Software Engineering:
—Planning for Change _

David Alex Lamb

Department of Computing and Information Science
Queen’s University
Kingston, Ontario, Canada

Prentice-Hall International, Inc.

e e -

84 Chap. 16 Scheduling and Budgeting

ixercises
6-1 Arrange the following eleven tasks into a schedule.

Task Length Dependson | Task Length Dependson
B 3 H

c i 5 D 2 Fo

E 1 D,LJ F 3 B

G 3 GK H 3

I 2 AF J 1 F

K 2 H

Identify the critical path. ;

What is the minimum time to complete this schedule?

‘What tasks are allowed to slip, and by how much?

e How many activities may proceed in parallel?

6-2 This question assumes you have been keeping a pefsonal lqg like the one
described in Section 15.4, and that you have been taking part in a group pro-
ject. Summarize from your log how much time you spent on the group pro-
ject, with subtotals for each phase of the project. Combine ﬂ%ls with the
information from your colleagues who worked on the same project. Count
the number of lines of code in all modules of the program you prodgced,
using a tool if one is available. Do not include lines of code from test drivers
and stubs.

a. Determine your group’s productivity in lines of code per hour.
Extrapolate to lines of code per day and per year, assuming four
productive hours per day and 1,000 productive hours per year.

b. Determine what percentage of your time you spent on each of the

project’s phases.

Chapter 17

Configuration
Management

To make progress, developers need a careful mixture of stability and change. You
must eventually fix bugs and introduce new features, but you must ensure you don’t
interfere with your co-workers, Configuration management is a discipline for control-
ling changes to a system to avoid confusion, misinterpretation, and interference. A
software configuration is a collection of related documents, source files, and tools
used in designing and implementing a software system.

Configuration management consists of three activities. Configuration identifica-
tion decides what pieces of the system you need to keep track of. Configuration con-
trol ensures that changes to a configuration happen smoothly. Configuration status
and accounting keeps track of what changed and why it changed.

17.1 The Need%fbr Configuration Management

A large software project needs configuration management simply to keep track of
the many objects that make up the system, and how to put them together. A project
of any size, large or small, must also deal with multiple versions of the same
software. A new version of an object is a revision if you intend it to completely
replace the object from which it came; a module revision might fix a bug, or intro-
duce new functionality for all possible versions of a system. A new version of an
object is a variant or variation if you intend it to co-exist with the object from which
it came; the two variants represent different members of the same program family
(see Section 5.2.1). Formally, you can define a history relation, is version of,

185

186 Chap. 17 Configuration Management

between objects, and split it into two subrelations, is revision of and is variant of. In
general, these relations form a directed acyclic graph, since you might create a ver-
sion that merges several others.

Variants cause at least two kinds of problems. First, suppose you have several
variants of the same module, and find a bug in one of them. If the bug is in code
common to the variants, you need to fix it in them all, and thus must be able to find
them all. Second, suppose two people each create variants of a base module to add
new functionality; often, one eventually wants to merge both sets of changes back
into the main line of revisions. If neither person knows about the other, each can
try to update the main revision stream simultaneously, and one set of changes will
be lost.

Even in a system where all versions are revisions can have problems. If a fel-
low programmer is debugging module M1, your changing M2 can change the symp-
toms of the bug. The hardest thing about some problems is to reproduce them con-
sistently; changes in apparently unrelated code can make the bug behave differently,
because the code is a little larger or smaller, or because the pattern of data in
memory is different.

With modern programming languages and tools, the relationships between con-
figuration elements become more complex. Certain kinds of changes to a module
may force you to recompile some clients of the module. A source file may be input
to some tool, whose output becomes input to a second tool, and so on through
several steps before you get object code that is part of the running system. When a
tool changes, you may need to regenerate its output files. You need to identify
these relationships, and carefully manage rebuilding of the system when some parts

change. To make progress, developers need a careful mixture of stability and
change. You must eventually fix bugs and introduce new features, but you must

ensure you don’t interfere with your under co-workers.

17.2 Configuration Identification

Configuration identificationis the process of deciding what things need to be placed
under configuration control, and what the relationships between them will be.

17.2.1 Objects

Any object is in one of three categories. Controlled objects are under configuration
control; there are formal procedures you must follow to change them. Precontrolled
objects are not yet under configuration control, but will be eventually. Uncontrolled
objects are not and will not be subject to configuration control. Controllable objects
include both controlled and precontrolled. -

Typical controllable objects include

* Any of the design documents from Figure 2-1 on page 8. The configuration
manager might decide to split some of these objects into individual chapters,

controlled individually.

