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Software design 

•  Programmer’s approach: 
•  Skip requirements engineering and design phases 
•  Start writing code 

•  Why? 
•  Design is a waste of time 
•  We need to show something to the customer real quick 
•  We are judged by the amount of LOC/month 
•  We expect or know that the schedule is too tight 
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Software design 

•  Design is a trial-and-error process 
•  There is an interaction between requirements 

engineering, architecting, and design 

•  Design traps: 
•  There is no definite formulation 
•  There is no stopping rule 
•  Solutions are not simply true or false 
•  There may be a whole range of possible (good) 

solutions 
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Process of design 

•  Design is a problem-solving process whose 
objective is to find and describe a way: 
•  To implement the system’s functional requirements... 
•  While respecting the constraints imposed by the 

quality, platform and process requirements... 
−  including the budget 

•  And while adhering to general principles of good 
quality  
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Design Principle 1: Divide and conquer  

•  Trying to deal with something big all at once is 
normally much harder than dealing with a series of 
smaller things  
•  Separate people can work on each part. 
•  An individual software engineer can specialize. 
•  Each individual component is smaller, and therefore 

easier to understand. 
•  Parts can be replaced or changed without having to 

replace or extensively change other parts. 
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Design Principle 2: Increase cohesion 
where possible  

•  A subsystem or module has high cohesion if it keeps 
together things that are related to each other, and 
keeps out other things 
•  This makes the system as a whole easier to understand 

and change  
•  Type of cohesion: 
−  Functional, Layer, Communicational, Sequential, 

Procedural, Temporal, Utility  
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Design Principle 3: Reduce coupling 
where possible  

•  Coupling occurs when there are interdependencies 
between one module and another  
•  When interdependencies exist, changes in one place 

will require changes somewhere else. 
•  A network of interdependencies makes it hard to see at 

a glance how some component works. 
•  Types of coupling: 
−  Content, Common, Control, Stamp, Data, Routine 

Call, Type use, Inclusion/Import, External 
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Cohesion and coupling 

•  Dependencies 

•  A lot of open spaces 
•  1216 modules not called 

 by other modules 
•  This may be dead code 
•  651 modules indeed 

dead (confirmed) 
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Cohesion and coupling 

Automatic model extraction shows: 
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Potentially unused classes! 

Very complex! 

Design Principle 4: Keep the level of 
abstraction as high as possible  

•  Ensure that your designs allow you to hide or defer 
consideration of details, thus reducing complexity  
•  A good abstraction is said to provide information hiding  
•  Abstractions allow you to understand the essence of a 

subsystem without having to know unnecessary details  
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Design Principle 5: Increase reusability 
where possible 

•  Design the various aspects of your system so that 
they can be used again in other contexts   
•  Generalize your design as much as possible  
•  Follow the preceding three design principles  
•  Design your system to contain hooks  
•  Simplify your design as much as possible  
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Design Principle 6: Reuse existing 
designs and code where possible 

•  Design with reuse is complementary to design for 
reusability   
•  Actively reusing designs or code allows you to take 

advantage of the investment you or others have made 
in reusable components  
−  Cloning should not be seen as a form of reuse  

•  Use frameworks/libraries as much as possible 
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Design Principle 7: Design for flexibility  

•  Actively anticipate changes that a design may have 
to undergo in the future, and prepare for them  
•  Reduce coupling and increase cohesion  
•  Create abstractions  
•  Do not hard-code anything 
•  Leave all options open 
−  Do not restrict the options of people who have to 

modify the system later  
•  Use reusable code and make code reusable  
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Design Principle 8: Anticipate 
obsolescence  

•  Plan for changes in the technology or environment 
so the software will continue to run or can be easily 
changed  
•  Avoid using early releases of technology  
•  Avoid using software libraries that are specific to 

particular environments  
•  Avoid using undocumented features or little-used 

features of software libraries  
•  Avoid using software or special hardware from 

companies that are less likely to provide long-term 
support  

•  Use standard languages and technologies that are 
supported by multiple vendors  
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Design Principle 9: Design for Portability  

•  Have the software run on as many platforms as 
possible  
•  Avoid the use of facilities that are specific to one 

particular environment  
•  E.g. a library only available in Microsoft Windows 
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Questions 

•  Why is design necessary? 
•  Is design the same as programming? 
•  Why is low coupling and high cohesion good? 
•  Is code cloning a good form of re-use? 
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Design Principle 10: Design for 
Testability  

•  Take steps to make testing easier  
•  Design a program to automatically test the software 
−  Discussed more in Chapter 13 
−  Ensure that all the functionality of the code can by 

driven by an external program, bypassing a graphical 
user interface 

•  In Java, you can create a main() method in each class in 
order to exercise the other methods 
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Design Principle 11: Design defensively 

