
Software Engineering: Theory and Practice

Verification by Testing

Test Case Design

Tom Verhoeff

Eindhoven University of Technology
Department of Mathematics & Computer Science

Software Engineering & Technology

Feedback to T.Verhoeff@TUE.NL

c© 2008, T. Verhoeff @ TUE.NL 1 Software Engineering: Testing

Do Not Confuse Testing and Debugging

Testing = The process of executing software with the intent of
detecting the presence of defects .

Works indirectly, through failures; often does not localize defects.

Testing determines a measure for quality.

Testing is only one of many verification activities.

Debugging = The act of fault diagnosis and correction .

Debugging concerns rework .

Debugging is time consuming and unpredictable.

c© 2008, T. Verhoeff @ TUE.NL 2 Software Engineering: Testing

Self-Assessment Test

The problem is the testing of the following program:

The program reads three integer values from a card.

The three values are interpreted as representing the lengths
of the sides of a triangle .

The program prints a message that states whether the triangle
is scalene, isosceles, or equilateral .

Write a set of test cases that you feel would adequately test this
program.

Glenford J. Myers. The Art of Software Testing. Wiley, 1979.

c© 2008, T. Verhoeff @ TUE.NL 3 Software Engineering: Testing

Self-Assessment Test Scoring

1. Valid scalene triangle included?
OK (3,4,5). NO (1,2,3) or (2,5,10).

2. Valid equilateral triangle included?
OK (3,3,3). NO (0,0,0).

3. Valid isosceles triangle included?
OK (3,3,1). NO (2,2,4).

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Testing

Self-Assessment Test Scoring

4. All three permutations of valid isosceles triangle?
OK (3,3,1) and (3,1,3) and (1,3,3).

5. One side equal zero?
OK (0,4,5).

6. One side negative?
OK (−3,4,5).

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Testing

Self-Assessment Test Scoring

7. Degenerate triangle (a + b = c)?
OK (1,2,3).

8. All three permutations of degenerate triangle?
OK (1,2,3) and (2,3,1) and (3,1,2).

9. Non-triangle with positive sides (a + b < c)?
OK (1,2,4).

10. All three permutations of non-triangle?
OK (1,2,4) and (2,4,1) and (4,1,2).

11. All sides zero?
OK (0,0,0).

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Testing

Self-Assessment Test Scoring

12. Non-integer values?
OK (’A’,’B’,’C’).

13. Wrong number of values?
OK (3,4) or (3,4,5,6).

14. Expected output for each case included?

c© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Testing

Some Testing Principles

• A necessary part of a test case is a definition of the expected output
or result.

• Thoroughly inspect the result of each test.

• Avoid throw-away test cases unless the program is truly a throw-
away program.

• Do not plan a testing effort under the tacit assumption that no
faults will be found.

• Testing is an extremely creative and intellectually challenging task.

c© 2008, T. Verhoeff @ TUE.NL 5 Software Engineering: Testing

Levels of Testing in V-Model (from ESA SE Std)

USER

REQUIREMENTS

DEFINITION

SOFTWARE

DEFINITION

CODE

DETAILED UNIT

DESIGN TESTS

DESIGN

ARCHITECTURAL

REQUIREMENTS

INTEGRATION

TESTS

SYSTEM

TESTS

ACCEPTANCE

TESTS

SVVP/UT

SVVP/IT

SVVP/ST

SVVP/AT

Project Request

URD

SRD

ADD

DDD

SVVP/SR

SVVP/AD

SVVP/DD

SVVP/DD

Tested Modules

Tested Subsystems

Tested System

Accepted Software

1

2

3

4

5

6

7

8

Product

Activity

Verification

Compiled Modules

9

SVVP Software Verification and Validation Plan

ESA Software Engineering Standards: Life Cycle Verification Approach
c© 2008, T. Verhoeff @ TUE.NL 6 Software Engineering: Testing

What Qualities to Test

• Utility : To what extent is required functionality provided?

