Quantum Information Processing

Harry Buhrman

CWI
 \&

University of Amsterdam

Physics and Computing

Computing is physical Miniaturization \rightarrow quantum effects
\rightarrow Quantum Computers

1) Enables continuing miniaturization 2) Fundamentally faster algorithms 3) New computing paradigm

Quantum mechanics

"What I am going to tell you about is what we teach our physics students in the third or fourth year of graduate school... It is my task to convince you not to turn away because you don't understand it. You see my physics students don't understand it. ... That is because I don't understand it. Nobody does.

Richard Feynman, Nobel Lecture, 1966

Quantum Mechanics

polarized light

(v)

polarized light

polarized light

polarized light

polarized light

polarized light

polarized light

polarized light

polarized light

polarized light

photon gun

calcite crystal
photon gun

photon gun

calcite crystal
photon gun

photon gun

photon gun

photon gun

photon gun

photon took either path A or B
photon gun

photon took either path A or B
photon gun

photon took either path A or B
photon gun

photon took either path A or B
photon gun

photon took either path A or B
photon gun

photon took path B
photon gun

photon took path B
photon gun

photon took either path A or B
photon gun

Quantum Mechanics

photon gun

photon was in a superposition of path A and B

Superposition

- object in more states at same time
- Schrödinger's cat: dead and alive
- Experimentally verified:
- small systems, e.g. photons
- larger systems, molecules
- Proposed experiment:
- virus in superposition

- motion \& stillness

Science's breakthrough of the year 2010: The first quantum machine

"Physicists [...] designed the machine-a tiny metal paddle of semiconductor, visible to the naked eye-and coaxed it into dancing with a quantum groove."

Springboard. Scientists achieved the simplest quantum states of motion with this vibrating device, which is as long as a hair is wide

Quotes

- Quantum mechanics is magic. [Daniel Greenberger]
- Everything we call real is made of things that cannot be regarded as real. [Niels Bohr]
- Those who are not shocked when they first come across quantum theory cannot possibly have understood it. [Niels Bohr]
- If you are not completely confused by quantum mechanics, you do not understand it. [John Wheeler]
- It is safe to say that nobody understands quantum mechanics. [Richard Feynman]
- If [quantum theory] is correct, it signifies the end of physics as a science. [Albert Einstein]
- I do not like [quantum mechanics], and I am sorry I ever had anything to do with it. [Erwin Schrödinger]
- Quantum mechanics makes absolutely no sense. [Roger Penrose]

Quantum Mechanics

- Most complete description of Nature to date
- Superposition principle:
- "particle can be at two positions at the same time"
- Interference:
- "particle in superposition can interfere with itself"

Superposition

Classical Bit: 0 or 1
Quantum Bit: Superposition of 0 and 1

Bit

Superposition

Classical Bit: 0 or 1
Quantum Bit: Superposition of 0 and 1

Bit

Qubit

> Rule: $|\alpha|^{2}+|\beta|^{2}=1$, α, β are complex numbers.

Measurement

"Projection" on the 0 axis or 1 axis.

Rule:

observe 0 with probability $|\alpha|^{2}$ observe 1 with probability $|\beta|^{2}$
after measurement qubit is 0 or 1

Qubits

- NMR (10 qubits)

- SQUIDS (1 qubit)
- Trapped Ions (7 qubits)

***Onat

- Solid state
- Bose-Einstein condensate in optical lattices (30 qubits)
- Cavity QED
(3 qubits)

Example

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

Example

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

Measuring ψ : $\operatorname{Prob}[1]=1 / 2$ Prob [0] = 1/2

Example

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

Measuring $\psi: \operatorname{Prob}[1]=1 / 2$

$$
\operatorname{Prob}[0]=1 / 2
$$

After measurement:
with prob $1 / 2$
$|\psi\rangle=|0\rangle$
with prob 1/2

$$
|\psi\rangle=|1\rangle
$$

Quantis - QUANTUM RANDOM NUMBER GENERATOR

Although random numbers are required in many applications, their generation is often overlooked. Being deterministic, computers are not capable of producing random numbers. A physical source of randomness is necessary. Quantum physics being intrinsically random, it is natural to exploit a quantum process for such a source. Quantum random number generators have the advantage over conventional randomness sources of being invulnerable to environmental perturbations and of allowing live status verification.
Quantis is a physical random number generator exploiting an elementary quantum optics process. Photons - light particles - are sent one by one onto a semi-transparent mirror and detected. The exclusive events (reflection transmission) are associated to "0" - "1" bit values.

