Trom

9

P

K

)

‘g\u& i

~

IS

v 5‘,@;;3, =]
CALTeme

er
0
S

e

F i . i)
5‘%“5’@; L L!"‘ﬂ‘; i(ﬂ§ %Q;ﬁﬁ {{
———— ey . i s

7

Addisea- We ‘}’k“j , oo,

Contents

FOrewordc.ccooccveeeiiniiiiiiiecit ettt ettt xiii
Prefacecccccccooeviiiiiiiiiiiiini, beveee e e eertsiseneen e rertarr it raeaessseee e XV
Chapter 1 Extreme Programming Y ereree e re et et seaete s banes 1

Extreme-Programming is a discipline of software development with
values of simplicity, communication, feedback, and courage. We focus
on the roles of customer, manager, and programmer and accord key
rights and vesponsibilities to the people in those roles.

Chapter 2 The Circle 0f Lifeooveeveeinieiiniianiciicieeiecerenie e 13

An XP project succeeds when the customers select business value to be
implemented, based on the team’s measured ability to deliver function-
ality over time.

Chapter 3 On-Site CUSLOMETccueevuviriiiieiiiiiiiecicce e 17

An XP project needs a full-time customer to provide guidance. Here’s
a summary of why.

Chapter 4 User Stories ettt r e 23

“Define requivements with stories, written on carvds.

Chapter 5 Acceptance TESESccooeeuevinieiiieiieeieeeeeeee e 31

Surely you aven’t going to assume you’ve getting what you need. Prove
that it works! Acceptance tests allow the customer to know when the sys-
tem works and tell the programmers what needs to be done.

Sldebar . Az:cepmﬂce Tzst: :ﬂmple‘ .

At ﬁmt ztimn be alzfﬁmltﬁg ing o
- a lzttleprhct; ‘

Chapter 6 = St07y ESLIMALIONcueoeeeeieiiiiieieieeee e 37

Customers need to know how much stories will cost in ovder to choose
which ones to do and which to defer. Programmers evaluate stovies to
provide that information. Here’s how.

Interlude Seme of Completz‘

. XP’x&h sted plannzngdnd programming cycles keep the project on track
zmd promde @ hmltloy sense of accomplzshmmt mf ﬁequmt mtermls “ -

Chapter 7 Small REIEASEScoevevinieiiiiiiiieieieeeeee e 49

The outermost XP cycle is the release. Small and frequent veleases pro-
vide early benefit to the customer while providing early feedback to the
programmers. Here ave some thoughts on how to make it happen.

Chapter 8 Customer Defines REIEASEcccooveeeeeveeeiiiereereereennn, 55

In each release cycle, the customer controls scope, deciding what to do
and what to defer, to provide the best possible rvelease by the due date.
Work fits into the calendar based on business value, difficulty, and the
team’s implementation velocity.

Chapter 9 Iteration PIANNINGccccocveveevieeeeieeieeeeeeeeeeeeeen, 61

Inside each release, an Extreme team plans just a few weeks at a time
with clear objectives and solid estimates.

vili Contents

Chapter 10 Quick Design Sessionoocoeveeeeeeeeeeereerereseeseeeseeenes 69

Within each iteration, programmers don’t stand alone. Here’s o tech-
nique to help programmers move forward with conrage. Make it part
of your team’s ritual.

Chapter 11 Programmingcccceceeoeeoeeeseeenesiesieseeeeeeeeenn 71

1#s called Extreme Programmaing, after all. Here’s how we do the pro-
gramming part of things.

Sidebar . Code Onality i il s 83

 Alittle more detail on something close to our henrts: simplicity.

Chapter 12 Pair Programminycccueeeeeeeceecenseesneesneneinennns 87

On an Extreme Programming team, two programmers sitting together
at the same machine write all production code.

Chapter 13 Uttt TESES «.oooueeeeiieeeceese et 93

Extreme Programmers test everything that could possibly break, using
auntomated tests that must run perfectly all the time.

Chapter 14 Test First, by INtentioncoevevcenoencesceieecenenennn. 107

Code what you want, not how to do it. Chet and Ron do a small task
test first trying always to express intention in the code rather than al-
govithm.

Chapter 15 Releasing CHANGESooeveeeneeeieieiseieeeieeeeeeen 121

Using collective code ownership and comprehensive unit tests, an XP
team veleases changes vapidly and relinbly.

Contents X

Chapter 16 Do 07 D0 NOtcooeviiiiiiiiiiiiiiicicecc 127

We’ve now covered most of the programming aspects of XP. Here’s a
summary of things we do—and things we don’t do.

Chapter 17 Experience Improves EStIMALEScoovvvvneenieneeereannnnne 131

With each iteration, we gain experience. Experience with stovies helps
us estimate future stovies move easily and morve accurately.

