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1 Introduction

In the semi-conductor industry, performance of the machines is of critical importance. One area
of attention is to optimize transport of wafers between the machines (processing cells). Recently,
a new modular approach has been introduced where several processing cells are located closely
in a so-called cluster tool. As an example of such a tool (inspired by [1, 4]), see Figure 1. The
processing cells P1. . . P9 are all located around the wafer handling system formed by the robots
R1. . .R4.

Each robot has an arm that can pick and place a single wafer from its left, right, up, or down
neighbor. Between two robots is a buffer that can contain a single wafer. Each processing cell
Pi takes a wafer, processes it, and returns the processed wafer to the robot. At the left, a wafer
supply system WS delivers unprocessed wafers to the cluster tool, and takes processed wafers.
With arrows, the flow of the wafers is shown in the cluster tool.

While in real semi-conductor manufacturing systems cluster tools as shown in Figure 1 are
normal, the assignment is about computing performance in a smaller1 cluster tool, namely with a
wafer supply, one robot, and three processing cells. The system is shown in Figure 2. It consists
of a single robot R1, and three processing cells. Each wafer from the wafer supply WS must first
visit processing cell P1, then cell P3, and finally cell P2. Afterwards, the wafer is returned to the
wafer supply where it is stored until an operator removes the processed wafers from the cluster
tool.

1The general approach of computing performance is the same in both cases, for real-world cluster tools the

amount of data to examine is just a lot bigger.
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Figure 1: Example cluster tool with four robots and nine processing cells.
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Figure 2: Cluster tool as used in the assignment.

2 Tool operations

The goal of the assignment is to compute what actions the robot and the processing cells in the
single cluster tool should perform (and in what order) to get optimal performance of the cluster
tool as a whole. In this case, optimal performance means that a pre-defined number of wafers
should be processed in the smallest possible amount of time.

Before this performance question can be answered, first the actions performed in the cluster
tool to process a wafer must be defined.

2.1 Robot actions

When you look careful at the robot, it becomes clear that its arm can be in one of four positions:

• In front of the wafer supply WS (position 10).

• In front of processing cell P1 (position 11).

• In front of processing cell P3 (position 13).

• In front of processing cell P2 (position 12).

Also, it can perform the following actions:

• Rotate clockwise 90 degrees (action R1 turn).

• Rotate counter clockwise 90 degrees (action R1 turn CCW).

• Take a wafer from a position onto the robot by extending and retracting the arm (actions
pick 10, pick 11, pick 12, and pick 13).

• Place a wafer from the robot onto a position by extending and retracting the arm (actions
place 10, place 11, place 12, and place 13).

The positions and actions of the robot can also be drawn as a so-called state diagram, for
example like Figure 3. Each position that the robot can be in is shown as a state, a circle. To
differentiate between different states, each of them has a unique number. In this case, there are
four states, one for each position of the arm.

The actions are shown as arrows that jump from one state to another (or they arrive at same
state again). Each action has a label that states what action is being performed. For example,
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Figure 3: Robot R1 in a state diagram.

the arrow from position 11 to position 10 is labeled R1 turn CCW, which means that the robot
turns a quarter circle counter-clockwise to go from cell P1 to the wafer supply WS. At state 11,
it can also perform action pick 11 and arrive again at state 11, which represents picking up a
wafer from cell P1 without rotating the arm. The initial position is defined with an unlabeled
arrow pointing to the first state, in this case to state 10.

As you can see in the state diagram, the robot can still do ‘impossible’ actions, for example
perform two place actions after each other. This is however prevented by the state diagram of
the machines, discussed next.

2.2 Processing cell and wafer supply actions

A processing cell does not change position in the physical sense of the word. It does however
have three logical positions:

• Empty.

• Containing an unprocessed wafer.

• Containing a processed wafer.

. The state diagram of each processing cell is the same, except for the action labels. As an
example, the diagram of P1 (at position 11) is shown in Figure 4. The states are simply numbered
consecutively, starting from 0. The first action it can do is a place 11 together with the robot.
Then it can perform a process 11 action to process the wafer, and finally, the robot empties the
processing cell with a pick 11 action.
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Figure 4: Processing cell P1 in a state diagram.