Sec. 17.2 Configuration Identification
187

* Tools used to build the product, such as compilers
ponent generators (such as the lexer a d i
compﬂer-buildingprojects)_ nd parser generators used in most

* The source code for each module.

* Input to tools other than source fi]
! es, such as command Jj
command files, and system libraries, d line arguments,

Test cases. Changes to tests ma i
. . ‘ y be less likely, but during th i
(t)is,:gg plllase an 1lil-con51dered change might impede progrefs liocrog;gia;?ed
eveloper might i i . ’
b problelr)n ‘ ght be using a particular test case to track down some com-
¢ Problem reports (see Secti
requests for changes.

lists '\:;f]:t Cgflﬁgumtion Management Plan, written during the Project Design stage
ane betwo jects to cqntrol. The managers who develop the plan must strike g baI:
€en controlling too much, and thys impeding development, and controlling

too little, thus leading to confusion when something changes.
Some typical docume'nts that might not be subject to controls include personal

on 10.3.1). These are g primary source of

:3;1;%2 ;:g;tr:{l;i Cl\ﬁguilesblllave an intermediate place between uncontrolled objects
ontrollable ones such as source code: som
e

them, so that developers can refer to what happened, ’ e st keep track of

17.2.2 Relationships
The conventional English meaning of “configuration” i

_ 4 includes not only a ¢ i
of cm:nponents, but also relanonshlps among those components. In soft{vareOI‘l‘eczgin
guration management” has come to mean primarily i Sioms of

components. The more recent term i
Engies meaning. system modeling covers the other half of the

Formally, a System model is a directed i
. A i : acyclic graph with two type f :
objects and processing steps. Objects and processing steps alternat;y?n stl?e Igl:;:flf:

» linkers, program com- J

188 Chap. 17 Configuration Management

include familiar things such as the source and derived files mentioned previously, but -
also include tools (such as compilers and linkers), command line arguments for
invoking them, “hidden” files read automatically by the tools (such as standard
module libraries), and even such data as the value of the time-of-day clock, if any
outputs depend on them. With this view, derived objects are simply the outputs of
processing steps, and source objects are inputs to some steps that are not outputs of

any other steps.

The idea of a system model is that if you begin with the same source objects,
and run through the same processing steps, you would get the same output. This is
important if you ever need to regenerate an old system to track down a customer’s
problem. The idea of including tools, command line arguments, and hidden files is
important. Experienced developers allude to the idea of “software rot”: you try to
recreate a program after some months or years, only to discover that it no longer
works. What has usually happened s that a system library has changed, or someone
has installed a new release of the compiler; what you thought of as unchanged
source really has changed, because you did not preserve all inputs to the system

building process.

To be serious about system modeling and reproducible system building, you
must treat source objects as immutable. Instead of changing an object, you create a
new object (a version of an old object). Instead of changing a file and rebuilding the
system, you substitute new versions of some source objects, and re-derive all the
appropriate derived objects. As of the mid-1980s, most file systems and database
systems did not provide enough support for system modeling. Some tools, such as
SCCS and RCS under UNIX, could keep track of versions of source files. Experi-
mental systems with much better support for the full process showed promise of

coming into productionuse within a few years.

17.3 Configuration Control

Configuration control is the process of managing changes; it is the piece of confi-
guration management that most directly affects day-to-day operations of developers.

Each controllable object starts off as precontrolled; the people assigned to work
on it may make whatever modifications they choose. When the object is reasonably
complete, the developers (or, more likely, their team leader or manager) places it
under configuration control, and it becomes a controlled object.

Details of when to make something controlled vary between projects; the Con-
figuration Management Plan should define criteria for making such a decision.

When someone other than the creator needs to refer to it is a typical time. For

example, a design document might go under corifiguration control when its authors

circulate a first draft to reviewers. Source code might go under configuration con-
trol just before testers need it during integration.