Chapter 18 Resources, Scope, Quality, Timecooovvuvvvvvnennnnnenn. 135

Who’s doing what? How much is finished? How good is it? When will
we be done? What metrics should we keep?

Chapter 19 Steeringccccoeviiiiiiiiiiiiiiicccec 147

The estimates ave wrong. Your priovities will change. You must steey.

Chapter 20 Steering the Iterationccoovviiiiiiiinniennnnn. 151

To steer each iteration, you need to track how many storvies ave getting
done and how well the task estimates ave holding up.

Chapter 21 Steering the Release s 157

To steer the release, yon need to track what’s done, how fast you are go-
ing, and how well the system works.

Chapter 22 Handling Defectsccoooeviiviiiiiiiiiiiiiiiieicn, 161
Report ‘em, schedule em, test and fix ‘em, avoid em. Just don’t call
em bugs.

 Sidebar Advanced Issue: Defect DRtabASesoovccoesivivesivicsns 165

| vSi'deb;ijr:; \ Admﬂwd Pmctice; Tests as Database aan 109

X Contents

Chapter 23 Conclutsionooceeeeeeceeeeeeeeeeeeeeeeeeeeeeeeee . 171

BONUS TRACKS ..o 175

Here are some things we’ve puid a lot to lewrn. Since you bought the al-
bum, we wanted to give you a little something extra. Thank you, and
we hope we passed the audition.

Chapter 24 WeLTIY oo 177

“We’ll try” can be the saddest words a programmer has ever spoken, and
most of us have spoken them more than once. We’ve covered-this mate-
vial in other forms alveady, but it bears repeating heve.

Chapter 25 How to Estimate ABYEINGoooeeerereseeeeeesseseoee 185

Sometimes estimating stories seems scary. Keep your heads, stick Logeth-
er, and break the story down into small parts. You’ll be suvprised what
you can do.

Chapter 26 Infrastruscturec.coeeveeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeses. 189

What about that database you need to build first? What about that
framework? What about that syntax-divected command compiler? Get
over it!

Chapter 27 It Chet’s FAmlEo.ooeveeeeeeeeeeeeeeeeeeeeeeeeeeseeeee, 193

Are you looking for someone to blame? This chapter explains how to
know whose fault it is. Now move on and solve your problems.

Chapter 28 Balancing Hopes and Fearscoooeeeeeeeeeeeeeeeeen., 195

Those of you who have heavd Ron, Ann, or me speak about XP are prob-
ably wondering wheve ave all the war stovies. Well, heve’s one.

Chapter 29 Testing Improves Codeooooveeeevereeeeeereseeeee. 199

Amn example showing how writing some tests can belp you to improve the
code. ‘

Contents Xi

Chapter 30 XPer Tries JAVAc.oooviviiiiniiiiiieiiiieiice 203

After the C3 project ended, most of the team was transferred to work
on the human vesowrces intranet. 1 found how they were using the prin-
ciples of XP to improve their lives on a new project heartening. What
follows is a description of how Rich Garzaniti, exC3er and devoted
XPer, is introducing testing and modern development tools into an en-
vironment where none existed.

Chapter 31 A Java Perspectiveoevevvuiiieeninineninieicce, 211

We would like to thank Bill Wake for allowing us to use this avticle. It
is the second in a sevies entitled “The Test/Code Cycle in XP.” His web-
site, http.//usevs.onet.net/wwake, contains the entive sevies plus o whole
lot more.

Chapter 32 A True SE07Y .ccoovovvieieiiieiiiiiei e, 225

Ron Jeffries [ve]learns something about simplicity.

Chapter 33 Estimates and Promisesccooovvvevieininnnincnenen 229

We estimate how long the project will take. We promise to tell the truth
about how we’re doing.

Chapter 34 Everything That Could Possibly Break 233
Test everything that conld possibly break. What does this mean? How s
it possible?
AFLETWOVA <o 243
Annotated Bibliographyccoocoiiiiiiiiiniiiiiiiii 245
TIUACK ..ot 261

Xii Contents

The Customer Role

The customer chooses what will deliver business value, chooses what to do
fivst and what to defer, and defines the tests to show that the system does
what it needs to.

Every software project needs to deliver business value. To be suc-
cessful, the team needs to build the right things, in the right order, and
to be sure that what they build actually works. Of course, this can’t be
done without programmers,! but in fact the customer’s role is critical in
steering that process to success.

The customer role on an XP project can be filled by one person, or by
several. The team will be most effective if the customer stays on-site and
present with the team, full-time. We’ll discuss some details in On-Site
Customer (page 17). Here, we’ll talk in more general terms about what
the customer does. If you’re the XP customer, we’re talking to you.