2.3 System states

With the same diagrams, you can also show how the whole system can progress, by merging the
diagrams of all components. In Figure 5 you can see a simplified state diagram of the robot,
wafer supply, and processing cell P1. It shows how the robot brings a wafer to the cell, the cell
processes it, and the robot brings the processed cell back to the wafer supply. To show what
state means ‘task done’, state 11 is a so-called marker state, shown by an outgoing arrow without
label.

The simplified diagram of Figure 5 is quite easy to follow, because all states that obviously
do not contribute to progress of the task have been removed. For example, in state 0, the robot
could first do a number of rotations before picking up the wafer (that is, in reality, state 0 should
be replaced with four states, one for each position of the robot, with double arrows between them
labeled with robot rotations). The same should be done with states 5, 6, and 11. The rectangles
formed by states 1, 2, 3, and 4, and by states 7, 8, 9, and 10 should also have arrows in the
reverse direction (the robot may also turn in the opposite direction a number of times). Last
but not least, the process 11 action is also possible after the robot turned a few times, leading
to three more arrows from all expanded states of 5 to the equivalent expanded robot state of 6.
You can find the resulting state diagram in Appendix A.

As you can imagine, the number of states grows very rapidly with a larger number of process-
ing cells or when there are more wafers to process. The computation also gets more complicated.
For example, after delivery of a wafer in P1, the robot may not go back to the wafer supply and
pick another fresh wafer, since it would have no place to bring the wafer to. Instead, it must
first pick the processed wafer from P1, and bring it to P3.

Wonham has developed a supervisor synthesis theory [3] for computing such state diagrams
for large systems. At our group, research is being done to further develop these techniques.

3 Performance

A part of the research in our group is about using state diagrams like above to compute perfor-
mance. The question in this case is what actions have to be performed by the system (and in
which order) such that all wafers are processed as fast as possible.

Performance is computed with a theory called Heaps of pieces by Viennot [2]. In this theory,
a system is seen as a collection of components (called resources in the theory), that can perform
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Figure 5: Simplified system state.

actions. Usually, only a few components participate in an action.
To reason about performance, each action gets a cost, in this case its duration. The following

table shows the duration and the components involved for each action of the cluster tool used in
the assignment:

Action Duration Components

R1 turn 1 R1
R1 turn CCW 1 R1
pick 10 1 R1, WS
pick 11 1 R1, P1
pick 12 1 R1, P2
pick 13 1 R1, P3
place 10 1 R1, WS
place 11 1 R1, P1
place 12 1 R1, P2
place 13 1 R1, P3
process 11 11 P1
process 12 12 P2
process 13 13 P3

For each path in the system state diagram from start to end, all actions performed on that
path are stacked on top of each other in a tetris-like grid. Horizontally, each component gets a
column. Vertically, cumulative cost is shown.

The path starts at the starting state with an empty grid. Each time an action is traversed
to reach the next state, a block is added to the grid. The height of the block represents the cost
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Figure 6: Costs of a traversal in the simplified system state diagram.

of the action (duration of the action in this case). Horizontally, the block is put in all columns
of participating components. This stacking continues, until the marked end state is reached.

At the end state, all the stacks from all paths are compared with each other, and the one
with the lowest cumulative costs is considered to have optimal performance.

As an example, consider the system state diagram of Figure 5. The tetris-like grid belonging
to the path 0, 1, 3, 5 6, 7, 9, and 11 is shown in Figure 6. At time 0, a pick 10 can be performed
both by R1 and by WS during 1 time unit. After the pick has finished, the robot can perform the
R1 turn action, also taking 1 time unit. The next action is the place 11 action. The processing
cell P1 can start at time 0, but the robot R1 participates as well, so the earliest starting time of
this action is at time 2. After the place action, the cell starts its processing with the process 11

action. In a system where more wafers get processed at the same time, the robot could do other
actions while P1 is processing. In the example however, the robot cannot do anything, and has
to wait until time 14 before the next action can be performed. At that time, the three actions
pick 11, R1 turn CCW, and place 10 can be done in sequence, arriving at marked state 11 at
time 17. It is quite easy to see that this cost is the best you can do in the diagram with the
given durations, so the path is optimal.

