
Quantum Information 
Processing

Harry Buhrman

CWI

&

University of Amsterdam



Physics and Computing

Computing is physical
Miniaturization  quantum effects 

Quantum Computers

1) Enables continuing miniaturization

2) Fundamentally faster algorithms
3) New computing paradigm



Quantum mechanics

―What I am going to tell you about is what we teach 
our physics students in the third or fourth year of 
graduate school... It is my task to convince you not 
to turn away because you don't understand it. You 
see my physics students don't understand it. ... 
That is because I don't understand it. Nobody 
does. ―

Richard Feynman, Nobel Lecture, 1966
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Quantum Mechanics

photon was in a superposition
of path A and B



Superposition

• object in more states at same time

• Schrödinger's cat: dead  and alive

• Experimentally verified:
– small systems, e.g. photons

– larger systems, molecules

• Proposed experiment:
– virus in superposition

– motion & stillness



Science’s breakthrough of the year 2010:
The first quantum machine

―Physicists […] designed the 
machine—a tiny metal paddle of 
semiconductor,  visible to the 
naked eye—and coaxed it into 
dancing with a quantum groove.‖

Springboard. Scientists achieved the simplest quantum states of 
motion with this vibrating device, which is as long as a hair is wide



Quotes
• Quantum mechanics is magic. [Daniel Greenberger]

• Everything we call real is made of things that cannot be regarded 
as real. [Niels Bohr]

• Those who are not shocked when they first come across quantum 
theory cannot possibly have understood it. [Niels Bohr]

• If you are not completely confused by quantum mechanics, you do 
not understand it. [John Wheeler]

• It is safe to say that nobody understands quantum mechanics. 
[Richard Feynman]

• If [quantum theory] is correct, it signifies the end of physics as a 
science. [Albert Einstein]

• I do not like [quantum mechanics], and I am sorry I ever had 
anything to do with it. [Erwin Schrödinger]

• Quantum mechanics makes absolutely no sense. [Roger Penrose]



Quantum Mechanics

• Most complete description of Nature 
to date

• Superposition principle:
– ―particle can be at two positions at the 

same time‖

• Interference:
– ―particle in superposition can interfere 

with itself‖



Superposition

Classical Bit: 0 or 1

Quantum Bit: Superposition of 0 and 1
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Superposition

Classical Bit: 0 or 1

Quantum Bit: Superposition of 0 and 1
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Qubit

0 1+
0 1+a b

amplitudes

Rule: |a|2+ |b|2 =1,
a, b are complex numbers.

a b



Measurement

0 1+a b

0

1

Rule:
observe 0 with probability |a|2

observe 1 with probability  |b|2

―Projection‖ on the 0 axis 
or 1 axis.

after measurement qubit is 0  or 1 



Qubits 

• NMR (10 qubits)

• SQUIDS (1 qubit)

• Trapped Ions  (7 qubits)

• Solid state 

• Bose-Einstein condensate in optical 
lattices (30 qubits)

• Cavity QED

(3 qubits)
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Measuring : Prob [1] = 1/2
Prob [0] = 1/2
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Example

Measuring : Prob [1] = 1/2
Prob [0] = 1/2

After measurement:

1
2

1
0

2

1
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0

1

with prob 1/2

with prob 1/2



Quantis – QUANTUM RANDOM NUMBER GENERATOR

Although random numbers are required in many applications, their 

generation is often overlooked. Being deterministic, computers are not 

capable of producing random numbers. A physical source of randomness is 

necessary. Quantum physics being intrinsically random, it is natural to 

exploit a quantum process for such a source. Quantum random number 

generators have the advantage over conventional randomness sources of 

being invulnerable to environmental perturbations and of allowing live status 

verification. 

Quantis is a physical random number generator exploiting an elementary 

quantum optics process. Photons - light particles - are sent one by one onto 

a semi-transparent mirror and detected. The exclusive events (reflection -

transmission) are associated to "0" - "1" bit values. 





Qubit

Measurement:

observe 0 with probability

observe 1 with probability



Tensor Products



basis states



Two Qubits

11100100
4321

aaaa 

|a1|
2 + |a2|

2 + |a3|
2 + |a4|

2 = 1

Prob[00] = |a1|
2,          Prob[01] = |a2|

2,

Prob[10] = |a3|
2,          Prob[11] = |a4|

2,



n Qubits

Prob[observing y] =|ay|
2



Dirac Notation

norm 1 vector

complex conjugate
transpose

•

•

•



inner product

inner product
between 
|ai and  |bi



inner product(2)



Evolution



Evolution

1. Postulate: the evolution is a linear
operation

2. quantum states maped to quantum states
– 1 & 2 implies that operation is Unitary

• length preserving 

• rotations. 