•  Never trust how others will try to use a component 
you are designing 
•  Handle all cases where other code might attempt to use 

your component inappropriately 
•  Check that all of the inputs to your component are 

valid: the preconditions 
−  Unfortunately, over-zealous defensive design can 

result in unnecessarily repetitive checking 
−  Example: 75% of the code is used to parameter 

checking 
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Design principles 

•  Abstraction 
•  Modularity, coupling and cohesion 
•  Information hiding 
•  Limit complexity 
•  Hierarchical structure 
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Abstraction 

•  Procedural abstraction 
•   natural consequence of stepwise refinement  
−  name of procedure denotes sequence of actions 

•  Data abstraction 
•  aimed at finding a hierarchy in the data 
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Modularity 

•  Structural criteria which tell us something about 
individual modules and their interconnections 

•  Modern programming languages support modularity 

•  Cohesion and coupling 
•  cohesion: the glue that keeps a module together 
•  coupling: the strength of the connection between 

modules 
•  keep track of this via measuring! 
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Modularity 

•  Calculating quality metrics on the source code 
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Fan In (called by # modules) 

Fan Out (# modules called) 

Types of cohesion 

•  Coincidental cohesion 
•  elements are grouped into components in a random manner, 

no relation between components 
•  Logical cohesion 

•  elements realize logical related tasks, for instance all 
procedures dealing with the processing of input 

•  Temporal cohesion 
•  elements are independent but are active at the same moment 

in time, for instance everything related to initialization 
•  Procedural cohesion 

•  elements are executed in a given order 
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Types of cohesion 

•  Communicational cohesion 
•  elements operate on the same (external) data 

•  Sequential cohesion 
•  sequence of elements where output of one is input for other 

•  Functional cohesion 
•  elements contribute to a single function 

•  Data cohesion (for abstract data types) 
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Types of coupling 

•  Content coupling 
•  change of data by another component 

•  Common coupling 
•  shared data 

•  External coupling 
•  files 

•  Control coupling 
•  flags 

•  Stamp coupling 
•  shared knowledge on data formats 

•  Data coupling 
•  simple data 
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strong cohesion & weak coupling ⇒ 
simple interfaces ⇒ 

•  simpler communication 
•  simpler correctness proofs 
•  changes influence other modules less often 
•  reusability increases 
•  comprehensibility improves 
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Information hiding 

•  Design involves a series of decision: for each such 
decision, wonder who needs to know and who can 
be kept in the dark 

•  Information hiding is strongly related to 
•  abstraction: if you hide something, the user may 

abstract from that fact 
•  coupling: the secret decreases coupling between a 

module and its environment 
•  cohesion: the secret is what binds the parts of the 

module together 
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Questions 

•  What is meant by “design defensively”? 
•  What is the consequence of high complexity in 

design? 
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Complexity 

•  Measure certain aspects of the software (lines of 
code, # of if-statements, depth of nesting, …) 

•  Use these numbers as a criterion to assess a 
design, or to guide the design 

•  Interpretation: higher value ⇒ higher complexity ⇒ 
more effort required (= worse design) 

•  Two kinds: 
•  intra-modular: inside one module 
•  inter-modular: between modules 
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Modularity 

•  Calculating quality metrics on the source code 
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Fan In (called by # modules) 

Fan Out (# modules called) 

Intra-modular complexity measures 

•  for small programs, the various measures correlate 
well with programming time 

•  however, a simple length measure such as LOC 
does equally well 

•  complexity measures are not very context sensitive 
•  complexity measures take into account few aspects 

•  it might help to look at the complexity density 
instead 
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System structure: inter-module complexity 

•  looks at the complexity of the dependencies 
between modules 

•  draw modules and their dependencies in a graph 
•  then the arrows connecting modules may denote 

several relations, such as: 
•  A contains B 
•  A precedes B 
•  A uses B 

•  we are mostly interested in the latter type of relation 
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The uses relation 

•  In a well-structured piece of software, the 
dependencies show up as procedure calls 

•  therefore, this graph is known as the call-graph 
•  possible shapes of this graph: 

•  chaos (directed graph) 
•  hierarchy (acyclic graph) 
•  strict hierarchy (layers) 
•  tree 
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In a picture 
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chaos 

strict 
hierarchy 

hierarchy 

tree 

OO Metrics 

•  WMC: “weighted methods per class” based on 
cyclomatic complexity, size, etc. per method 

•  DIT: “depth of class in inheritance tree” distance to 
top of inheritance tree 