If the durations of the actions are changed however, the optimal path may change as well.
Try for example to find the best performance when the duration of the R1 turn CCW is 4 instead
of 1.

4 Assignment

The objective of the assignment is to compute the best performance of processing a number of
wafers in the cluster tool as shown in Figure 2. To this end, a C program has to be designed,
implemented, and documented that reads ADS files containing the system state diagram, and
outputs lines describing the actions performed at the optimal path.

There are four ADS files available for use: uncon onelink1.ads, uncon onelink3.ads, uncon onelink10.ads,
and uncon onelink25.ads. The number in the filename indicates the number of wafers that must
be processed. More wafers means a bigger system state diagram. Further details about the
contents of the ADS files can be found in Appendix B.
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The output of the program should be lines of the form

<component> <action> <start-time> <end-time>

As an example, the lines below would be the output of the path shown in Figure 6:

R1 pick_10 0 1

WS pick_10 0 1

R1 R1_turn 1 2

R1 place_11 2 3

P1 place_11 2 3

P1 process_11 3 14

R1 pick_11 14 15

P1 pick_11 14 15

R1 R1_turn_CCW 15 16

R1 place_10 16 17

WS place_10 16 17

The order of the lines is not relevant.

4.1 Questions

As a guide, some questions you may ponder about while designing the program:

• State diagram data structures, file loading, operations:

– What data do you need to store from the ADS file?

– If you have a state what information should you get (and how?) to make a step in
your walk?

• Tetris grid:

– What data do you need to store in the grid?

– How do you add a block?

– How do you compare two grids and find the best one?

• Walking (difficult!):

– What do you need to save with each state?

– How do you walk all possible paths?

– What about cycles? (a sequence of steps that ends in the same state as where you
started)

– How do you know you are done?

• Scaling:

– How fast is the program with larger number of system states?

– How much memory does it use with larger number of system states?

– How can you improve speed and/or reduce memory use?

Note there is a lot of hidden complexity in the ‘walking’ part, so make sure you have enough
time for that part.
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A Full system state diagram.
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B Format of ADS files

An ADS file contains the system states of a cluster tool for processing a pre-defined number of
wafers.

There are four ADS files available for use: uncon onelink1.ads, uncon onelink3.ads, uncon onelink10.ads,
and uncon onelink25.ads. The number in the filename indicates the number of wafers that must
be processed.

The file format is text, and uses numbers for everything. Below are the first 30 lines of the
uncon onelink1.ads:

# CTCT ADS auto-generated

uncon_onelink1

State size (State set will be (0,1....,size-1)):

# <-- Enter state size, in range 0 to 2000000, on line below.

48

Marker states:

# <-- Enter marker states, one per line.

# To mark all states, enter *.

# If no marker states, leave line blank.

# End marker list with blank line.

44

Vocal states:

# <-- Enter vocal output states, one per line.

# Format: State Vocal_Output. Vocal_Output in range 10 to 99.

# Example: 0 10

# If no vocal states, leave line blank.

# End vocal list with blank line.

Transitions:

# <-- Enter transition triple, one per line.

# Format: Exit_(Source)_State Transition_Label Entrance_(Target)_State.

# Transition_Label in range 0 to 999.

# Example: 2 0 1 (for transition labeled 0 from state 2 to state 1).

0 1 1

0 3 2

0 5 3

The number of states is 48 (at line 7), numbered from 0 to 47. The marked final state has number
44. The remaining 114 lines all have the same structure as the last three. Each line represents
moving from one state to another while performing an action. The mapping of transition labels
to actions is as follows:
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action Transition label

R1 turn 1
R1 turn CCW 3
pick 10 5
pick 11 7
pick 12 9
pick 13 11
place 10 13
place 11 15
place 12 17
place 13 19
process 11 10
process 12 12
process 13 14

For example, the second line ‘0 3 2’ means that action R1 turn CCW is performed while going
from state 0 to state 2.
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