• U U* = I.             (U* : complex conjugate, 
transpose)



Hadamard Transform
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Hadamard on 0
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Hadamard on 0
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Hadamard on 1
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Hadamard on 1
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Hadamard on n qubits

inner product 
modulo 2



C-not Gate

defined on basis states
)

defined on superpositions



No Cloning



no cloning

it is not possible to copy an unknown 
qubit [Wooters & Zurek‘82, Dieks‘82]



equal only if: a = 0 & b =1 or
a = 1 & b =0 



Quantum Algorithms



Deutsch ‗85Feynman



Quantum Algorithms

• Quantum Program:
– unitary operation

– measurement

Feynman
Deutsch ‘85



Universal set of Gates

H

rotation
over /4

Control-
not

can implement any Unitary operation



Quantum Algorithms

• Quantum Program:
– unitary operation

– measurement

• Fast:
– unitary implemented by polynomially  

many ―H‖, ―/4‖, and ‖C-not‖

– Efficient Quantum Computation: BQP



Early Quantum 
Algorithms



Deutsch‘s Problem
compute

?

Prob ½: 

Prob ½: 



Deutsch‘s Algorithm

Additional quantum
operation

Prob ½: 

Prob ½: 
once 

computation 
time of f



More detail



Parity Problem

X0 and X1

• compute X0 © X1

• Classically 2 queries

• Quantum 1 query!



Quantum query

• Querying X0

• Querying X1

• General query:



Deutsch‘s Algorithm for Parity



cont.



cont.



cont.



cont.

X0 © X1 = 0
X0 = 0 & X1 = 0 or
X0 = 1 & X1 = 1

See only 
X0 © X1 = 0
X0 = 0 & X1 = 0 or
X0 = 1 & X1 = 1



cont.

X0 © X1 = 1
X0 = 0 & X1 = 1 or
X0 = 1 & X1 = 0

See only 
X0 © X1 = 1
X0 = 0 & X1 = 1 or
X0 = 1 & X1 = 0



cont.

X0 © X1 = 0 

X0 © X1 = 1 See only 

See only 



Extension:
Constant or Balanced



Deutsch-Jozsa Problem

• Promise on X:
(1) For all i: Xi = 1  (0)    or  (constant) 

(2) |{i | Xi = 1}| = |{j | Xj = 0}| (balanced)

• Goal: determine  case (1) or (2)

• Classical:  N/2 + 1 probes.

• Quantum: 1 probe.



Quantum query

• Querying Xi

• General query:



Deutsch-Jozsa Algorithm

(1)

(2)

(3)



Deutsch-Jozsa cont.

measure state

Constant: 
see       with prob. 1

Balanced:
see       with prob. 0



Quantum Algorithms

• Deutsch-Jozsa

• Simon‘s algorithm

• Shor‘s factoring algorithm 

• Grover‘s search algorithm

• Quantum Random Walk



factorization

• Factor number in prime factors
87 = 3 * 29

• Classical  Computer : Exponential time
• Quantum Computer : Poly-time:  n2

• For a 300 digit number:
– Classical: >100 years
– Quantum: 1 minute

[Shor‘94]



impact

• Safety of modern cryptography based on 

exponential slowness of factorization

• RSA, electronic commerce, internet…

 Quantum computer destroys this!



Shor‘s Algorithm

• factoring a number N reduces to period 
finding problem: x find smallest r such that 
xr mod N = 1

• fast quantum algorithm for period finding

• classical post processing to obtain factor 
of N



Fourier transform

• Fourier transform F over Z2m

• Fourier transform over Z2m can be 
efficiently implemented



period finding for x

(1)

(2)

(3)

query
not black box!



Grover‘s Search
Algorithm



search problem

• Input N (=2n)  bits (variables): 

X =   X1     X2 X3 …       XN

• exists/find  i such that Xi = 1

• Classically (N) queries (bounded 
error)

• Quantum O( N) queries



Quantum Random Walk

• Speedup for different search 
problems:
– Element Distinctness

– AND-OR trees

– pruning of game trees

– local search algorithms



Alice and Bob





Communication?

qubits



Communication?

qubits

Theorem [Holevo‘73]
Can not compress k classical bits into k-1 qubits



Communication Complexity

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

Goal: Compute some function F(X,Y) {0,1}
minimizing communication bits.



Communication Complexity

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

Goal: Compute some function F(X,Y) {0,1}
minimizing communication bits.

F(X,Y)



Equality

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

F(X,Y) = 1 iff  X=Y



Equality

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

F(X,Y) = 1 iff  X=Y

N bits necessary and sufficient:

C(EQ) = N



Quantum Communication 
Complexity

qubits

X = x1 x2 … xN Y = y1 y2 … yN

F(X,Y) = 1 iff  X=Y

Question: Can qubits reduce communication 
for certain F‘s?

