
Software Design
Chapter 12

Mark van den Brand

V model for software development

/ Faculteit Wiskunde en Informatica PAGE 2 23-05-12

Software design

•  Programmer’s approach:
•  Skip requirements engineering and design phases
•  Start writing code

•  Why?
•  Design is a waste of time
•  We need to show something to the customer real quick
•  We are judged by the amount of LOC/month
•  We expect or know that the schedule is too tight

/ Faculteit Wiskunde en Informatica PAGE 3 23-05-12

Software design

•  Design is a trial-and-error process
•  There is an interaction between requirements

engineering, architecting, and design

•  Design traps:
•  There is no definite formulation
•  There is no stopping rule
•  Solutions are not simply true or false
•  There may be a whole range of possible (good)

solutions

/ Faculteit Wiskunde en Informatica PAGE 4 23-05-12

Process of design

•  Design is a problem-solving process whose
objective is to find and describe a way:
•  To implement the system’s functional requirements...
•  While respecting the constraints imposed by the

quality, platform and process requirements...
−  including the budget

•  And while adhering to general principles of good
quality

/ Faculteit Wiskunde en Informatica PAGE 5 23-05-12

Design Principle 1: Divide and conquer

•  Trying to deal with something big all at once is
normally much harder than dealing with a series of
smaller things
•  Separate people can work on each part.
•  An individual software engineer can specialize.
•  Each individual component is smaller, and therefore

easier to understand.
•  Parts can be replaced or changed without having to

replace or extensively change other parts.

/ Faculteit Wiskunde en Informatica PAGE 6 23-05-12

Design Principle 2: Increase cohesion
where possible

•  A subsystem or module has high cohesion if it keeps
together things that are related to each other, and
keeps out other things
•  This makes the system as a whole easier to understand

and change
•  Type of cohesion:
−  Functional, Layer, Communicational, Sequential,

Procedural, Temporal, Utility

/ Faculteit Wiskunde en Informatica PAGE 7 23-05-12

Design Principle 3: Reduce coupling
where possible

•  Coupling occurs when there are interdependencies
between one module and another
•  When interdependencies exist, changes in one place

will require changes somewhere else.
•  A network of interdependencies makes it hard to see at

a glance how some component works.
•  Types of coupling:
−  Content, Common, Control, Stamp, Data, Routine

Call, Type use, Inclusion/Import, External

/ Faculteit Wiskunde en Informatica PAGE 8 23-05-12

Cohesion and coupling

•  Dependencies

•  A lot of open spaces
•  1216 modules not called

 by other modules
•  This may be dead code
•  651 modules indeed

dead (confirmed)

/ Department of Mathematics and Computer Science 23-05-12

Cohesion and coupling

Automatic model extraction shows:

/ Department of Mathematics and Computer Science 23-05-12

Potentially unused classes!

Very complex!

Design Principle 4: Keep the level of
abstraction as high as possible

•  Ensure that your designs allow you to hide or defer
consideration of details, thus reducing complexity
•  A good abstraction is said to provide information hiding
•  Abstractions allow you to understand the essence of a

subsystem without having to know unnecessary details

/ Faculteit Wiskunde en Informatica PAGE 11 23-05-12

Design Principle 5: Increase reusability
where possible

•  Design the various aspects of your system so that
they can be used again in other contexts
•  Generalize your design as much as possible
•  Follow the preceding three design principles
•  Design your system to contain hooks
•  Simplify your design as much as possible

/ Faculteit Wiskunde en Informatica PAGE 12 23-05-12

Design Principle 6: Reuse existing
designs and code where possible

•  Design with reuse is complementary to design for
reusability
•  Actively reusing designs or code allows you to take

advantage of the investment you or others have made
in reusable components
−  Cloning should not be seen as a form of reuse

•  Use frameworks/libraries as much as possible

/ Faculteit Wiskunde en Informatica PAGE 13 23-05-12

Design Principle 7: Design for flexibility

•  Actively anticipate changes that a design may have
to undergo in the future, and prepare for them
•  Reduce coupling and increase cohesion
•  Create abstractions
•  Do not hard-code anything
•  Leave all options open
−  Do not restrict the options of people who have to

modify the system later
•  Use reusable code and make code reusable

/ Faculteit Wiskunde en Informatica PAGE 14 23-05-12

Design Principle 8: Anticipate
obsolescence

•  Plan for changes in the technology or environment
so the software will continue to run or can be easily
changed
•  Avoid using early releases of technology
•  Avoid using software libraries that are specific to

particular environments
•  Avoid using undocumented features or little-used

features of software libraries
•  Avoid using software or special hardware from

companies that are less likely to provide long-term
support

•  Use standard languages and technologies that are
supported by multiple vendors

