the system. If we
over-engineering, we pay for our ignorance by making the
system needlessly expensive. If we under-engineer, we face
system failures, losing customers or perhaps even lives.

Attack Components Value

Pr
ob

 o
f

su
cc

es
sf

ul Decrypt 0.0005

Replay 0.05

Key Distribution 0.09

Table 9: Additional Security Assumptions

Attack Type Expected Intrusions in 60 Mins

Kill Connection 0.18225

Kill Server 0.03375

Server Failure 0.0006

Table 10: Spoof Attack Success Rates with Encryption

. .
 .

Furnace Server

Furnace Client 1

Furnace Client 2

Furnace Client n

.

.

.
Furnace Client n-1

Figure 7: Security Modifications

IC

IC

IC

IC

E/
D

E/D

E/D

E/D

E/D

Attack Type Expected Intrusions in 60 Mins

Kill Connection 0.16875

Kill Server 0.05625

Server Failure 0.005

Table 11: Spoof Attack Success Rates with Intrusion
Detection

Can we believe the numbers that we generated in our analy-
ses? No. However we can believe the trends—we have seen
differences among designs in terms of orders of magni-
tude—and these differences, along with sensitivity analysis,
tell us where to investigate further, where to get better envi-
ronmental information, where to prototype, which will get us
numbers that we can believe. Every analysis step that we
take precipitates new questions. While this seems like a
daunting, never-ending prospect, it is manageable because
these questions are posed and answered within an analytic
attribute framework, and because in architectural analysis
we are more interested in finding large effects than in precise
estimates.

In addition to concretizing requirements, the ATAM has one
other benefit: it helps to uncover implicit requirements. This
occurs because attribute analyses are, as we have seen, inter-
dependent—they depend, at least partially, on a common set
of elements, such as the number of servers. However, in the
past, they have been modeled as though they were indepen-
dent. This is clearly not the case.

Each analyzed attribute has implications for other attributes.
For example, although the availability analysis was only
focussed on servers availability, in a complete analysis we
would look at potential failures of all components, including
the furnaces, the clients, and the communication lines, and
we would look at the various failure types. One such failure
is dropping a message. If we assume that the communication
channel is not reliable, then we might want to plan for re-
sending messages. To do this involves additional computa-
tion (to detect and re-send lost messages), storage (to store
the messages until they have been successfully transmitted),
and time (for a time-out interval and for message re-trans-
mission). Thus one of the major implications of this avail-
ability concern is that the performance models of the options
under consideration need to be modified.

To recap, we discover attribute interactions in two ways:
using sensitivity analysis to find tradeoff points, and by
examining the assumptions that we make for analysis A
while performing analysis B. The “no dropped packets”
assumption is one example of such an interaction. This
assumption, if false, may have implications for safety, secu-
rity, and availability. A solution to dropping packets will
have implications for performance.

In the ATAM attribute experts independently create and ana-
lyze their models, then they exchange information (clarify-
ing or creating new requirements). On the basis of this
information they refine their models. The interaction of
attribute-specific analyses, and the identification of
tradeoffs, has a greater effect on system understanding and
stakeholder communication than any of those analyses could
do on their own.

The complexity inherent in most real-world software design
implies that an architecture tradeoff analysis will rarely be a
straightforward activity that allows you to proceed linearly
to a perfect solution. Each step of the method answers some
design questions, and brings some issues into sharper focus.
However, each step often raises new questions and reveals

new interactions between attributes which may require fur-
ther analysis, sometimes at different levels of abstraction.
Such obstacles are an intrinsic part of a detailed methodical
exploration of the design space and cannot be avoided. Man-
aging the conflicts and interactions that are revealed by the
ATAM places heavy demands on the analysis skills of the
individual attribute experts. Success largely depends upon
the ability of those experts to transcend barriers of differing
terminology and methodology to understand the implications
of inter-attribute dependencies, and to jointly devise candi-
date architectural solutions for further analysis. As burden-
some as this may appear to be, it is far better to intensively
manage these attribute interactions early in the design pro-
cess than to wait until some unfortunate consequences of the
interactions are revealed in a deployed system.

CONCLUSIONS
The ATAM was motivated by a desire to make rational
choices among competing architectures, based upon well-
documented analyses of system attributes at the architectural
level, concentrating on the identification of tradeoff points.
The ATAM also serves as a vehicle for the early clarification
of requirements. As a result of performing an architecture
tradeoff analysis, we have an enhanced understanding of,
and confidence in, a system’s ability to meet its require-
ments. We also have a documented rationale for the architec-
tural choices made, consisting of both the scenarios used to
motivate the attribute-specific analyses and the results of
those analyses.

Consider the RTS case study: we began with vague require-
ments and enumerated three architectural options. The ana-
lytical framework helped determine the useful characteristics
of each of the architectural options and highlighted the costs
and benefits of the architectural features. More importantly,
the ATAM helped determine the locations of architectural
tradeoff points, which helped us understand the limits of
each option. This helped us develop informed action plans
for modifying the architecture, leading to new evaluations
and new iterations of the method.

REFERENCES
[1] M. Barbacci, M. Klein, C. Weinstock, “Principles for
Evaluating the Quality Attributes of a Software Architec-
ture”, CMU/SEI -96-TR-36, 1996.

[2] M. Barbacci, J. Carriere, R. Kazman, M. Klein, H. Lip-
son, T. Longstaff, C. Weinstock, “Architecture Tradeoff
Analysis: Managing Attribute Conflicts and Interactions”,
CMU/SEI -97-TR-29, 1997.

[3] B. Boehm, “A Spiral Model of Software Development
and Enhancement”, ACM Software Eng. Notes, 11(4), 22-42,
1986.

[4] R. Kazman, G. Abowd, L. Bass, P. Clements, “Scenario-
Based Analysis of Software Architecture”, IEEE Software,
Nov. 1996, 47-55.

[5] M. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonzales
Harbour, A Practitioner’s Handbook for Real-Time Analysis,
Kluwer Academic, 1993.

[6] H. Lipson, T. Longstaff (eds.), Proceedings of the 1997
Information Survivability Workshop, IEEE CS Press, 1997.

[7] J. McCall, “Quality Factors”, in (J. Marciniak, ed.),
Encyclopedia of Software Engineering, Vol. 2, Wiley: New
York, 1994, 958-969.

[8] C. Smith, L. Williams, “Software Performance Engi-
neering: A Case Study Including Performance Comparison
with Design Alternatives”, IEEE Transactions on Software
Engineering, 19(7), 720-741.

