
Software Engineering with

Fusion and UML

Prof.Dr. Bruce W. Watson

bruce@bruce-watson.com



Fusion: Requirements

This is arguably the most important phase: it

will drive the rest of the process.



General description

• Provide a general description in the form of

a paragraph or two regarding the system.

• Identify the stakeholders: those groups/people

who have a vested interest in the success

(or failure!) of the system. Assign some

kind of mnemonic to the stakeholders.

• Write a value proposition: what are the

critical aspects which will define the sys-

tem’s success.



[CF1] Define high level requirements

• Functional and nonfunctional requirements.

• Brainstorm, with client.

• Name each requirement.

• Each should provide an external view of

the system.

• Identify functional areas:

– Classes of users.

– Product feature.

– Mode of operation.



– Lifecycle phase.

• Nonfunctional requirements:

– Constraints: t-to-m, platforms, interop-

eratibility.

– Qualities: q-of-s (performance, MTBF),

usability.

• Output:

– Natural language descriptions.

– Cross references back to key people (au-

ditability).



Example

(we’ll probably us another in class.) FIRE Sta-

tion:

1. Description: A graphical environment for

constructing, manipulating and testing fi-

nite state machines, including running them

on some input text.

2. Stakeholders:

(a) Me (to make money and have a success-

ful product).

(b) Finite state machine (FSM) developers

(such as linguists, compiler writers and

hardware designers, etc.).

(c) FSM end-users (spell-checker users and

compiler users, etc.).



3. Value proposition: The environment will:

(a) Offer more choices of FSM types.

(b) Support domain-specific FSMs.

(c) Provide massive scalability up to FSMs

with millions of states.

(d) Provide an intuitive user interface, along

with the traditional symbology for FSMs.

(e) Provide the best graph drawing and lay-

out of FSMs.

4. Requirements:

(a) Functional:

i. Build a regular expression (RE).

ii. Build an FSM inductively.



iii. Convert between FSMs from an REs.

iv. Test an FSM on some input string.

v. Save the workspace for later restart.

vi. Load and save FSMs and REs in stan-
dard format.

(b) Nonfunctional:

i. Deal with large-scale FSMs.

ii. Scale linearly.

iii. Multi-platform support (Java).

iv. Fail-safe during a crash (do not de-
stroy a half-built FSM).

v. Acceptable performance on a P100/Win32
machine.

vi. Use FIRE Engine.



Coleman 6



[CF2] System functionality and scale

• Actors: external entity that uses/interacts
with system.

• Use case: a set of interactions between
the system/actors to achieve some specific
goal.

• Finding new ones: consider both types of
requirements, actors, use cases.

• Output:

– Use cases.

– Scenarios (CRC cards).

– Scale: simultaneity (and priorities), ac-
tor population, geographical separation.



Coleman 7–11



[CF 3] Relating functional and nonfunc-

tional requirements

This will be heavily used by EVO Fusion.

1. Output: a matrix relating the functional

and nonfunctional requirements.

2. Each box (which, of course, corresponds

to one functional and one nonfunctional

requirement) in the matrix should contain

three key indicators :

(a) The level (at a minimum) of the non-

functional requirement which is to be

achieved for the given functional require-

ment.

Some nonfunctional requirements may

be things which cannot be expressed in

levels, meaning that this would be writ-

ten as “total” or something similar.



(b) The difficulty (risk) of achieving the two

requirements at the same time; i.e. is

the nonfunctional one achievable while

implementing the functional one?

(c) The priority of the combination of the

two. Keep track of whether the priority

was determined by the client or by you.



3. You can already make some notes about

boxes which have high risk and high priority

— they could become problems.

You will be scheduling the development pro-

cess in the following order (will be done

later in the evolutionary cycle):

(a) High risk and high priority.

(b) Low risk and high priorty.

(c) High risk and low priority.

(d) Low risk and low priority.



[CF4] Define use case specifications

• Strategies:

– Generalize from scenarios.

– Don’t forget to use conditionals and it-

erations.

– Use the requirements matrix.

– Maintain consistent level of abstraction.

• Output: detailed use cases:

– Goal.

– Assumptions.

– Actors involved.



– Sequence of steps.

– Information sources.

– Nonfunctional requirements.

– Variants.



[CF5] Structure use case specifications

• Restructuring step.

• Shared behaviour: introduce sub use cases.

• Variations: introduce extensions.

• Output: detailed use cases with structur-

ing diagrams.



Coleman 12–20



6 Review and refine requirements models

• Review all requirements with clients.

• Track all requirements.

• Finishing?

– Track time distribution.



Coleman 21–23



Fusion: Analysis

About what the system does, not how it does

it.



[CF1] Domain class diagram

• Stick to high level abstractions.

• Involve domain expert.

• Strategies:

1. Model the actors themselves as classes

too.

2. Use any pre-existing classes for the do-

main.

3. Examine use cases for classes and asso-

ciations.

4. Introduce generalizations (is-a) and spe-

cializations between classes.



5. Introduce aggregations (has-a) to inter-

nally structure a class.

6. Other relations: associations, navigabil-

ity.