Copyright g 2001 United Feature Syndicate, Inc.

Qubit

$$
\begin{gathered}
\alpha|0\rangle+\beta|1\rangle \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{gathered}
$$

$$
\alpha, \beta \in \mathbb{C}
$$

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

$$
\alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

Measurement:

$$
\begin{array}{cc}
\text { observe } 0 \text { with probability } & |\alpha|^{2} \\
\text { observe } 1 \text { with probability } & |\beta|^{2}
\end{array}
$$

Tensor Products

$$
\begin{gathered}
\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \otimes\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right) \\
{\left[\begin{array}{l}
\alpha_{1} \\
\beta_{1}
\end{array}\right] \quad \otimes\left[\begin{array}{l}
\alpha_{2} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{1} \alpha_{2} \\
\alpha_{1} \beta_{2} \\
\beta_{1} \alpha_{2} \\
\beta_{1} \beta_{2}
\end{array}\right]} \\
A=\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right] \quad B=\left[\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right]
\end{gathered} \begin{aligned}
& \left|\alpha_{1} \alpha_{2}\right|^{2}+\left|\alpha_{1} \beta_{2}\right|^{2}+ \\
& \left|\beta_{1} \alpha_{2}\right|^{2}+\left|\beta_{1} \beta_{2}\right|^{2}=1
\end{aligned}
$$

basis states

$|0\rangle \otimes|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] \otimes\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right] \quad|0\rangle \otimes|1\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] \otimes\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
$|1\rangle \otimes|0\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right] \otimes\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] \quad|1\rangle \otimes|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right] \otimes\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

$$
|0\rangle \otimes|0\rangle=|0\rangle|0\rangle=|00\rangle
$$

Two Qubits

$$
\begin{gathered}
\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle \\
\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\left|\alpha_{3}\right|^{2}+\left|\alpha_{4}\right|^{2}=1
\end{gathered}
$$

$\operatorname{Prob}[00]=\left|\alpha_{1}\right|^{2}$,
$\operatorname{Prob}[01]=\left|\alpha_{2}\right|^{2}$,
$\operatorname{Prob}[10]=\left|\alpha_{3}\right|^{2}$,
$\operatorname{Prob}[11]=\left|\alpha_{4}\right|^{2}$,

n Qubits

$$
\sum_{x=0}^{2^{n}-1} \alpha_{x}|x\rangle \quad \sum_{x=0}^{2^{n}-1}\left|\alpha_{x}\right|^{2}=1
$$

$\operatorname{Prob}[o b s e r v i n g y]=\left|\alpha_{y}\right|^{2}$

Dirac Notation

- $|a\rangle=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$

norm 1 vector

complex conjugate transpose

- $\langle a|=\left[\overline{a_{1}} \cdots \overline{a_{n}}\right]$

inner product

$$
\begin{array}{ll}
\langle a|=\left[\overline{a_{1}} \cdots \overline{a_{n}}\right] & |b\rangle=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \\
\langle a \mid b\rangle=\left[\overline{a_{1}} \cdots \overline{a_{n}}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] \quad \begin{array}{l}
\text { inner product } \\
\text { between } \\
|a\rangle \text { and }|b\rangle
\end{array}
\end{array}
$$

inner product(2)

$$
\langle a \mid a\rangle=\left[\overline{a_{1}} \cdots \overline{a_{n}}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=
$$

$$
\sum_{i=1}^{n} \overline{a_{i}} a_{i}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}=1
$$

Evolution

Evolution

1. Postulate: the evolution is a linear operation
2. quantum states maped to quantum states

- 1 \& 2 implies that operation is Unitary
- length preserving
- rotations.
- $\quad U U^{\star}=I$.
(U^{*} : complex conjugate, transpose)

Hadamard Transform

$$
H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \quad H^{*}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
H \times H^{*}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

