Software Engineering: Theory and Practice

Engineering and Errors
Verification by Review
Tom Verhoeff
Eindhoven University of Technology
Department of Mathematics & Computer Science

Software Engineering & Technology

Feedback to T.VerhoeffQRTUE.NL

© 2008, T. Verhoeff @ TUE.NL 1 Software Engineering: Errors

What Is an Error?

e What is the most “impressive” error that you have made?

Watch video of Ariane 501 flight.

e Beautiful versus ugly: an opinion, not an error

© 2008, T. Verhoeff @ TUE.NL 2 Software Engineering: Errors

Terminology: IEEE Classification

Failure : product deviates from requirements during use/operation

e Defect, fault: anomaly in a product that can somehow (eventu-
ally) lead to a failure

Mistake : human action (“slip”) causing a fault

e Error: difference between actual and specified/expected result

Assumes requirements/specification/contract (establish in advance)

© 2008, T. Verhoeff @ TUE.NL 3 Software Engineering: Errors

Economy of Defects

e The longer a defect is undiscovered, the higher its cost: grows
exponentially in distance between injection and removal.

e Defects decrease the predictability of a project: cost (time) of
defect localization and repair is extremely variable .

e Defects concern risks, i.e. uncertainty; product could be defect-
free at once, but defects are likely.

e The likelihood of defects increases rapidly with higher system
complexity.

© 2008, T. Verhoeff @ TUE.NL 4 Software Engineering: Errors

Dealing with Defects

Awareness

1. Admit that people make mistakes and inject defects “Programmers [Engineers] will always make errors. No advance in
formal [methods] will ... prevail over human fallibility .
2. Prevent them as much as possible
3. Minimize their consequences (fault tolerance) [TIhere are two approaches to software errors:
4. Detect their presence as early as possible e one accepts them as inevitable and steers work toward removing
faults that errors produce;
5. Localize them
. e the other ignores errors, the resulting faults, and the failures they
6. Repair them
may cause, and replaces testing, discovery, and repair with legal
7. Trace them: find root causes and possible other consequences and business maneuvers.”
8. Learn from them: improve the process and tools Robert N. Britcher. The Limits of Software. Addison-Wesley, 1999.
© 2008, T. Verhoeff @ TUE.NL 5 Software Engineering: Errors © 2008, T. Verhoeff @ TUE.NL 6 Software Engineering: Errors
Preventing Defects (or instant detection and repair) Detecting Defects
e Impossible to do for 100%, but prevention offers the biggest gains e Reviewing:
e Every defect not prevented adds work (cost) — Examine an artifact with the intent of finding defects.
— Can be done early in the development process.
e Remove sources for mistakes (e.g., improve syntax of prog. lang.) — Often localizes the defects as well.
e Always work neatly, also on prototypes, test software, ... — Can and should also be applied to code.
e Use checklists and standards * M-
— Use a product systematically with the intent of finding defects.
e Work in pairs
— Works through failures; does not localize underlying defects.
e “Think before you act” — Requires a working product (part).
© 2008, T. Verhoeff @ TUE.NL 7 Software Engineering: Errors © 2008, T. Verhoeff @ TUE.NL 8 Software Engineering: Errors

Limits of Testing

Edsger W. Dijkstra (CACM, 1972):

“Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for showing
their absence.”

Testing in itself does not create quality.
Dijkstra’'s advice: Prove mathematically that an artifact has required

properties. Ideally: let proof development drive the design, leading to
Correctness by Construction .

© 2008, T. Verhoeff @ TUE.NL 9 Software Engineering: Errors

Removing Defects

Debugging : localize, diagnose, and correct detected defects

Time consuming and unpredictable process

© 2008, T. Verhoeff @ TUE.NL 10 Software Engineering: Errors

Coding Standards

e Restrict what program code “looks” like

Layout : indentation, spacing, blank lines, line length;
at most one definition/declaration/statement per line

e Naming : constant, variable, method, class, attribute

e Comments: file header, “contract” (assumption, effect), explain
variable declaration or statement

e Structure: how to order things; maximum size of code blocks

© 2008, T. Verhoeff @ TUE.NL 11 Software Engineering: Errors

Why Use Coding Standards?

e You make fewer mistakes.

e If you make them, they are found more easily and more quickly.

e If you cannot find them yourself, then others can help you more
effectively.

In case of law suits, you are in a better position to defend yourself.

© 2008, T. Verhoeff @ TUE.NL 12 Software Engineering: Errors

Costs of Dealing with Defects Responsibly

e Standardization (e.g. of coding style), reviewing, testing, ...
all cost extra effort and time (mostly initially).

e Consider this to be a small pre-paid insurance fee.

e Not using these techniques increases risks and unpredictability,
and hence increases costs, often considerably.

© 2008, T. Verhoeff @ TUE.NL 13 Software Engineering: Errors

Why Do Reviewing?

© 2008, T. Verhoeff @ TUE.NL 14

Early detection of deficiencies and risks:
— Humans make mistakes, no matter what.
— Late detection is (very) costly.

— Testing cannot find all (kinds of) defects.
Finding defects directly, rather than detecting failures (by testing).
Communication of knowledge

Monitoring of status and progress

Software Engineering: Errors

Types of Reviewing

e Management review : of a process, on behalf of managment
e Technical review : of a product (not of its creator)

e Inspection : visual examination, by peers

e Walk-through : creator explains artifact to others

e Audit: independent examination, also of an organization

© 2008, T. Verhoeff @ TUE.NL 15 Software Engineering: Errors

How to Do Reviewing

7.

© 2008, T. Verhoeff @ TUE.NL 16

. Determine type, purpose, and timing of review in advance.
. Check initial fitness (e.g.: is document spell checked).

. Select and inform reviewers (and train them, if needed).

Distribute material on time.

Prepare individually (read material, make notes).

. Hold meeting (pre-determined roles), decide on recommendations.

Write and present a review report.

Software Engineering: Errors

General Advice on Reviewing

Take reviews seriously and spend time well.

Do not waste time on trivialities.
e Use checklists and standards.

e Stick to the purpose (e.g. do not criticize creators).

Do not try to solve problems while reviewing.

But: do recommend changes, also to the development process.

e React on review outcome (do rework, adjust the process).

© 2008, T. Verhoeff @ TUE.NL 17 Software Engineering: Errors

References

Ariane 5 Failure: Full Report by ESA

e “The $100,000 Keying Error", IEEE Computer, pp.106—108, April

2008.

© 2008, T. Verhoeff @ TUE.NL

Code Conventions for the Java Programming Language by SUN

Java Coding Standards by ESA

18 Software Engineering: Errors