7. Stay away from computing notions.

8. Cardinalities of associations: 0, 1, *,

i..j.

• Output: domain class diagram, a type of

UML class diagram — typically limited to

classes (names only), generalization rela-

tionships, navigability, aggregation, depen-

dencies and cardinalities.



Example of UML class diagram



[CF2] Analyze use cases: system opera-

tions and interface

1. Review each use case and make the use

case steps more precise.

2. Determine responsibilities for each use case:

(a) A piece of functionality.

(b) Find them using CRC cards.

3. Find system operations: the set of interac-

tions between the actors and the system,

and between use cases and sub-use cases.

4. Tactics:



(a) Identify or distinguish similar responsi-

bilities.

(b) Actions on the system: give parameters;

record responsibilities.

(c) Make sequentiality/concurrency explicit.

5. Output: system interface (set of system

operations and output events between sys-

tem and actors — not easily depicted di-

rectly in UML).

6. Along with the use case scenarios, these

will form part of the testing document.



[CF3] Analysis class diagram

1. Start with domain class diagram.

2. Drop all classes which fall outside the sys-

tem boundary.

3. Examine use cases and system operations

to find new classes.

4. Introduce new classes as required (without

doing algorithmics) — applying knowledge

of what would be computationally required

(something the domain expert couldn’t do).

5. Output: analysis class diagram, a type of

UML class diagram.



6. This will become the basis for the archi-

tecture.



[CF4] System operations and event spec-
ifications

1. Proceed through the responsibilities and
find:

• Preconditions.

• Postconditions.

• Invariants.

• Detailed sequence of actions/events.

2. Concurrency/atomicity are not an issue.

3. Output: text annotations to the use cases.

4. This will be part of the component-wise
testing.



[CF5] Review analysis models

Check consistency:

• Use cases/analysis models.

• System operations/analysis classes.



Fusion: Architecture

Architecture:

• System is specified in terms of components

and interactions.

• Two levels:

– Conceptual: interaction specified infor-

mally at high level.

– Logical: interaction in terms of mes-

sages.

• Can be applied recursively (flexible granu-

larity).



[CF1] Review/select architectural style

• Largely guesswork at this point, but let

nonfunctional aspects drive it: performance-

based.

• Main styles:

– Layered.

– Pipe and filter.

– Blackboard.

– Microkernel.

– Interpreter/virtual machine.

• May actually involve mixing them.



[CF2] Informal design of architecture

• Subdivide the analysis class diagram into
components, according to the chosen ar-
chitecture.

• Hints:

– Focus on cohesiveness, loose coupling,
etc.

– Support of nonfunctional requirements.

– Legacy components.

– GUI components.

– DB components.

– Artificial components for grouping pur-
poses.



– A view to building your portfolio.

• Document:

– Components.

– Responsibilities.

– Sketch collaboration diagrams: these are

usually done at the object level, but can

be done between components.



Examples of UML collaboration diagrams



[CF3] Develop conceptual architecture

• Focus on risky areas from step 2.

• Use the scenarios for each use case to val-

idate the collaboration diagrams.

• Within the collaboration diagrams (one for

each use case scenario), verify:

– Sequencing.

– Concurrency.

– Parameters, returns.

– Data-flow.

– Creation.



• Use CRC role-playing to verify interfaces

to components.

• Output: collaboration diagrams (sequence

diagrams could be used if you want).



[CF4] Develop logical architecture

• Refine collaborations into messages (meth-

ods).

• Order them according to risk.

• Determine architectural mechanisms and

patterns.

• Explore timing effects here.

• Output:

– Collaboration diagrams of messages flow-

ing between components.

– For each component:



∗ Interface: pre- and post-conditions.

∗ Do an analysis class diagram for the

internals.

∗ For each message: is it (a)synchronous?

∗ Interface opaqueness.



[CF5] Rationalize (justify) architecture

• Are there clear responsibilities for compo-

nents?

• Are interactions distributed among compo-

nents?

• Are quality requirements satisfied?

• Can the architecture be allocated to a phys-

ical architecture?



[CF6] Create design guidelines

Designer principles:

• Security.

• Mechanisms:

– C/S.

– TP.

– Load balancing.

• Signatures.



Fusion: Design

Outputs:

• Design class diagram.

• Object collaboration diagrams.



[CF1] Initial class diagram

Copy the analysis class diagram as a starter.



[CF2] Object collaboration diagram

• The essentially algorithmic.

• Intra-component collaborations.

• Threading and concurrency should be ex-

plicit — introduce critical regions/mutual

exclusions.

• Analysis classes will become one or more

design classes.

• Within a component:

– First object to receive the message is

the controller.



– Subsequent ones are collaborators.

• Use CRC roleplaying to verify.

• Output: object collaboration diagrams.



[CF3] Object aggregation and visibility

• Five classes of visibilities: association, pa-

rameter, local, global, self.

• Match lifetimes of objects.

• Aggregate things with similar lifetimes.



[CF4] Rationalize design class diagram

Consider objects, classes, behaviours:

• Similar operations? Unify.

• Similar behaviours for different classes? Fac-

tor a common parent (generalize) and spe-

cialize (derive).