•  NOC: “number of children” counts direct 
descendants of a class 

/ Faculteit Wiskunde en Informatica PAGE 36 23-05-12 



OO Metrics 

•  CBO: “coupling between object class” counts the 
number of classes a class is connected to via 
method or variable 
•  afferent coupling: dependence of a package on its 

environment 
•  efferent coupling: dependence of the environment on a 

package 
•  RFC: “response for a class”  
•  LCOM: “lack of cohesion of a method”  
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Design methods 

•  Functional decomposition 

•  Data Flow Design (SA/SD) 

•  Design based on Data Structures (JSD/JSP) 

•  OO is gOOd, isn’t it 

/ Faculteit Wiskunde en Informatica PAGE 38 23-05-12 

List of possible design methods 

•  Decision tables 
•  E-R 
•  Flowcharts 
•  FSM 
•  JSD 
•  JSP 
•  LCP 
•  Meta IV 
•  NoteCards 
•  OBJ 

•  OOD 
•  PDL 
•  Petri Nets 
•  SA/SD 
•  SA/WM 
•  SADT 
•  SSADM 
•  Statecharts 
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Interesting web page 

•  http://www.smartdraw.com/resources/tutorials/ 
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Functional decomposition 

•  Extremes: bottom-up and top-down 
•  Not used as such; design is not purely rational: 

•  clients do not know what they want 
•  changes influence earlier decisions 
•  people make errors 
•  projects do not start from scratch 

•  Rather, design has a yo-yo character 
•  We can only fake a rational design process 
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Data flow design 

•  Yourdon and Constantine (early 70s) 

•  nowadays version: two-step process: 
•  Structured Analysis (SA), resulting in a logical design, 

drawn as a set of data flow diagrams 
•  Structured Design (SD) transforming the logical 

design into a program structure drawn as a set of 
structure charts 
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Design based on data structures 
(JSP & JSD) 

•  JSP = Jackson Structured Programming (for 
programming-in-the-small) 

•  JSD = Jackson Structured Design (for programming-
in-the-large) 
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JSP 

•  basic idea: good program reflects structure of its 
input and output 

•  program can be derived almost mechanically from a 
description of the input and output 

•  input and output are depicted in a structure diagram 
and/or in structured text/schematic logic (a kind of 
pseudocode) 

•  three basic compound forms: sequence, iteration, 
and selection) 
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Difference between JSP and other 
methods 

•  Functional decomposition, data flow design: 
   Problem structure  ⇒ functional structure  ⇒  
              program structure 

•  JSP: 
   Problem structure  ⇒ data structure  ⇒  
              program structure 
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JSD: Jackson Structured Design 

•  Problem with JSP: how to obtain a mapping from the 
problem structure to the data structure? 

•  JSD tries to fill this gap 

•  JSD has three stages: 
•  modeling stage: description of real world problem in terms 

of entities and actions 
•  network stage: model system as a network of 

communicating processes 
•  implementation stage: transform network into a sequential 

design 
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JSD’s modeling stage 

•  JSD models the UoD as a set of entities 
•  For each entity, a process is created which models 

the life cycle of that entity 
•  This life cycle is depicted as a process structure 

diagram (PSD); these resemble JSP’s structure 
diagrams 

•  PSD’s are finite state diagrams; only the roles of 
nodes and edges has been reversed: in a PSD, the 
nodes denote transitions while the edges denote 
states 
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•  DataStreams connect processes and specify what information is 
passed between them: 

•  State Vectors are an alternative way of connecting processes. They 
specify the characteristic or state of the entity being changed by a 
process: 

•  Network diagram: 
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OOAD methods 

•  Three major steps: 

1  identify the objects 

2  determine their attributes and services 

3  determine the relationships between objects 
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(Part of) problem statement 

    Design the software to support the operation of a 
public library. The system has a number of stations 
for customer transactions. These stations are 
operated by library employees. When a book is 
borrowed, the identification card of the client is 
read. Next, the station’s bar code reader reads the 
book’s code. When a book is returned, the 
identification card isnot needed and only the book’s 
code needs to be read. 
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Candidate objects 

•  software 
•  library 
•  system 
•  station 
•  customer 
•  transaction 
•  book 
•  library employee 
•  identification card 
•  client 
•  bar code reader 
•  book’s code 
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Carefully consider candidate list 

•  eliminate implementation constructs, such as “software” 
•  replace or eliminate vague terms: “system”  ⇒ “computer” 
•  equate synonymous terms: “customer” and “client”  ⇒ 

“client” 
•  eliminate operation names, if possible (such as “transaction”) 
•  be careful in what you really mean: can a client be a library 

employee? Is it “book copy” rather than “book”? 
•  eliminate individual objects (as opposed to classes). “book’s 

code”  ⇒ attribute of “book copy” 
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Relationships 

