
Programming Methods (2IPC0) Coding Standard (v1.5)

The following mild coding standard ensures easily readable and modifiable Java
source code. This standard is based on [1, 2], where much more detailed rules,
motivations, and examples can be found. The notes below explain these rules.

1. Be consistent when using the freedom that this standard leaves.Consistency

2. Always indent systematically a multiple of 4 spaces . Never use TAB char-Indentation
acters in source code. (Let your editor expand the TAB key to spaces.)

3. Always limit the line length to at most 80 characters .Line length

4. Always write the following items on separate lines :One per line

• variable declarations (including constants via static final)

• statements

That is, do not put two or more declarations or statements on the same line.

5. Always write one empty line before and after the following items:Empty lines

• group of instance or local variable declarations

• each method and class declaration

Avoid spurious empty lines and groups of multiple empty lines.

6. Never write a space before and always write one space after the followingSpacing 1
items (unless at line end):

• , ;

7. Always write one space before and after the following items (unless at lineSpacing 2
begin/end):

• keywords: if for while etc.

• operators: = + - * / % ++ == != < > <= >= ! && || etc.

8. Always use curly braces { } afterCurly braces

• if (...)

• else, unless immediately followed by if for multiway selection
• while (...)

• for (...)

• do

• try and catch (...)

9. Always explain each variable declaration in a comment .Comments

10. Always specify each public entity in a javadoc comment .Javadoc

c© 2010–2014, TUE.NL 1/5

Programming Methods (2IPC0) Coding Standard (v1.5)

1 public static int power(int a,int b) { // VIOLATES ALL RULES
2 if (b<0) throw new IllegalArgumentException ("power: negative exponent") ;
3 int x=a,n=b ,r=1;
4 while (n!=0)
5 if(n%2==0){x=x*x;n= n/2; }
6

7 else { r=r*x; n=n-1;}
8 return r;
9 }

1 /**
2 * Returns {@code a} to the power {@code b}.
3 *
4 * @param a value of base
5 * @param b value of exponent
6 * @return {@code aˆb}, if {@code 0 <= b}
7 * @throws IllegalArgumentException if {@code b < 0}
8 */
9 public static int power(final int a, final int b) {

10 if (b < 0) {
11 throw new IllegalArgumentException(
12 "power: exponent " + b + " is negative");
13 }
14 // 0 <= b
15

16 int x = a; // see inv
17 int n = b; // see inv
18 int r = 1; // see inv
19

20 // inv: 0 <= n <= b && r * xˆn == aˆb
21 while (n != 0) {
22 if (n % 2 == 0) { // even exponent
23 x = x * x;
24 n = n / 2;
25 } else { // odd exponent
26 r = r * x;
27 n = n - 1;
28 }
29 // inv holds again, n has decreased
30 }
31 // n == 0, hence r = aˆb
32

33 return r;
34 }

c© 2010–2014, TUE.NL 2/5

Programming Methods (2IPC0) Coding Standard (v1.5)

Notes

Well-organized source code is important for several reasons.

• The compiler may not care about this, but source code is also read by others:
developers, reviewers, maintainers, teachers, graders, . . .

• It is an important means to prevent defects.

• It facilitates localization of defects, both by the author, and by others.

Here is some further background information on each of the rules.

1. Consistency especially plays a role in the placement of opening braces {.Consistency
Either place them at the end of the line with the controlling statement, or
at the beginning of a line by themselves directly below the the controlling
statement. An advantage of the latter style is that opening and closing braces
are vertically aligned. A disadvantage is that it takes more vertical space.

2. Indentation provides visual clues about the containment structure (nesting).Indentation
One or two space indentation does not provide enough visually guidance.
Some standards prescribe indenting by multiples of three spaces (because
that interferes with TAB characters, thereby discouraging them even more).
Indenting by more than four spaces is a waste, and leaves less room in view
of the line length limit (also see the next note).

3. Your screen may fit longer lines, but you are not the only one reading theLine length
source code. Moreover, long lines are hard to parse. Also see next note.

Avoid long lines by introducing auxiliary variables, methods, or classes (e.g.,
to group multiple parameters).