Hadamard on 0

Hadamard on 0

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \times \underset{\substack{\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\hline \\
\text { interference }}}{\left[\begin{array}{c}
\frac{1}{2}+\frac{1}{2} \\
\frac{1}{2}-\frac{1}{2}
\end{array}\right]}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \psi=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \xrightarrow[\mathrm{H}]{\left[\begin{array}{l}
\text { (}
\end{array}\right]}
\end{aligned}
$$

Hadamard on 1

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \times\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{2}-\frac{1}{2} \\
\frac{1}{2}+\frac{1}{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \left.\psi=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle \xrightarrow[\mathrm{H}]{1} \right\rvert\,
\end{aligned}
$$

Hadamard on 1

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
1 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \times\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{1}{2} \\
\frac{1}{2}+\frac{1}{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \psi=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle \xrightarrow[\mathrm{H}]{|1\rangle}
\end{aligned}
$$

Hadamard on n qubits

$$
\begin{aligned}
& |y\rangle \stackrel{H^{\otimes n}}{\stackrel{H}{2^{n}}} \sum_{x=0}^{\sum^{2 n}-1}(-1)^{x \cdot y}|x\rangle \\
& y=y_{1} \ldots y_{n} \\
& \left|0^{n}\right\rangle \stackrel{\begin{array}{c}
\text { inner product } \\
\text { modulo } 2
\end{array}}{\stackrel{H}{\longleftrightarrow n}} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle
\end{aligned}
$$

C-not Gate

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
|00\rangle & \mapsto|00\rangle \\
|01\rangle & \mapsto|01\rangle \\
|10\rangle & \mapsto|11\rangle \\
|11\rangle & \mapsto|10\rangle
\end{aligned}
$$

defined on basis states

$$
\Rightarrow
$$

defined on superpositions

No Cloning

no cloning

it is not possible to copy an unknown qubit [Wooters \& Zurek'82, Dieks'82]

$U_{c}[(\alpha|0\rangle+\beta 1) \otimes|0\rangle]$

$$
(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle)
$$

II
$U_{c}[\alpha|00\rangle+\beta|10\rangle]$
II
$U_{c} \alpha|00\rangle+U_{c} \beta|10\rangle$
$\alpha \alpha|00\rangle+\alpha \beta|01\rangle+$
$\beta \alpha|10\rangle+\beta \beta|11\rangle$
H
$=\alpha|00\rangle+\beta|11\rangle$
equal only if: $\alpha=0 \& \beta=1$ or

$$
\alpha=1 \& \beta=0
$$

Quantum Algorithms

Feynman

Deutsch '85

Quantum Algorithms

- Quantum Program:
- unitary operation

Feynman Deutsch '85

- measurement

Universal set of Gates

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

can implement any Unitary operation

Quantum Algorithms

- Quantum Program:
- unitary operation
- measurement
- Fast:
- unitary implemented by polynomially many " H ", " $\pi / 4$ ", and "C-not"
- Efficient Quantum Computation: BQP

Early Quantum Algorithms

Deutsch's Problem

$$
f:\{0,1\} \rightarrow\{0,1\}
$$

compute

Prob $\frac{1}{2}:|f(0)\rangle$
Prob $\frac{1}{2}:|f(1)\rangle$

Deutsch's Algorithm

$$
f:\{0,1\} \rightarrow\{0,1\} \quad f(0) \oplus f(1)
$$

More detail

Parity Problem

X_{0} and X_{1}

- compute $X_{0} \oplus X_{1}$
- Classically 2 queries
- Quantum 1 query!

Quantum query

- Querying $X_{0} \quad|0\rangle \longrightarrow(-1)^{X_{0}}|0\rangle$
- Querying $X_{1} \quad|1\rangle \longrightarrow(-1)^{X_{1}|1\rangle}$
- General query:

$$
\begin{gathered}
\alpha|0\rangle+\beta|1\rangle \longrightarrow \\
\alpha(-1)^{X_{0}}|1\rangle+\beta(-1)^{X_{1}}|1\rangle
\end{gathered}
$$

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

Deutsch's Algorithm for Parity

$$
|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}[|0\rangle+|1\rangle]
$$

$\xrightarrow{\text { Query }} \frac{1}{\sqrt{2}}\left[(-1)^{X_{0}}|0\rangle+(-1)^{X_{1}}|1\rangle\right]$

$$
\xrightarrow{H} \frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right]
$$

cont.

$$
\frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right]
$$

cont.