Note that we say “the customer” and not “the customers.” Whether
they are one person or many people, the XP customer always speaks with
one voice. The determination of what will have business value, and the
order of building that value, rests solely with the customer. (Don’t worry,
you get lots of help and advice. But ultimately, you get to make the call.)

An XP team plans and builds software in terms of “stories.” Stories
are just that—individual stories about how the system needs to work.
Each story describes one thing that the system needs to do. Each story
must be understood well enough that the programmers can estimate its
difficulty. And each story must be testable.

As the customer, you express what must be done in terms of stories.
For a project spanning a few months, there may be 50 or 100 stories.

-Larger projects of course have more stories. We’ll talk more about the
details in User Stories (page 23).

You probably have a delivery date in mind, though some projects have
a fixed feature list rather than a fixed date. We are not content to imagine
that everything that you can think of will be done by a given date. Neither
should you be. Instead, the XP process lets the team predict, more and
more accurately, how much work can be done in any given time period.
Using this information, you manage project scope—choosing what to do
now and what to defer until later—to ensure successful delivery.

1. In this book the pronouns “he” and “she” are used randomly to reflect the broad
diversity that makes our industry great.

2 Exireme Programming Installed

You, the customer, have the critical responsibility to choose the sto-
ries that will provide the most valuable features, the highest business
value, and that can be accomplished by the desired delivery date. The
XP development process lets you choose among the stories with great
- flexibility. There’s not much limitation on what can be done first and
what second. This is by design; if you are to choose the stories for suc-
cessful on-time release, you must have the flexibility to make the choice
as independently as possible. Read more about this process in Customer
Defines Release (page 55) and Ireration Planning (page 61).

Finally, you specify tests that show whether the stories have been
correctly implemented. These Acceptance Tests (page 31), whether built
by the programmers, by an independent tester, or by you—the custom-
ers—yourselves, provide confidence that the system really does what it
needs to do.

Define business value, decide what to do and what to defer, and
define the tests to show that the system works. These are your key
responsibilities as the XP customer.

The Programmer Role

The programmers analyze, design, test, program, and integrate the system.
The programmers estimate the difficulty of all stovies, and track the pace at
which they can deliver stories to the customer.

If the project is to deliver business value, each story must be under-
stood. Software must be designed, tested, and built to implement that
story, and all the software must be brought together into a coherent
whole. That is the XP programmer’s job. If you’re the XP programmer,
we’re talking to you.

In Extreme Programming, the emphasis is on programming. Every-
thing we do looks like programming and is focused on the most critical
artifact of software development, the program.

Build the system in small releases, so that the customer benefit is max-
imized and you get the best possible feedback on how you’re doing. We
talk about this in Small Releases (page 49), Customer Defines Relense
(page 55), and Iteration Planning (page 61).

Base the program on simple, clear design. This lets you produce
quality software quickly. There’s more discussion of this in Code Onal-
ity (page 83), and A True Story (page 225). As you learn more about

Chapter 1 Extreme Programming 3

what the design wants to be, improve the design using Refactoring
(page 76).

XP is neither slash and burn, nor code and fix programming. Not at
all. Extreme Programming is about careful and continuous design,
rapid feedback from extensive testing, and the maintenance of relent-
lessly clear and high-quality code.

Keep the system integrated at all times, sO there’s always a good ver-
sion to look at. Keeping integrated lets you go rapidly without stepping
on each others’ toes. See Continunons Integration (page 78).

Share the ownership of all the code, so no one has to wait and every-
one feels able to make everything better. See Collective Code Ownership
(page 75), and Releasing Changes (page 121). Share a single Coding
Standard (page 79) as well, whether self-evolved or adopted from else-
where. Make everyone’s code look alike—it helps with communication
and team focus. Express individuality in the way you wear your XP ball
cap, not in your code.

Make sure that the system always works, using comprehensive unit
tests that you write, as well as the customer’s acceptance tests. These tests
allow rapid change and support collective code ownership by keeping
change from introducing mistakes. See Unit Tests (page 93), Acceptance
Tests (page 31), Everything That Could Possibly Break (page 233), and
Test First, by Intention (page 107).

Write all production code in pairs, for maximum speed and cross-
training, in support of shared code ownership and rapid progress, as
described in Pasr Programming (page 87).

Extreme Programming is an approach to software development that
lets programmers do what they do best—program—while giving the
customers what they need most—business value. It’s 2 win-win
approach and fun, too.

The Manager Role

The manager brings the customer and developers together and helps them
meld into o smoothly operating team. You don’t do the process—yon make
the process smoother. '

If youre the XP manager, we’re talking to you. The XP process
specifies how the team does certain things that conventional managers
sometimes do. But don’t worry—there’s plenty for the XP project

4 Extreme Programming Installed

e T S

manager to do. On an XP project, the manager’s role is key, and it is
very much focused on management per se.