Sec. 17.3 Configuration Control
189

17.3.1 Baselines and Updates

The whole reas i i 17
to make progre(;lsl. fc;; cgl;lflguran?n control is that people need a stable environmerit
you cannot make pro you are trying to integrate module A with modules B and C,
under you; this is I:es gre::llf the developer of module C keeps changing it out from
Thus befo;e anyonep\:;l dy frustrating if a change to C forces you to recompile A.
guration manager freezes0 it;e%?)ng;: Irlnz? p;]ru'cular Object need to use it, the confi-
a baseline for others to use and depeng on.an '%li:linf;oi?ran?g:;;nT;?Ji:vzzﬁbHSheS
g; sur-

veyors carefully measure a baseli
_ a
reyors ¢ seline, then make all other measurements relative to

Freezin, i i
Archiving mg aa:] Scc::nﬁg'uranon may involve archiving everything needed to rebuild i
examines a systom c;[iylélgl to g safe place such as magnetic tape. An archival tolti
allalsmnou:ce objects to t:p:) ;V;i;es afr;pressntation of the model to tape, then copigs
. e of these “source objects”

used to : ; jects” may actuall

generate derived files. A partial archive saves the e)?:ecutabley ;;Ig)::rgnr:m:

’

to build the programs, and so forth; i i
grams coreiomg oms, and s orth; it stops by saving the executable form of pro-

such i ;
from a manufacturer). (such as a compiler from a particular old release tape

all referrin
g to the same document. However, their review usually leads to changes

in the d i
ocument. What happens here is that developers copy the baseline document

then change the co i
py.- When a reviewer says “ch ,
developer may need to translate this to page g, parai;rnf;hpza%; t‘;;eplzlier?vgfi?)ph o
cument,

but both people share a stand i
the basis of immutability, ard reference point. This process of changing a copy is

At any given time a
‘ Togramm i
guration: progi €r may pay attention to three versions of a confi-

1. the current baseline configuration
2. anupdated configuration
3. the programmer’s private version

A large enough project may have several disti
- ; istinct updated i i
gulzgta%]:c;egl;iozr zlual;tler .updated configuration. ThIe’re ma;osf%i?gﬁ:fs&;tzn:og;f
her o L :;;ia de;\z{eloper may make whatever changes she chooses to
confurien requireiua on. Moving objects from a private version to the updated
Obioct mao ol intopp]r)ovai _from a manager responsible for change control
Suation manaer G a hase ine configuration; instead, every so often the confi:
e on manager es the updated configuration and declares it to be th

. eveloper who needs stability uses the current baseline configu:atlzg:lv

190

One who needs the most recent version uses the updated configuration, but must
live with the consequences of frequent changes.

17.3.2 Change Control
Once an object goes under configuration control, any changes require management
approval. Approval usually certifies several things about the change: :

1. The change is well-motivated.

2. The developer has considered and documented the effects of the change.
3. The change interacts well with changes made by other developers.
4

. Appropriate people have validated the change (for example, someone has
tested a code change, or has verified that a requirements change is con-
sistent with other requirements). ’

The amount of work involved here depends on the size of the change and the
importance of the changed object. For source code, you might be able to describe
both motivation and effects by a short statement like “Fixes problem report 17, call-
ers need to be recompiled.” A manager might disallow a change made from
motivations such as “changed spelling of all original author’s identifiers,” or with
effects such as “requires extensive editing of all modules containing calls on pro-
cedure X.” If a manager approves a change with such large effects, the configura-
tion control procedures should notify all the appropriate people of the need to make
such a change. A configuration manager needs to be extremely hard-nosed; it is
hard to convince someone who wants a bug fixed today to wait a week, accepting a
short-term loss of personal productivity in return for a gain in group productivity.

17.3.3 System Rebuilding

When you update a source object in a configuration, you must regenerate the
derived objects that depend on it. With older systems this meant compiling the
source file and placing the resulting object file in a library. Modern systems are
complex enough to require tools to manage the system rebuilding process.

A system rebuilding tool takes as input a system model and a list of files to
substitute for some of the objects (normally, source files) of the model. It reruns
those processing steps that depend on the changed objects, then reruns those steps
that depend on changed derived objects, and continues until it has regenerated all
derived objects that depend directly or indirectly on anything that has changed. The
most widely known system rebuilding tool is the UNIX make utility. Each object is
a file; it deduces that an object has changed by the “date of last change” maintained
by the file system, and rebuilds a derived object when its date is less than that of
anything on which it depends. More recent -experimental tools compare the new
object to the old. For example, adding a comment to a source file might not require
any rebuilding. For another example, if a tool produces several outputs, a change to

Chap. 17 Configuration Management

The sin_lplest report is the status of s
responsible for handling them, what t
being made on changes needed to fix t

requests may suggest addi
iy y sugg ding more resources to handle them, or m

standi .
Chaqdmgs, you may need to improve user documentation, Fin
anges people request may lead to better planning for change in