$$
\begin{gathered}
\frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right] \\
\frac{1}{2}\left[(-1)^{X_{0}}+(-1)^{X_{1}}|0\rangle+\right.
\end{gathered}
$$

cont.

$$
\begin{gathered}
\frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right] \\
\frac{1}{2}\left[(-1)^{X_{0}}+(-1)^{X_{1}}|0\rangle+\right. \\
(-1)^{X_{0}}-(-1)^{\left.X_{1}|1\rangle\right]}
\end{gathered}
$$

cont.

$$
\begin{gathered}
\frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right] \\
\frac{\frac{1}{2}\left[(-1)^{X_{0}}+(-1)^{X_{1}}|0\rangle+\right.}{\left.(-1)^{X_{0}}-(-1)^{X_{1}}|1\rangle\right]}
\end{gathered}
$$

$X_{0} \oplus X_{1}=0$
$X_{0}=0 \& X_{1}=0$ or \quad See only $|0\rangle$
$X_{0}=1 \& X_{1}=1$

cont.

$$
\begin{gathered}
\frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right] \\
\frac{\frac{1}{2}\left[(-1)^{X_{0}}+(-1)^{X_{1}}|0\rangle+\right.}{\left.(-1)^{X_{0}}-(-1)^{X_{1}}|1\rangle\right]}
\end{gathered}
$$

$X_{0} \oplus X_{1}=1$
$X_{0}=0 \& X_{1}=1$ or
See only $|1\rangle$
$X_{0}=1 \& X_{1}=0$

cont.

$$
\begin{gathered}
\frac{1}{2}\left[(-1)^{X_{0}}(|0\rangle+|1\rangle)+(-1)^{X_{1}}(|0\rangle-|1\rangle)\right] \\
\begin{array}{c}
\frac{1}{2}\left[(-1)^{X_{0}}+(-1)^{X_{1}}|0\rangle+\right. \\
\left.(-1)^{X_{0}}-(-1)^{X_{1}}|1\rangle\right]
\end{array}
\end{gathered}
$$

$X_{0} \oplus X_{1}=0 \quad$ See only $|0\rangle$

$$
X_{0} \oplus X_{1}=1 \quad \text { See only }|1\rangle
$$

Extension: Constant or Balanced

Deutsch-Jozsa Problem

- Promise on X :
(1) For all i: $X_{i}=1$ (0) or (constant)
(2) $\left|\left\{i \mid X_{i}=1\right\}\right|=\left|\left\{j \mid X_{j}=0\right\}\right|$ (balanced)
- Goal: determine case (1) or (2)
- Classical: N/2+1 probes.
- Quantum: 1 probe.

Quantum query

- Querying $X_{i} \quad|i\rangle \longrightarrow(-1)^{X_{i}}|i\rangle$
- General query:

$$
\sum_{i} \alpha_{i}|i\rangle \longrightarrow \sum_{i}(-1)^{X_{i} \alpha_{i}|i\rangle}
$$

$$
\sum_{i}\left|\alpha_{i}\right|^{2}=1
$$

Deutsch-Jozsa Algorithm

(1)

$$
\left|0^{n}\right\rangle \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2}^{n}} \sum_{i=0}^{2^{n}-1}|i\rangle
$$

(2)
$\xrightarrow{\text { Query }} \frac{1}{\sqrt{2}^{n}} \sum_{i=0}^{2^{n}-1}(-1)^{X_{i}}|i\rangle$
(3)

$$
\xrightarrow{H^{\otimes n}} \frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{n}-1}(-1)^{X_{i} \oplus(i \cdot j)}|j\rangle
$$

Deutsch-Jozsa cont.

$$
\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{n}-1}(-1)^{X_{i} \oplus(i \cdot j)}|j\rangle
$$

measure state $\left|0^{n}\right\rangle$

$$
\frac{1}{2^{n}} \sum_{i=0}^{2^{n}-1}(-1)^{X_{i}}\left|0^{n}\right\rangle
$$

Constant:
see $\left|0^{n}\right\rangle$ with prob. 1

Balanced: see $\left|0^{n}\right\rangle$ with prob. 0

Quantum Algorithms

- Deutsch-Jozsa
- Simon's algorithm
- Shor's factoring algorithm
- Grover's search algorithm
- Quantum Random Walk

factorization

- Factor number in prime factors

$$
87=3 * 29
$$

- Classical Computer : Exponential time
- Quantum Computer : Poly-time: n^{2}
[Shor'94]
- For a 300 digit number
- Classical: >100 years
- Quantum: 1 minute

impact

- Safety of modern cryptography based on exponential slowness of factorization
- RSA, electronic commerce, internet...
\Rightarrow Quantum computer destroys this!