/ Faculteit Wiskunde en Informatica PAGE 15 23-05-12

Design Principle 9: Design for Portability

•  Have the software run on as many platforms as
possible
•  Avoid the use of facilities that are specific to one

particular environment
•  E.g. a library only available in Microsoft Windows

/ Faculteit Wiskunde en Informatica PAGE 16 23-05-12

Questions

•  Why is design necessary?
•  Is design the same as programming?
•  Why is low coupling and high cohesion good?
•  Is code cloning a good form of re-use?

/ Faculteit Wiskunde en Informatica PAGE 17 23-05-12

Design Principle 10: Design for
Testability

•  Take steps to make testing easier
•  Design a program to automatically test the software
−  Discussed more in Chapter 13
−  Ensure that all the functionality of the code can by

driven by an external program, bypassing a graphical
user interface

•  In Java, you can create a main() method in each class in
order to exercise the other methods

/ Faculteit Wiskunde en Informatica PAGE 18 23-05-12

Design Principle 11: Design defensively

•  Never trust how others will try to use a component
you are designing
•  Handle all cases where other code might attempt to use

your component inappropriately
•  Check that all of the inputs to your component are

valid: the preconditions
−  Unfortunately, over-zealous defensive design can

result in unnecessarily repetitive checking
−  Example: 75% of the code is used to parameter

checking

/ Faculteit Wiskunde en Informatica PAGE 19 23-05-12

Design principles

•  Abstraction
•  Modularity, coupling and cohesion
•  Information hiding
•  Limit complexity
•  Hierarchical structure

/ Faculteit Wiskunde en Informatica PAGE 20 23-05-12

Abstraction

•  Procedural abstraction
•  natural consequence of stepwise refinement
−  name of procedure denotes sequence of actions

•  Data abstraction
•  aimed at finding a hierarchy in the data

/ Faculteit Wiskunde en Informatica PAGE 21 23-05-12

Modularity

•  Structural criteria which tell us something about
individual modules and their interconnections

•  Modern programming languages support modularity

•  Cohesion and coupling
•  cohesion: the glue that keeps a module together
•  coupling: the strength of the connection between

modules
•  keep track of this via measuring!

/ Faculteit Wiskunde en Informatica PAGE 22 23-05-12

Modularity

•  Calculating quality metrics on the source code

/ Department of Mathematics and Computer Science 23-05-12

Fan In (called by # modules)

Fan Out (# modules called)

Types of cohesion

•  Coincidental cohesion
•  elements are grouped into components in a random manner,

no relation between components
•  Logical cohesion

•  elements realize logical related tasks, for instance all
procedures dealing with the processing of input

•  Temporal cohesion
•  elements are independent but are active at the same moment

in time, for instance everything related to initialization
•  Procedural cohesion

•  elements are executed in a given order

/ Faculteit Wiskunde en Informatica PAGE 24 23-05-12

Types of cohesion

•  Communicational cohesion
•  elements operate on the same (external) data

•  Sequential cohesion
•  sequence of elements where output of one is input for other

•  Functional cohesion
•  elements contribute to a single function

•  Data cohesion (for abstract data types)

/ Faculteit Wiskunde en Informatica PAGE 25 23-05-12

Types of coupling

•  Content coupling
•  change of data by another component

•  Common coupling
•  shared data

•  External coupling
•  files

•  Control coupling
•  flags

•  Stamp coupling
•  shared knowledge on data formats

•  Data coupling
•  simple data

/ Faculteit Wiskunde en Informatica PAGE 26 23-05-12

strong cohesion & weak coupling ⇒
simple interfaces ⇒

•  simpler communication
•  simpler correctness proofs
•  changes influence other modules less often
•  reusability increases
•  comprehensibility improves

/ Faculteit Wiskunde en Informatica PAGE 27 23-05-12

Information hiding

•  Design involves a series of decision: for each such
decision, wonder who needs to know and who can
be kept in the dark

•  Information hiding is strongly related to
•  abstraction: if you hide something, the user may

abstract from that fact
•  coupling: the secret decreases coupling between a

module and its environment
•  cohesion: the secret is what binds the parts of the

module together

/ Faculteit Wiskunde en Informatica PAGE 28 23-05-12

Questions

•  What is meant by “design defensively”?
•  What is the consequence of high complexity in

design?