Sec. 17.4 Configuration Status and Accounﬁng
191

its source file may affect only
steps can greatly reduce the tim
are fast or the output of a to

one output. Eliminating unnecessary regeneration

e to rebuild the system, especially i ;
. pecially if the
ol becomes input to many other toolg. comparisons

17.4 Configuration Status and Accounting

Stz:itus and accounting ensures that developers,
and current state of controllable objects. A

g;tii tc(;1 ak:;);: :rlzeﬁ :L g:rt.icula%;lyroblem is fixed; managers may need to know how
ning. The twi j j i
to know status are individua% modules :.nrzll?ro o oot e oy orpich oy el

Several dis oblem reports (see Section 10.3.1).
o nﬁgu;,:tri?) ’ :(Sl:el:tcltﬁ types of information contribute to the status of a module. The
status purposes it is ;ﬁgnu‘;‘:;ﬁ’]“ty may SeP;rate these into distinct objects, but for
0 group them together. A tice i
cll'leat.e a module development folder for each modfle. In its :i‘r’nmxlnon practice is to
Physical file folder. The folder contains plest form this is a

managers, and users know the history
particular developer or customer may

th . .
¢ the requirements the module implements (ifitis a behavior-hidingmodule)
e the current specification, design, and code listing

g spe a s gn’ ’ g

o the unit test plan for the module

¢ records of test case results
® copies of problem reports that affect the module

* notes about the module by the specifier, designer, and coder of the module

® a cover page with summary information, such as planned and real dates for

completion of the specificatio i
n, design, and code, wi i
for the person responsible for verifyiig comple’ci?;nWIth # place for signatures

Status ing i i
reporting involves analyzing and summarizing information about changes

ome collection of problem reports: who is
heir current disposition is, what progress is
he problems, and so on,

M .
anagers also need summary information. For example, frequent change

. a]
g quality control procedures. If you classify many problem repgrzliie;tﬁ]:g:izr
ally, analyzing what

future systems.

192 Chap. 17 Configuration Management

17.5 Configuration Hierarchy

So far this chapter has presented a system as one large configuration, with a single
manager responsible for configuration control. This may be true of a medium-sized

project, but is probably not true of a large one.

A large project may consist of several small projects, each with its own develop-
ment schedule and configuration control. For example, a project may have several
subprojects for developing individual pieces of the system, plus subprojects for
developing or maintaining in-house tools such as compilers, simulators, or test-case
generators. The manager responsible for each small project may have configuration
control responsibility for his own project.

Typically, changes to widely visible portions of a system may require approval
from a configuration control board. Such a board would consist of répresentatives of
both developers and customers. For example, changes to requirements require
negotiation and joint approval because they involve changes to a contract. In a more
complex contractual arrangement, there may be operating and sponsoring agencies
distinct from customers; they should have representation too. Changes to a major
in-house tool such as a compiler might require approval from the compiler develop-
ers as well as the principal users of the compiler within the development organiza-
tion. All representatives should be fully capable of committing their organizations to

accepting whatever decisions the board makes.

Further Reading

Babich (1986) gives a highly readable explanation of configuration management
based on modern industrial experience. Glass’ books include many tales of comput-
ing disasters, some of them attributable to poor configuration management [Glass
1977, Glass 1978, Glass 1979, Glass 1981].

Chapter 18

Quality
Assurance

Quapty assurance is the process of raising a developer’s (and possibly a customer’s)
conﬁdel.lce that a system is of high quality. It is a planned, systematic activity. The
two major thrusts.of quality assurance are building in quality and measuring ql‘lality
Most of Part IT filscusses building in quality; this chapter concentrates on measure:
menf and analysis. A related topic, verification, demonstrates that specifications are
consistent and complete, and that implementations meet their specifications. Part
III, on specification techniques, discusses verification issues. Chapter 8 dis‘cusses
testing.

18.1 Measures of Quality

Software qualityﬂ!nas several aspects. Some of these we can measure readily; for oth-
€rIs, we can measure somethl}lg that seems related to the quality we’re looking for;
for others, we currently can Judge only subjectively. The following sections -discus;
:ie;r:ra&l .as;1>ieftsfof solftware‘::l qfuahty. During requirements analysis, you should con-
T this list of qualities, define requirements for the measurable one: i
goals for trading off the immeasurable ones, : " and define

There are two criteria with which to judge how well
L 1 i you can guarantee that a
systen.l is good according to a particular measure of quality. The first is the degree
to .whlch you can measure the quality; the second is the degree to which you can
build your systems to embody the quality,

193