Shor's Algorithm

- factoring a number N reduces to period finding problem: x find smallest r such that $x^{r} \bmod N=1$
- fast quantum algorithm for period finding
- classical post processing to obtain factor of N

Fourier transform

- Fourier transform F over $Z_{2 m}$

$$
\left|y_{1} \ldots y_{m}\right\rangle=\sum_{x=0}^{2^{m}-1} e^{\frac{2 \pi i x y}{2^{m}}}|x\rangle
$$

- Fourier transform over $Z_{2 m}$ can be efficiently implemented

period finding for x

(1) $\left|0^{m}\right\rangle\left|0^{l}\right\rangle \xrightarrow{F_{2} m} \frac{1}{\sqrt{2^{m}}} \sum_{j=0}^{2^{m}-1}|j\rangle\left|0^{l}\right\rangle$
(2) query
not black box! $\overline{\sqrt{2}^{m}} \sum_{j=0}|j\rangle\left|x^{j} \bmod N\right\rangle$
(3)

$$
\xrightarrow{F_{2} m} \frac{1}{2^{n}} \sum_{j=0}^{2^{m}-1} \sum_{k=0}^{2^{m}-1} e^{\frac{2 \pi i j k}{2^{m}}}|k\rangle\left|x^{j} \bmod N\right\rangle
$$

Grover's Search Algorithm

search problem

- Input $N\left(=2^{n}\right)$ bits (variables):

$$
X=\begin{array}{lllll}
X_{1} & X_{2} & X_{3} & \ldots & X_{N}
\end{array}
$$

- exists/find i such that $X_{i}=1$
- Classically $\Omega(\mathrm{N})$ queries (bounded error)
- Quantum $O(\sqrt{ } N)$ queries

Quantum Random Walk

- Speedup for different search problems:
- Element Distinctness
- AND-OR trees
- pruning of game trees
- local search algorithms

Alice and Bob

Communication?

qubits

Communication?

qubits

Theorem [Holevo'73]
Can not compress k classical bits into $\mathrm{k}-1$ qubits

Communication Complexity

Classical bits

$x=x_{1} x_{2} \ldots x_{N} \longrightarrow y=y_{1} y_{2} \ldots y_{N}$
Goal: Compute some function $F(X, Y) \longrightarrow\{0,1\}$ minimizing communication bits.

Communication Complexity

Goal: Compute some function $F(X, Y) \longrightarrow\{0,1\}$ minimizing communication bits.

Equality

Classical bits

$X=x_{1} x_{2} \ldots x_{N}$
$F(X, Y)=1$ if $X=Y$

Equality

Classical bits

$x=x_{1} x_{2} \ldots x_{N} \longrightarrow y=y_{1} y_{2} \ldots y_{N}$

$$
F(X, Y)=1 \text { iff } X=Y
$$

N bits necessary and sufficient:

$$
C(E Q)=N
$$

Quantum Communication Complexity

$$
F(X, Y) \longrightarrow\{0,1\}
$$

qubits

$X=x_{1} x_{2} \ldots x_{N}$

$$
F(X, Y)=1 \text { iff } X=Y
$$

Question: Can qubits reduce communication for certain F^{\prime} s?

Qubits Can Reduce Cost

Theorem [B-Cleve-Wigderson'98]

$$
\begin{array}{r}
E Q^{\prime}(X, Y)=1 \text { iff } X=Y \\
\text { Promise } \Delta(X, Y)=N / 2 \text { or } 0 \\
\text { Hamming Distance }
\end{array}
$$

- Need $\Omega(\mathrm{N})$ classical bits.
- Can be done with $O(\log (N))$ qubits.