/ Faculteit Wiskunde en Informatica PAGE 29 23-05-12

Complexity

•  Measure certain aspects of the software (lines of
code, # of if-statements, depth of nesting, …)

•  Use these numbers as a criterion to assess a
design, or to guide the design

•  Interpretation: higher value ⇒ higher complexity ⇒
more effort required (= worse design)

•  Two kinds:
•  intra-modular: inside one module
•  inter-modular: between modules

/ Faculteit Wiskunde en Informatica PAGE 30 23-05-12

Modularity

•  Calculating quality metrics on the source code

/ Department of Mathematics and Computer Science 23-05-12

Fan In (called by # modules)

Fan Out (# modules called)

Intra-modular complexity measures

•  for small programs, the various measures correlate
well with programming time

•  however, a simple length measure such as LOC
does equally well

•  complexity measures are not very context sensitive
•  complexity measures take into account few aspects

•  it might help to look at the complexity density
instead

/ Faculteit Wiskunde en Informatica PAGE 32 23-05-12

System structure: inter-module complexity

•  looks at the complexity of the dependencies
between modules

•  draw modules and their dependencies in a graph
•  then the arrows connecting modules may denote

several relations, such as:
•  A contains B
•  A precedes B
•  A uses B

•  we are mostly interested in the latter type of relation

/ Faculteit Wiskunde en Informatica PAGE 33 23-05-12

The uses relation

•  In a well-structured piece of software, the
dependencies show up as procedure calls

•  therefore, this graph is known as the call-graph
•  possible shapes of this graph:

•  chaos (directed graph)
•  hierarchy (acyclic graph)
•  strict hierarchy (layers)
•  tree

/ Faculteit Wiskunde en Informatica PAGE 34 23-05-12

In a picture

/ Faculteit Wiskunde en Informatica PAGE 35 23-05-12

chaos

strict
hierarchy

hierarchy

tree

OO Metrics

•  WMC: “weighted methods per class” based on
cyclomatic complexity, size, etc. per method

•  DIT: “depth of class in inheritance tree” distance to
top of inheritance tree

•  NOC: “number of children” counts direct
descendants of a class

/ Faculteit Wiskunde en Informatica PAGE 36 23-05-12

OO Metrics

•  CBO: “coupling between object class” counts the
number of classes a class is connected to via
method or variable
•  afferent coupling: dependence of a package on its

environment
•  efferent coupling: dependence of the environment on a

package
•  RFC: “response for a class”
•  LCOM: “lack of cohesion of a method”

/ Faculteit Wiskunde en Informatica PAGE 37 23-05-12

Design methods

•  Functional decomposition

•  Data Flow Design (SA/SD)

•  Design based on Data Structures (JSD/JSP)

•  OO is gOOd, isn’t it

/ Faculteit Wiskunde en Informatica PAGE 38 23-05-12

List of possible design methods

•  Decision tables
•  E-R
•  Flowcharts
•  FSM
•  JSD
•  JSP
•  LCP
•  Meta IV
•  NoteCards
•  OBJ

•  OOD
•  PDL
•  Petri Nets
•  SA/SD
•  SA/WM
•  SADT
•  SSADM
•  Statecharts

/ Faculteit Wiskunde en Informatica PAGE 39 23-05-12

Interesting web page

•  http://www.smartdraw.com/resources/tutorials/

/ Faculteit Wiskunde en Informatica PAGE 40 23-05-12

Functional decomposition

•  Extremes: bottom-up and top-down
•  Not used as such; design is not purely rational:

•  clients do not know what they want
•  changes influence earlier decisions
•  people make errors
•  projects do not start from scratch

•  Rather, design has a yo-yo character
•  We can only fake a rational design process

/ Faculteit Wiskunde en Informatica PAGE 41 23-05-12

Data flow design

•  Yourdon and Constantine (early 70s)

•  nowadays version: two-step process:
•  Structured Analysis (SA), resulting in a logical design,

drawn as a set of data flow diagrams
•  Structured Design (SD) transforming the logical

design into a program structure drawn as a set of
structure charts

/ Faculteit Wiskunde en Informatica PAGE 42 23-05-12

Design based on data structures
(JSP & JSD)