•  From the problem statement: 
•  employee operates station 
•  station has bar code reader 
•  bar code reader reads book copy 
•  bar code reader reads identification card 

•  Tacit knowledge: 
•  library owns computer 
•  library owns stations 
•  computer communicates with station 
•  library employs employee 
•  client is member of library 
•  client has identification card 
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Result: initial class diagram 
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Usage scenario  ⇒ sequence diagram 
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OO as middle-out design 

•  First set of objects becomes middle level 

•  To implement these, lower-level objects are required, 
often from a class library 

•  A control/workflow set of objects constitutes the top 
level 
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OO design methods 

•  Booch: early, new and rich set of notations 

•  Fusion: more emphasis on process 

•  RUP: full life cycle model associated with UML 
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Booch’ method 

identify classes and objects 

identify semantics of classes and 
objects 

identify relationships between 
classes and objects 

identify interface and implementation 
of classes and objects 
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Fusion 

object model 

interface model 

visibility graphs object interaction 
graphs 

Design 

Analysis 

class descriptions inheritance graphs 
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RUP 

•  Nine workflows, a.o. requirements, analysis and 
design 

•  Four phases: inception, elaboration, construction, 
transition 

•  Analysis and design workflow: 
•  First iterations: architecture discussed in ch 11 
•  Next: analyze behavior: from use cases to set of design 

elements; produces black-box model of the solution 
•  Finally, design components: refine elements into 

classes, interfaces, etc. 
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Classification of design methods 

•  Simple model with two dimensions: 
•  Orientation dimension:  

•  Problem-oriented: understand problem and its 
solution 

•  Product-oriented: correct transformation from 
specification to implementation 

•  Product/model dimension: 
•  Conceptual: descriptive models 
•  Formal: prescriptive models 
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Classification of design methods (cnt’d) 

I 
ER modeling 

Structured analysis 

II 
Structured design 

III 
JSD 
VDM 

IV 
Functional decomposition 

JSP 

conceptual 

formal 

problem-oriented product-oriented 
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Characteristics of these classes 

•  I: understand the problem 

•  II: transform to implementation 

•  III: represent properties 

•  IV: create implementation units 
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Caveats when choosing a particular 
design method 

•  Familiarity with the problem domain 

•  Designer’s experience 

•  Available tools 

•  Development philosophy 
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Object-orientation: does it work? 

•  do object-oriented methods adequately capture 
requirements engineering? 

•  do object-oriented methods adequately capture 
design? 

•  do object-oriented methods adequately bridge the 
gap between analysis and design? 

•  are oo-methods really an improvement? 
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Complexity 

•  measure certain aspects of the software (lines of 
code, # of if-statements, depth of nesting, …) 

•  use these numbers as a criterion to assess a design, 
or to guide the design 

•  interpretation: higher value ⇒ higher complexity ⇒ 
more effort required (= worse design) 

•  two kinds: 
•  intra-modular: inside one module 
•  inter-modular: between modules 
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intra-modular 

•  attributes of a single module 

•  two classes: 
•  measures based on size 
•  measures based on structure 
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Sized-based complexity measures 

•  counting lines of code 
•  differences in verbosity 
•  differences between programming languages 
•  a:= b versus while p^ <> nil do p:= p^ 

•  Halstead’s “software science”, essentially counting 
operators and operands 
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Structure-based measures 

•  based on 
•  control structures 
•  data structures 
•  or both 

•  example complexity measure based on data 
structures: average number of instructions between 
successive references to a variable 

•  best known measure is based on the control 
structure: McCabe’s cyclomatic complexity 
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Object-oriented metrics 

•  WMC: Weighted Methods per Class 
•  DIT: Depth of Inheritance Tree 
•  NOC: Number Of Children 
•  CBO: Coupling Between Object Classes 
•  RFC: Response For a Class 
•  LCOM: Lack of COhesion of a Method 

SE, Design, Hans van Vliet,  ©2008 71 

OO metrics 

•  WMC, CBO, RFC, LCOM most useful 
•  Predict fault proneness during design 
•  Strong relationship to maintenance effort 

•  Many OO metrics correlate strongly with size 

Techniques for making good design 
decisions 

•  Using priorities and objectives to decide among 
alternatives  
•  Step 1: List and describe the alternatives for the design 

decision. 
•  Step 2: List the advantages and disadvantages of each 

alternative with respect to your objectives and priorities. 
•  Step 3: Determine whether any of the alternatives prevents 

you from meeting one or more of the objectives. 
•  Step 4: Choose the alternative that helps you to best meet 

your objectives.  
•  Step 5: Adjust priorities for subsequent decision making.  
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