Reduction to D-J

$$
\begin{aligned}
& X_{1} x_{2} \ldots \ldots . x_{N} \\
& y_{1} y_{2} \ldots \ldots . y_{N} \oplus \\
& Z_{1} Z_{2} \ldots \ldots . Z_{N}
\end{aligned}
$$

$\Delta(X, Y)=N / 2$
Z
is balanced

$$
\begin{gathered}
\Delta(X, Y)=0 \\
Z
\end{gathered}
$$

is constant

The quantum protocol

Finishes Deutsch-Josza Algorithm

Cost

- Alice sends $n=\log (N)$ qubits to Bob
- Bob sends $n=\log (N)$ qubits to Alice
- Total cost is $2 \star \log (N)$

Classical Lower Bound

Lower Bound

Theorem [Frankl-Rödl'87]*
S, T families of $N / 2$ size sets $\subseteq\{1, \ldots, N\}$
for all s, t in $S, T:|s \cap t| \neq N / 4$ then:

$$
|S| \star|T| \leq 40.96 \mathrm{~N}
$$

*\$250 problem of Erdös

Lower Bound

Theorem [Frankl-Rödl'87]
S, T families of $N / 2$ size sets $\subseteq\{1, \ldots, N\}$
for all s, t in $S, T:|s \cap t| \neq N / 4$ then:

$$
|S| \star|T| \leq 40.96 \mathrm{~N}
$$

protocol solving EQ' in $\leq N / 100$ bits
induces S and T satisfying:

$$
|S| \star|T| \geq 40.99 \mathrm{~N}
$$

other quantum algorithms...

Quantum Algorithm

$\operatorname{Prob}[$ output $=0]=1-\operatorname{Prob}[$ output $=1]$

Generalization

Grover's Algorithm

- Find i such that $X_{i}=1$ $O R\left(X_{1}, \ldots, X_{N}\right)$
- Classical Probabilistic: $\mathrm{N} / 2$ queries
- Quantum: $O(\sqrt{ } \mathrm{~N})$ queries
- No promise!

Non-Disjointness

Goal: exists i such that $X_{i}=1$ and $Y_{i}=1$?

$$
\begin{aligned}
& X_{1} X_{2} \ldots \ldots . X_{N} \\
& y_{1} y_{2} \ldots \ldots . y_{N} \\
& Z_{1} Z_{2} \ldots \ldots . Z_{N}
\end{aligned}
$$

Disjointness

- Bounded Error probabilistic $\Omega(\mathrm{N})$ bits [Kalyanasundaram-Schnitger'87]
- Grover's algorithm + reduction $O\left(\log (N)^{\star} \sqrt{N}\right)$ qubits [BCW'98]
$O(\sqrt{ } \mathrm{~N})$ qubits [AA'04]
$\Omega(\sqrt{ } \mathrm{N})$ lower bound [Razborov'03]

Apointment Scheduling

qubits

Quantum: \sqrt{n} qubits communication Classical: n bits communication

Other Functions

- Exponential gap [Raz'99]
- $O(\log (N))$ with qubits, $\Omega\left(N^{1 / 4}\right)$ bits classically.
- partial Domain, bounded error
- Exponential gap for other models of communication complexity:
- limited rounds, SMP etc.
- Quantum Fingerprinting
- Streaming, Learning Theory...

back to physics

Einstein Podolsky Rosen paradox

simple quantum circuit

|00〉

simple quantum circuit

$$
|00\rangle \longrightarrow \frac{1}{\sqrt{2}}[|00\rangle+|10\rangle]
$$

simple quantum circuit

$$
\begin{aligned}
|00\rangle & \longrightarrow \frac{1}{\sqrt{2}}[|00\rangle+|10\rangle] \\
& \longrightarrow \frac{1}{\sqrt{2}}[|00\rangle+|11\rangle]
\end{aligned}
$$

EPR Pair

Entangled:

$$
\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \neq\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \otimes\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right.
$$

EPR Pair

if Bob measures: $0 / 1$ with prob. $\frac{1}{2}$
if Alice measures: $0 / 1$ with prob. $\frac{1}{2}$

EPR Pair

Alice measures: 0 state will collapse!

EPR Pair

Alice measures: 0 state will collapse!

Bob's state has changed! he will also measure 0

EPR Pair

Alice measures: 1
state will collapse!

EPR Pair

Alice measures: 1 state will collapse!