•  JSP = Jackson Structured Programming (for
programming-in-the-small)

•  JSD = Jackson Structured Design (for programming-
in-the-large)

/ Faculteit Wiskunde en Informatica PAGE 43 23-05-12

JSP

•  basic idea: good program reflects structure of its
input and output

•  program can be derived almost mechanically from a
description of the input and output

•  input and output are depicted in a structure diagram
and/or in structured text/schematic logic (a kind of
pseudocode)

•  three basic compound forms: sequence, iteration,
and selection)

/ Faculteit Wiskunde en Informatica PAGE 44 23-05-12

Difference between JSP and other
methods

•  Functional decomposition, data flow design:
   Problem structure ⇒ functional structure ⇒
   program structure

•  JSP:
   Problem structure ⇒ data structure ⇒
   program structure

/ Faculteit Wiskunde en Informatica PAGE 45 23-05-12

JSD: Jackson Structured Design

•  Problem with JSP: how to obtain a mapping from the
problem structure to the data structure?

•  JSD tries to fill this gap

•  JSD has three stages:
•  modeling stage: description of real world problem in terms

of entities and actions
•  network stage: model system as a network of

communicating processes
•  implementation stage: transform network into a sequential

design

/ Faculteit Wiskunde en Informatica PAGE 46 23-05-12

JSD’s modeling stage

•  JSD models the UoD as a set of entities
•  For each entity, a process is created which models

the life cycle of that entity
•  This life cycle is depicted as a process structure

diagram (PSD); these resemble JSP’s structure
diagrams

•  PSD’s are finite state diagrams; only the roles of
nodes and edges has been reversed: in a PSD, the
nodes denote transitions while the edges denote
states

/ Faculteit Wiskunde en Informatica PAGE 47 23-05-12

•  DataStreams connect processes and specify what information is
passed between them:

•  State Vectors are an alternative way of connecting processes. They
specify the characteristic or state of the entity being changed by a
process:

•  Network diagram:

/ Faculteit Wiskunde en Informatica PAGE 48 23-05-12

SE, Design, Hans van Vliet, ©2008 49

OOAD methods

•  Three major steps:

1  identify the objects

2  determine their attributes and services

3  determine the relationships between objects

SE, Design, Hans van Vliet, ©2008 50

(Part of) problem statement

 Design the software to support the operation of a
public library. The system has a number of stations
for customer transactions. These stations are
operated by library employees. When a book is
borrowed, the identification card of the client is
read. Next, the station’s bar code reader reads the
book’s code. When a book is returned, the
identification card isnot needed and only the book’s
code needs to be read.

SE, Design, Hans van Vliet, ©2008 51

Candidate objects

•  software
•  library
•  system
•  station
•  customer
•  transaction
•  book
•  library employee
•  identification card
•  client
•  bar code reader
•  book’s code

SE, Design, Hans van Vliet, ©2008 52

Carefully consider candidate list

•  eliminate implementation constructs, such as “software”
•  replace or eliminate vague terms: “system” ⇒ “computer”
•  equate synonymous terms: “customer” and “client” ⇒

“client”
•  eliminate operation names, if possible (such as “transaction”)
•  be careful in what you really mean: can a client be a library

employee? Is it “book copy” rather than “book”?
•  eliminate individual objects (as opposed to classes). “book’s

code” ⇒ attribute of “book copy”

SE, Design, Hans van Vliet, ©2008 53

Relationships

•  From the problem statement:
•  employee operates station
•  station has bar code reader
•  bar code reader reads book copy
•  bar code reader reads identification card

•  Tacit knowledge:
•  library owns computer
•  library owns stations
•  computer communicates with station
•  library employs employee
•  client is member of library
•  client has identification card

SE, Design, Hans van Vliet, ©2008 54

Result: initial class diagram

SE, Design, Hans van Vliet, ©2008 55

Usage scenario ⇒ sequence diagram

SE, Design, Hans van Vliet, ©2008 56

OO as middle-out design

•  First set of objects becomes middle level

•  To implement these, lower-level objects are required,
often from a class library