F(X,Y)            {0,1}



Qubits Can Reduce Cost

Theorem [B-Cleve-Wigderson‘98]

EQ‘(X,Y) = 1 iff X=Y

Promise D(X,Y) = N/2  or  0

• Need (N) classical bits.

• Can be done with O(log(N)) qubits.

Hamming Distance



Reduction to D-J

X1 X2 …. …. XN

Y1 Y2 …. …. YN

Z1 Z2 …. …. ZN



D(X,Y) = N/2
Z

is balanced

D(X,Y) = 0
Z

is constant



The quantum protocol

Finishes Deutsch-Josza 
Algorithm



Cost

• Alice sends n= log(N)  qubits to Bob

• Bob sends n=  log(N)  qubits to Alice

• Total cost is 2*log(N) 



Classical Lower Bound



Lower Bound

Theorem [Frankl-Rödl‘87]

S,T families of N/2 size sets  {1,…,N}
for all s,t in S,T : |st|  N/4 then:

|S|*|T|  40.96N

*$250 problem of Erdös

*



Lower Bound

Theorem [Frankl-Rödl‘87]

S,T families of N/2 size sets  {1,…,N}
for all s,t in S,T : |st|  N/4 then:

|S|*|T|  40.96N

protocol solving EQ‘ in  N/100 bits

induces S and T satisfying:
|S|*|T|  40.99N



other quantum
algorithms…



Quantum Algorithm

T Black Box queries




k

i

2

1

ai|i 
Prob [output = 1]  = |ai|

2  

all i that
end in 1

 3/2

3/1





Prob [output = 0] = 1 - Prob [output = 1]
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Generalization

U0 U1

O1

UT

OT

…

…

...

…

…

0

0

0

0

0



Grover‘s Algorithm

• Find i such that Xi = 1           

OR(X1,…,XN)

• Classical Probabilistic: N/2 queries

• Quantum: O(N) queries

• No promise!



Non-Disjointness

Goal: exists i such that Xi=1 and Yi=1?

X1 X2 …. …. XN

Y1 Y2 …. …. YN

Z1 Z2 …. …. ZN



Grover



Disjointness

• Bounded Error probabilistic (N) bits
[Kalyanasundaram-Schnitger‘87]

• Grover‘s algorithm + reduction 
O(log(N)*N) qubits [BCW‘98]

O(N) qubits [AA‘04]

 (N) lower bound [Razborov‘03]



Apointment Scheduling

qubits

Quantum: n   qubits communication
Classical:   n    bits    communication



Other Functions 

• Exponential gap [Raz‘99]

– O(log(N)) with qubits,  (N1/4) bits 
classically.

– partial Domain, bounded error

• Exponential gap for other models of 
communication complexity:
– limited rounds, SMP etc.

• Quantum Fingerprinting
• Streaming, Learning Theory…



back to physics



Einstein Podolsky Rosen
paradox



simple quantum circuit

H



simple quantum circuit

H



simple quantum circuit

H



EPR Pair

Alice

Bob

H

Entangled:

Alice

Bob



EPR Pair

Alice

Bob

if Alice measures: 0/1 with prob. ½

if Bob measures: 0/1 with prob. ½



EPR Pair

Alice

Bob

Alice measures: 0
state will collapse!



EPR Pair

Alice

Bob

Alice measures: 0
state will collapse!

Bob‘s state has changed!

he will also measure 0



EPR Pair

Alice

Bob

Alice measures: 1
state will collapse!



EPR Pair

Alice

Bob

Alice measures: 1
state will collapse!

Bob‘s state has changed!

he will also measure 1



1) At time of measurement a random outcome is 
produced
• instantaneous information transfer

2) Outcome was already present at time of 
creation of EPR-pair
• quantum mechanics is incomplete



Einstein: nothing, including information, can 
go faster than the speed of light, hence 

quantum mechanics is incomplete

1935



Communication



Communication?

bits

Can not compress k bits into k-1 bits

|0  

|1

0

+

1
with EPR pairs



Teleportation





Teleportation 

|0  

|1

0

+

1

10 ba 



Teleportation 

1
2

Classical bits:
b1 b2



Teleportation 

1
2

b1 b2

Classical bits:
b1 b2



Teleportation 

1
2

b1 b2

Classical bits:
b1 b2



Teleportation 

1
2

b1 b2

Classical bits:
b1 b2

U

b1 b2



Teleportation 

1

Classical bits:
b1 b2 b1 b2

10 ba 



Alice‘s protocol

H



Alice‘s protocol

H



Alice‘s protocol

H



Alice‘s protocol

H



Alice‘s protocol

H



Bob‘s protocol
Alice with prob. ¼ in 
one of:

Bob

do nothing

bit flip

phase flip

bit flip and 
phase flip





Quantum Communication 
Complexity

Classical bits

X = x1 x2 … xn Y = y1 y2 … yn

Question: Can EPR pairs reduce communication 

for certain F’s?