Bob's state has changed! he will also measure 1

1) At time of measugghtent ananom outcome is produced

- instantcineolș informajien/ransfer

2) Outcome was àlready presenf at time of creation of EPR-pair

- quantum mechanics is incomplete

1935

Einstein: nothing, including information, can go faster than the speed of light, hence quantum mechanics is incomplete

Communication

Communication?

bits

|0
0)
with EPR pairs
$+$
|1
1)

Can not compress k bits into k-1 bits

Teleportation

Teleportation

$\alpha|0\rangle+\beta|1\rangle$
|0
0)
$+$
|1
1)

Teleportation

$\left|\Phi_{1}\right\rangle$
$\left|\Phi_{2}\right\rangle$
Classical bits:
$b_{1} b_{2}$

Teleportation

$$
b_{1} b_{2}
$$

$\left|\Phi_{1}\right\rangle$
$\left|\Phi_{2}\right\rangle$
Classical bits:

$$
b_{1} b_{2}
$$

Teleportation

$\left|\Phi_{1}\right\rangle$

Classical bits:

$$
b_{1} b_{2}
$$

Teleportation

\longrightarrow

$$
\left|\Phi_{1}\right\rangle \quad \bigcup_{\mathrm{b}_{1} \mathrm{~b}_{2}}\left|\Phi_{2}\right\rangle
$$

Classical bits:

$$
b_{1} b_{2}
$$

$$
b_{1} b_{2}
$$

Teleportation

$\left|\Phi_{1}\right\rangle$

$$
\alpha|0\rangle+\beta|1\rangle
$$

Classical bits:

$$
b_{1} b_{2}
$$

Alice's protocol

Alice's protocol

$$
\begin{aligned}
& \alpha|0\rangle+\beta|1\rangle-\mathrm{H} \\
& \frac{1}{\sqrt{2}}|0\rangle+|1\rangle \\
& |0\rangle|1\rangle \quad(\alpha|0\rangle+\beta|1\rangle) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)= \\
& \frac{\alpha}{\sqrt{2}}(|000\rangle+|011\rangle)+\frac{\beta}{\sqrt{2}}(|100\rangle+|111\rangle)
\end{aligned}
$$

Alice's protocol

$$
\begin{aligned}
& \begin{array}{l}
\alpha|0\rangle+\beta|1\rangle-\boldsymbol{H} \\
\frac{1}{\sqrt{2}}|0\rangle+{ }^{|1\rangle}-\infty \quad 1
\end{array} \\
& \text { |0〉 |1] } \\
& \frac{\alpha}{\sqrt{2}}(|000\rangle+|011\rangle)+\frac{\beta}{\sqrt{2}}(|100\rangle+|111\rangle) \\
& \frac{\alpha}{\sqrt{2}}(|000\rangle+|011\rangle)+\frac{\beta}{\sqrt{2}}(|110\rangle+|101\rangle)
\end{aligned}
$$

Alice's protocol

$$
\begin{aligned}
& \begin{array}{lll}
\alpha|0\rangle+\beta|1\rangle & \bullet & H \\
\frac{1}{\sqrt{2}}|0\rangle+|1\rangle & & \\
& &
\end{array} \\
& |0\rangle \quad|1\rangle \\
& \frac{\alpha}{\sqrt{2}}(|000\rangle+|011\rangle)+\frac{\beta}{\sqrt{2}}(|110\rangle+|101\rangle) \\
& \frac{\alpha}{2}(|000\rangle+|100\rangle+|011\rangle+|111\rangle)+ \\
& \frac{\beta}{2}(|010\rangle-|110\rangle+|001\rangle-|101\rangle)
\end{aligned}
$$

Alice's protocol

$$
\begin{aligned}
\alpha|0\rangle+\beta|1\rangle & \bullet
\end{aligned}
$$

Bob's protocol

Alice with prob. $\frac{1}{4}$ in

Bob

 one of:$|00\rangle(\alpha|0\rangle+\beta|1\rangle)$
$|01\rangle(\alpha|1\rangle+\beta|0\rangle)$
$|10\rangle(\alpha|0\rangle-\beta|1\rangle)$
$|11\rangle(\alpha|1\rangle-\beta|0\rangle)$
do nothing
bit flip
phase flip
bit flip and phase flip

Quantum Communication Complexity

Classical bits

$$
\begin{gathered}
X=x_{1} x_{2} \ldots x_{n} \longrightarrow y=y_{1} y_{2} \ldots y_{n} \\
\mid 0 \cdots \\
\text { With EPR pairs } \\
0\rangle \\
1 \cdots
\end{gathered}
$$

Alice

$$
F(X, Y)
$$

Question: Can EPR pairs reduce communication for certain F 's?