• Seperable behaviours in a class?

– Split class completely,

– Create aggregate class, or

– Generalize and inherit multiply.



[CF5] Review design

• Verify all system operations against collab-

oration diagrams.

• Verify timing requirements (nonfunctional)

using sequence diagrams.



Fusion: Implementation

Implementation

• Most decisions already made.

• Should be straightforward.

• Mainly uses the design class diagrams, fully

annotated with:

– Operations with parameters and returns.

– Data attributes.

– Parent classes.



[CF1] Resource management strategy

• Create policy.

• Resources:

– Files and handles.

– Memory.

– Windows descriptors.

– Threads.

• GC is a solution.

• Chosen solution depends on programming

language, quality criteria.



[CF2] Code arising from the data dictio-

nary

The data dictionary is largely inapplicable.



[CF3] Code the class descriptions

• This may be generated automatically (e.g.
by Rose).

• Design class descriptions give rise to the
interfaces:

– Visibilities.

– Method signatures.

– Mutability and Mutex issues.

– Visible data members.

– Inheritance structures.

– Class invariants, pre- and post-conditions.

• Output: e.g. header files in C++.



[CF4] Code the method bodies

• Code can be lifted directly from the object

collaboration diagrams.

• Check that invariants, pre- and post-conditions

are respected.



[CF5] Performance analysis

• Use good profilers (instrumenting vs. sam-

pling).

• Cross-check results with expectations (de-

rived throughout the process).

• Cross-check with nonfunctional requirements.



[CF6] Code reviews

Inspections:

• Human inspection.

• Limited value.

Testing:

• Idiomatic (language specific).

• Low level.



Evolutionary Fusion

Key attributes:

• Multiobjective driven.

• Early, frequent iteration.

• Analysis, design, build, test in each cycle.

• User orientation.

• Fully systems-oriented approach (like Fu-

sion).

• Result orientation, not purely SEP oriented.



Benefits

• Better match to customer need — explicit

feedback loop.

• Hitting market windows:

– Short cycles.

– Risk management.

– Divisibility into subteams.

• Engineer motivation and productivity.

• Quality control: ISO9K, TQM, etc. are

applied more easily.



• Reduced risk in transition: move to OO

can be done at the same time as the SEP

change.



Costs

– Forces focused/efficient decision mak-

ing.

– Good SEP is a must.

– Overheads are non-trivial.



[EVO1] Definition phase

– Fundamentally focused on communica-

tion and thought.

– Estimation of viability, cost, etc.

– Good architecture is critical.



Requirements

– Follow Fusion approach.

– Define the value proposition: articula-

tion of why the customer will choose

the system (over alternatives).

– Outputs:

∗ Functional/nonfunctional requirements.

∗ Requirements matrix.

∗ Use-cases.



Analysis (first pass)

– Elaborate use cases.

– Domain class diagrams (domain experts).

– Analysis class diagrams.

– Expand scenarios so they correspond to

the analysis class diagram.

– Analysis paralysis: change-density track-

ing.



Architecture

– Crucial to rapid cycles/releases, without

redesigning.

– Use the standard Fusion methodology.

– Do not focus excessively on details

∗ of class interaction, or

∗ of component grouping.



Planning

Define key roles (depending on the project
size, some could be assigned to more than
one person or more than one person doing
a single role).

– Project manager:

∗ Work with marketing and client.

∗ Co-ordinate creation of value proposi-
tion (focal point for key decisions).

∗ Main decision making/prioritization.

∗ Overall risk management.

∗ Sequencing and insertion of cycles.

– Technical lead:

∗ Architectural decisions.

∗ Definition of cycles.



∗ Deliverables, etc.

∗ Insertion of new cycles.

∗ Especially for architectural repair.

– User liaison:

∗ Manages release distribution.

∗ Collects information in the feedback

cycle.



Define the standard EVO cycle.

– Define length: 1–4 weeks.

– Factors:

∗ Management insight.

∗ Adjustment cycle.

– Plan milestones.



Group and prioritize functionalities.

• Create 4-5 chunks.

• Prioritize use cases and group into the chunks

(similar in size).

– Risk.

– Must-have, want,

– Infrastructure.

• Prioritize within the chunks as well.

• Elaborate on the system operations for first

chunk.

• Group them into some initial cycles.



– HP: size of cycle should be half of team’s

estimate.

– Initial success is crucial.

• Prepare task list for initial cycles (technical

lead).

• Output: implementation schedule.



[EVO2] Development phase

This part is iterated.



Refining analysis

• Review existing analysis models.

• System operations to be implemented are

checked against the analysis class diagrams.

• Architectural compromises are logged as

defects for (architectural) repair later.



Design

• Updated according to Fusion.

• May lead to: new methods in pre-existing

classes, or new classes.



Coding/validation

• Create test cases (on a local level) simul-

taneously (from the use cases).

• Use a test harness for early testing. Feed-

back

• Should operate simultaneously with other

tasks.

• May use surrogate users in early phases.

• Managed by user liaison.

• Allocate time to review and strategize.



System test

• Apply system-wide tests — derive from the

use cases.

• Maintain set of regression tests.