If a long line is unavoidable, break it at an appropriate place, and continue
on the next line after a double indentation.

Of course, the line length of generated code may not be under your control.

4. See preceding note. Multiple statements on a single line make it harder:One per line

• to add comments (see Rule 9);

• to move around code fragments;

• to interpret compiler messages;

• to set breakpoints precisely in a debugger.

5. Empty lines provide visual clues about grouping, on an intermediate levelEmpty lines
(also see next two notes).

Besides the situations mentioned in Rule 5, it is good to delineate groups
of related statements by empty lines; for example, initialization, loop, and

c© 2010–2014, TUE.NL 3/5

Programming Methods (2IPC0) Coding Standard (v1.5)

finalization. By the way, such grouping can also be made explicit by curly
braces, defining a block, possibly with its own local variables.

Avoid long blocks of statements by introducing auxiliary methods.

6. Spacing also provides visual clues about grouping, but on a lower level thanSpacing 1
empty lines (see preceding note; also see next note). This rule concerns
punctuation.

Commas are used to separate items in lists, such as parameters (both formal
and actual), and expressions in an array initializer, but they also appear in
throws and implements clauses.

Multiple semicolons should only appear on one line to separate the three
elements of a for statement.

7. Spacing improves reqdability, especially when quickly scanning source code,Spacing 2
rather than reading it slowly in full detail.

Readability of expressions can be further improved by appropriate use of
parentheses, and auxiliary variables and functions.

8. The Java syntax requires curly braces only when a statement1 is to controlCurly braces
more than one other statement. However, source code evolves, and state-
ments get added and removed. To avoid spending any effort on deciding
whether to include or remove braces, the rule is simply to write them al-
ways.

But there is more to it. The controlled statement itself can span multiple lines
of code, even if it is a single statement (e.g., an if or for statement). Proper
indentation provides a visual clue where the controlled statement ends. But
indentation is not taken into account by the compiler. Using braces ensures
that there is both a visual clue and a clue that the compiler understands.
Braces are thus a means to prevent defects that are otherwise hard to spot.

Many source code editors are aware of braces, and these can help visualize,
navigate, and fold source code.

The rule makes one exception: multiway selections. To avoid indentation
creep, a multiway selection with more than two branches uses else if as
if it were a single keyword, with all the branches indented one level:

if (x < lowerBound) {
message = "too small";

} else if (upperBound < x) {
message = "too large";

} else { // lowerBound <= x <= upperBound
message = "just right";

}

1The switch statement is an exception: it always requires braces.

c© 2010–2014, TUE.NL 4/5

Programming Methods (2IPC0) Coding Standard (v1.5)

and not

if (x < lowerBound) {
message = "too small";

} else {
if (upperBound < x) {

message = "too large";
} else { // lowerBound <= x <= upperBound

message = "just right";
}

}

9. Variables are introduced for a specific purpose. The name of the variableComments
should reflect that purpose. However, a name should also not be too long.
Furthermore, the purpose usually involves relationships to other elements of
the program. A comment makes this explicit. To avoid having to spend any
effort on deciding whether to include a comment or not, the rule is simply to
provide it always.

It is also good practice to provide comments with non-obvious statements.
However, there is such a thing as superfluous comments. Do not comment
the obvious.

10. Public entities are typically classes, interfaces, methods, and constants2, butJavadoc
not instance variables. Public entities can be used anywhere in a program.
Therefore, their usage should be well documented. Javadoc comments have
two benefits over ordinary (non-javadoc) comments:

• They support additional features, such as tags, to structure documenta-
tion.

• They can be extracted from the source code and presented separately,
as a document with cross references.

Many Java Integrated Development Environments (IDEs) provide additional
benefits when using javadoc comments.

References

[1] Code Conventions for the Java Programming Language. Sun, 1999.
java.sun.com/docs/codeconv

[2] Java Coding Standards. ESA, 2005.
ftp.estec.esa.nl/pub/wm/wme/bssc/Java-Coding-Standards-20050303-releaseA.pdf

2Constants are declared via public static final.

c© 2010–2014, TUE.NL 5/5