Teleportation

- Qubit Model can be simulated by EPR model.
- Teleport qubit at cost of 2 classical bits and 1 EPR pair.
- EPR-pairs can reduce communication cost:
- use qubit protocol +
- teleportation

Apoinment Scheduling

EPR-pairs

Quantum: \sqrt{n} bits communicatie Classical: n bits communicatie

EPR en information

EPR-pairs

Alice can not send information to Bob, but she can save information for certain communication problems

Other Links

- Quantum Communication Complexity
- Better Non-locality experiments
- Resistant to noise
- Resistant to detection loophole
- Optimality of parameters

Entanglement

- Communincation Complexity
- Cryptography
- Essential for quantum speed up
- Unentangled quantum alg. can be simulated efficiently
- Quantum interactive games
- Link with Functional Analysis \& Grothednieck's constant

The real world \&
Complexity Theory

real world

Traveling Salesman Problem

real world?

real world?

Traveling Salesman Problem

Quantum Cryptography

Quantum key generation

- Quantum mechanical protocol to securely generate secret
"random" key
Bennett
between Alice and Bob.
- Unbreakable in combination with

Brassard Vernam cipher

Quantum Cryptography secret key generation

00111010

qubits

secret key:

$$
r_{1} \ldots r_{n}
$$

secret key:
$r_{1} \ldots r_{n}$

Quantum Cryptography secret key generation

00111010
qubits

secret key:

$$
r_{1} \ldots r_{n}
$$

secret key:
$r_{1} \ldots r_{n}$

Quantum Cryptography secret key generation

00111010

secret key:

$$
r_{1} \ldots r_{n}
$$

secret key:
$r_{1} \ldots r_{n}$

Eavesdropper has to disturb qubit!
Can be detected by Alice \& Bob

id) Quantique

A quantum leap for cryptography

Clavis - PLUG \& PLAY QUANTUM CRYPTOGRAPHY

 Quantum Key Distribution is a technology that exploits a fundamental principle of quantum physics - observation causes perturbation - to exchange cryptographic keys over optical fiber networks with absolute security.

Quantum Crypto

- Impossibility of bit commitment
- Quantum key distribution scheme
- Quantum Coin-flipping
- Quantum string commitment (CWI)
- Quantum Information theory (CWI)
- much richer field than classical information theory
- Quantum secure positioning (CWI)

Recent Developments

- New Algorithms
- Pell's equations
- searching/sorting etc.
- Matrix problems
- Limitations to quantum computing
- Applications of quantum computing:
- Physics, foundations of physics
- classical comp. science \& mathematics

Very Recent

- Surprising intrerplay between
- Nonlocality
- Communication complexity
- Approximation algorithms (SDP)
- Functional analysis
- Studying questions about nonlocality solve 35 year old problem in Banach space theory [Briet,B,Lee,Vidick 09]

Current Challenges

- Implementing more qubits
- New Algorithms
- Better Understanding of power of Quantum Computation
- Other Applications
- Quantum Cryptography
- Nonlocality, SDP, Functional Analysis

Quantum Computing FAQ
Q: What can Quantum Information Science do now?
A: Allow the building of prototype quantum communications systems whose security against
undetected eavesdropping is guaranteed by fundamental laws of physics.
Q: When will we have full-scale quantum computer?
A: Too early to tell. Maybe 20 years.
Q: What could a quantum computer do?
A1: Enormously speed up some computations, notably factoring, thereby making many currently
used codes insecure.
A2: Significantly speed up a much broader class of computations, including the traveling salesman problem, allowing them to be done in the square root of the number of steps a classical computer would require.
A3: Allow the efficient simulation of quantum systems, to aid physics and chemistry research.
Q: Does a quantum computer speed up all computations equally?
A: No. Some are sped up exponentially, some quadratically, and some not at all.
Q: What else can Quantum Information Science do?
A1: Facilitate other tasks involving distributed computing and secrecy. A2: Contribute to better precision measurements and time standards.