The first and last job of a good manager is to get things out of the
way of the people who are doing the work. Look for things that are
slowing the team, and use your special managerial powers to resolve
them. Expedite purchases, make sure the workspace is arranged effec-
tively, keep the computers up-to-date, lean on the LAN guys to fix
problems, and so on. A manager’s success depends on removing every-
thing from the team’s path that doesn’t contribute to the objective of
delivering good software on time.

When it comes to the day-to-day process of planning, designing, test-
ing, coding, releasing, managers don’t do any of these things directly.
However, you do something more important: You cause these things to
be done, coordinate their doing, and report the results.

It may seem that the entire team just magically appears at the plan-
ning table when it’s time for the next release plan. It’s not magic; it’s
your doing,.

As manager, you cause that meeting to happen, and you coordinate
it into existence. At a stand-up meeting a bit before release planning
time, mention the need for the meeting and suggest a date. If there’s
general agreement, go ahead. If there are scheduling conflicts, go
around to the team members and find a suitable date and time. If nec-
cssary, encourage someone to change a conflicting appointment.

When the date is chosen, prepare the ground. Arrange a room, send
out the invitations, order the refreshments, or cause these things to be
done if you have administrative help.

Before any planning meeting, check with the customers, reminding
them to be ready and to bring any new stories, and so on. If they need
help, provide it.

If necessary, coordinate or facilitate each meeting—or designate some-
one to do so. Help to keep the team on process, make notes on the pro-
ceedings, offer to get special resource people if they’re needed, and so on.

After each meeting, if reporting needs to be done, do it or cause it
to be done. (Internal reporting generally is not needed. The plan is on
the white board and in the minds of the team. But keep some stake-
holders outside the room up-to-date.)

During the iteration, it’s the same: cause the right things to happen,
coordinate the activities, report results, and always remove obstacles.

Chapter 1 Extreme Programming 5

R

The project manager usually has responsibility for personnel and this
is a very important one. Even on the best teams, there are differences
between individuals, and sometimes there can be temporary or perma-
nent people problems -

When people have a conflict, you need to fix it. If someone’s
behavior is harming the team, you have to address the problem. If the
individual cannot or will not correct the behavior, you must remove
him or her from the team. This should not be done lightly or precipi-
tously, but sometimes it must be done, and it is the project manager’s
responsibility.

There can sometimes be political problems that impact the team.
These are major obstacles and the manager leaps in to resolve them. A
stakeholder may have difficulty allowing the customer to schedule the
stories or may put pressure on the programmers to adjust their esti-
mates. Watch for outside forces that can impact your team and, when
needed, firmly and productively step in.

On the good side, the project manager gets to give rewards. There
is the annual rating and salary adjustment ritual. We can’t tell you
how to do this—extreme teams are all over the map on compensation
policy. It’s the manager’s responsibility to have fair and consistent
assessments of the staff and to have compensation fairly reflect those
assessments.

And think about small rewards as well. Recognition is important.
New toys or tokens for the team. A round of Laser Tag, a round of
beers, a night at the opera. A little time off from work and off the
books. And don’t forget the families.

This only scratches the surface. The project manager’s role is very
important to the project. If done creatively and effectively, it can
greatly ensure the team’s success.

Cause, coordinate, report, and reward. And always: remove obstacles.

Rights and Responsibilities

Extreme Programming tries to provide certain benefits to the managers,
customers, and developers involved in a project. We express these as rights
because they are very important to the success of the project and to the team
members.

6 Extreme Programming Installed

/\/\amagey‘ and Customenr Riglx\fs

1. VYou have the right fo an overall plan, to know what can be
accomplis'/\ed, when, and at what cost,

2. Vou have the right to get the most value out o][every pro-
gramming week.

3. Vou have the right to see progress in a running system,
proven to work by passing repeatable tests that you
spgcify.

4. You have the right to change your mind, to substitute func-
tionality, and to clf\cmge priorities without paying exorbi-
tant costs.

5. You have the riglf\’r to be informed of schedule cl/\q‘rnges, in
time to choose how to reduce scope to restore ’rhevorigina’
date. You can cancel at any Hime and be left with a useful

working system reﬂecﬁhg investment to date.

prog rammenr Riglf\fs N

1. You have the right to know what is needed, with clear
declarations of priovity.

2. Vou have the right to produce quality work at all times.

3. Vou have the riglf\’r to ask for and receive lf\e[p from peers,
superiors, and customenrs.

4. You have the right to make and update your own esti-
mates.

5. You have the right to accept your responsibilities instead
of [/\aving them assigned to you.

Chapter 1 Extreme Programming 7