•  A control/workflow set of objects constitutes the top
level

SE, Design, Hans van Vliet, ©2008 57

OO design methods

•  Booch: early, new and rich set of notations

•  Fusion: more emphasis on process

•  RUP: full life cycle model associated with UML

SE, Design, Hans van Vliet, ©2008 58

Booch’ method

identify classes and objects

identify semantics of classes and
objects

identify relationships between
classes and objects

identify interface and implementation
of classes and objects

SE, Design, Hans van Vliet, ©2008 59

Fusion

object model

interface model

visibility graphs object interaction
graphs

Design

Analysis

class descriptions inheritance graphs

SE, Design, Hans van Vliet, ©2008 60

RUP

•  Nine workflows, a.o. requirements, analysis and
design

•  Four phases: inception, elaboration, construction,
transition

•  Analysis and design workflow:
•  First iterations: architecture discussed in ch 11
•  Next: analyze behavior: from use cases to set of design

elements; produces black-box model of the solution
•  Finally, design components: refine elements into

classes, interfaces, etc.

SE, Design, Hans van Vliet, ©2008 61

Classification of design methods

•  Simple model with two dimensions:
•  Orientation dimension:

•  Problem-oriented: understand problem and its
solution

•  Product-oriented: correct transformation from
specification to implementation

•  Product/model dimension:
•  Conceptual: descriptive models
•  Formal: prescriptive models

SE, Design, Hans van Vliet, ©2008 62

Classification of design methods (cnt’d)

I
ER modeling

Structured analysis

II
Structured design

III
JSD
VDM

IV
Functional decomposition

JSP

conceptual

formal

problem-oriented product-oriented

SE, Design, Hans van Vliet, ©2008 63

Characteristics of these classes

•  I: understand the problem

•  II: transform to implementation

•  III: represent properties

•  IV: create implementation units

SE, Design, Hans van Vliet, ©2008 64

Caveats when choosing a particular
design method

•  Familiarity with the problem domain

•  Designer’s experience

•  Available tools

•  Development philosophy

SE, Design, Hans van Vliet, ©2008 65

Object-orientation: does it work?

•  do object-oriented methods adequately capture
requirements engineering?

•  do object-oriented methods adequately capture
design?

•  do object-oriented methods adequately bridge the
gap between analysis and design?

•  are oo-methods really an improvement?

SE, Design, Hans van Vliet, ©2008 66

Complexity

•  measure certain aspects of the software (lines of
code, # of if-statements, depth of nesting, …)

•  use these numbers as a criterion to assess a design,
or to guide the design

•  interpretation: higher value ⇒ higher complexity ⇒
more effort required (= worse design)

•  two kinds:
•  intra-modular: inside one module
•  inter-modular: between modules

SE, Design, Hans van Vliet, ©2008 67

intra-modular

•  attributes of a single module

•  two classes:
•  measures based on size
•  measures based on structure

SE, Design, Hans van Vliet, ©2008 68

Sized-based complexity measures

•  counting lines of code
•  differences in verbosity
•  differences between programming languages
•  a:= b versus while p^ <> nil do p:= p^

•  Halstead’s “software science”, essentially counting
operators and operands

SE, Design, Hans van Vliet, ©2008 69

Structure-based measures

•  based on
•  control structures
•  data structures
•  or both

•  example complexity measure based on data
structures: average number of instructions between
successive references to a variable

•  best known measure is based on the control
structure: McCabe’s cyclomatic complexity

SE, Design, Hans van Vliet, ©2008 70

Object-oriented metrics

•  WMC: Weighted Methods per Class
•  DIT: Depth of Inheritance Tree
•  NOC: Number Of Children
•  CBO: Coupling Between Object Classes
•  RFC: Response For a Class
•  LCOM: Lack of COhesion of a Method

SE, Design, Hans van Vliet, ©2008 71

OO metrics

•  WMC, CBO, RFC, LCOM most useful
•  Predict fault proneness during design
•  Strong relationship to maintenance effort

•  Many OO metrics correlate strongly with size

Techniques for making good design
decisions

•  Using priorities and objectives to decide among
alternatives
•  Step 1: List and describe the alternatives for the design

decision.
•  Step 2: List the advantages and disadvantages of each

alternative with respect to your objectives and priorities.
•  Step 3: Determine whether any of the alternatives prevents

you from meeting one or more of the objectives.
•  Step 4: Choose the alternative that helps you to best meet

your objectives.
•  Step 5: Adjust priorities for subsequent decision making.

/ Faculteit Wiskunde en Informatica PAGE 72 23-05-12