F(X,Y)            {0,1}

|0  

|1

0

+

1
With EPR pairs

F(X,Y)



Teleportation

• Qubit Model can be simulated by EPR
model.

• Teleport qubit at cost of 2 classical bits 
and 1 EPR pair.

• EPR-pairs can reduce communication cost: 
– use qubit protocol +

– teleportation



Apoinment Scheduling

bits

Quantum: n   bits     communicatie
Classical:   n    bits    communicatie

EPR-pairs



EPR en information

Alice can not send information to Bob,

EPR-pairs

but  she can save information for certain
communication problems



Other Links

• Quantum Communication Complexity

• Better Non-locality experiments
– Resistant to noise

– Resistant to detection loophole

– Optimality of parameters



Entanglement

• Communincation Complexity

• Cryptography

• Essential for quantum speed up
– Unentangled quantum alg. can be 

simulated efficiently

• Quantum interactive games

• Link with Functional Analysis & 
Grothednieck‘s constant



The real world
&

Complexity Theory



real world

P

NP Co-NP

Factorization

Traveling Salesman Problem

Automated

Theorem 

Proving



real world ?

NP Co-NP

Factorization

Traveling Salesman Problem

Automated

Theorem 

Proving

BQP

???

P



real world ?

NP Co-NP

Factorization

Traveling Salesman Problem

Automated

Theorem 

Proving

BQP

P



Quantum Cryptography



Quantum key generation

• Quantum mechanical 
protocol to securely 
generate secret 
―random‖ key 
between Alice and 
Bob.

• Unbreakable in 
combination with 
Vernam cipher

Bennett

Brassard

1984



Quantum Cryptography 
secret key generation

qubits

secret key:
r1…rn

secret key:
r1…rn



Quantum Cryptography 
secret key generation

qubits

secret key:
r1…rn

secret key:
r1…rn



Quantum Cryptography 
secret key generation

qubits

secret key:
r1…rn

secret key:
r1…rn

Eavesdropper has to disturb qubit!

Can be detected by Alice & Bob 



Clavis - PLUG & PLAY QUANTUM CRYPTOGRAPHY

Quantum Key Distribution is a technology that exploits a fundamental principle of 

quantum physics - observation causes perturbation - to exchange cryptographic keys 

over optical fiber networks with absolute security. 



Quantum Crypto

• Impossibility of bit commitment

• Quantum key distribution scheme

• Quantum Coin-flipping

• Quantum string commitment (CWI)

• Quantum Information theory (CWI)
– much richer field than classical 

information theory

• Quantum secure positioning  (CWI)



Recent Developments

• New Algorithms
– Pell‘s equations

– searching/sorting etc.

– Matrix problems

• Limitations to quantum computing

• Applications of quantum computing:
– Physics, foundations of physics

– classical comp. science  & mathematics



Very Recent

• Surprising intrerplay between
– Nonlocality

– Communication complexity

– Approximation algorithms (SDP)

– Functional analysis

• Studying questions about nonlocality 
solve 35 year old problem in Banach 
space theory [Briet,B,Lee,Vidick 09]



Current Challenges

• Implementing more qubits

• New Algorithms

• Better Understanding of power of 
Quantum Computation

• Other Applications

• Quantum Cryptography

• Nonlocality, SDP, Functional Analysis



Quantum Computing FAQ

Q: What can Quantum Information Science do now?

A: Allow the building of prototype quantum communications systems whose 

security against

undetected eavesdropping is guaranteed by fundamental laws of physics.

Q: When will we have full-scale quantum computer?

A: Too early to tell. Maybe 20 years.

Q: What could a quantum computer do?

A1: Enormously speed up some computations, notably factoring, thereby 

making many currently

used codes insecure.

A2: Significantly speed up a much broader class of computations, 

including the traveling salesman problem, allowing them to be done in 

the square root of the number of steps a classical computer

would require.

A3: Allow the efficient simulation of quantum systems, to aid physics 

and chemistry research.

Q: Does a quantum computer speed up all computations equally?

A: No. Some are sped up exponentially, some quadratically, and some 

not at all.

Q: What else can Quantum Information Science do?

A1: Facilitate other tasks involving distributed computing and secrecy.

A2: Contribute to better precision measurements and time standards.

…