• Reliability : To what extent does the product fail?
How frequently, how critical?

• Robustness : What happens in unexpected situations?

• Efficiency : How much is used of resources? Time, memory, disk,
network, . . .

• Usability : How easy is the product to use?

c© 2008, T. Verhoeff @ TUE.NL 7 Software Engineering: Testing

Approaches to Test Case Design

Black-box, or test-to-specifications, or functional :

Checks the functionality of the software.

Consider specification/requirements only. Ignore code.

Glass-box, or test-to-code, or structural :

Checks the internal logic of the software.

Consider code only. Ignore specification/requirements.

c© 2008, T. Verhoeff @ TUE.NL 8 Software Engineering: Testing

Techniques for Constructing Test Cases

• Boundary analysis

• Equivalence classes

• Statement, branch, and path coverage

c© 2008, T. Verhoeff @ TUE.NL 9 Software Engineering: Testing

Coverage: Example

if C then v := 1

; if D then w := 2

else w := 3

5 (!) statements, 2 + 2 branches, 2 ∗ 2 paths

Test Cases Coverage

1 2 3 4 Statement Branch Path

¬C,¬D 60% 50% 25%

C, D 80% 50% 25%

C, D C,¬D 100% 75% 50%

C, D ¬C,¬D 100% 100% 50%

C, D C,¬D ¬C, D ¬C,¬D 100% 100% 100%

c© 2008, T. Verhoeff @ TUE.NL 10 Software Engineering: Testing

Coverage: Example

Python code:

1 p, q = 0, N # given A[0..N)

2

3 while p <> q :

4 if A[p] : p = q

5 else : p = p + 1

6

7 if p == N : print "Not found"

8 else : print "Found at", p

9

10 #@ (0 <= p < N /\ A[p] /\

11 #@ (forall q: q<p: not A[q]))

12 #@ \/ p = N

What test cases to include?

p = q

p, q := 0, N

A[p]

p := q p := p + 1

Start

p = N

Stop

Yes No

Yes No

'Not
found'

'Found
at', p

Yes No

c© 2008, T. Verhoeff @ TUE.NL 11 Software Engineering: Testing

Testing Advice

• Develop test cases before coding (Test-Driven Development).

• Test incrementally (not everything together at once).

• Test simple parts first.

• Use assertions (built-in tests; “fail early”):
Test pre- and post-conditions, and ‘can’t-happen’ cases.

• Automate testing.

• Keep test software, data, and results (commit in repository).

• Re-test after making changes (regression testing).

c© 2008, T. Verhoeff @ TUE.NL 12 Software Engineering: Testing

Testing Terminology

Unit 1

Unit 2

Unit 3 Unit 4

Unit 2

Test Driver

Unit 2

under Test

Unit 3

Stub

Unit 4

Stub

Architecture Test Scaffolding

Test case: control activation and input; observe response and output;
decide on pass/fail.
c© 2008, T. Verhoeff @ TUE.NL 13 Software Engineering: Testing

JUnit Automated Testing Framework

JUnit: organizes code for test cases, runs them, reports results

See NetBeans IDE sample program Anagrams (via New Project).

Help > Javadoc References > JUnit API

Test case: method named test...

Facilities: fail, assertTrue, assertEqual, . . .

Right-click Java file in NetBeans project: Tools > Create JUnit Tests

Can also test for required exceptions: no/wrong exception → failure

c© 2008, T. Verhoeff @ TUE.NL 14 Software Engineering: Testing

References

• “What is Software Testing? And Why Is It So Hard?” by
J. A. Whittaker in IEEE Software, 17(1):70–79 (Jan./Feb. 2000).

• Code Complete, 2nd Ed. by Steve McConnell. Microsoft Press,
2004.

• JUnit Testing Framework (integrated into the NetBEans IDE)

c© 2008, T. Verhoeff @ TUE.NL 15 Software Engineering: Testing

