Number Guessing with Lies

Eindhoven Universiteit $\begin{aligned} & \text { Technische } \\ & \text { End } \\ & \text { University of Technology }\end{aligned}$

Tom Verhoeff
Department of Mathematics \& Computer Science Software Engineering \& Technology

www. win.tue.nl/~wstomv/edu/hci

The Game

1. Alice picks a number N in the range 0 through 15 .
2. Bob asks a series of Yes/No questions.
3. Alice answers each question, and may lie once.
4. Bob then tells the number N and which answer was a lie (if any).

How can Bob do this?

Question Q_{1}

Is your number one of these?

1		3	4		6		8		10			13	

Question Q_{2}

Is your number one of these?

1	2			5	6		8			11	12			15

Question Q_{3}

Is your number one of these?

									8	9	10	11	12	13	14

Question Q_{4}

Is your number one of these?

	1	2		4			7		9	10		12		

Question Q_{5}

Is your number one of these?

				4	5	6	7					12	13	14	15

Question Q_{6}

Is your number one of these?

		2	3			6	7			10	11			14	15

Question Q_{7}

Is your number one of these?

	1		3		5		7		9		11		13
	15												

Figuring it out

- Let the answers be $a_{i}(0=$ No; $1=$ Yes) for $i=1, \ldots, 7$
- Compute

$$
\begin{aligned}
& p_{1}=a_{1}+a_{3}+a_{5}+a_{7} \quad(\bmod 2) \\
& p_{2}=a_{2}+a_{3}+a_{6}+a_{7} \quad(\bmod 2) \\
& p_{3}=a_{4}+a_{5}+a_{6}+a_{7} \quad(\bmod 2)
\end{aligned}
$$

- Compute $q=p_{1}+2 p_{2}+4 p_{3}$ (each p_{i} is 0 or 1$)$
- If $q=0$, then there was no lie
- If $q \neq 0$, then answer a_{q} was a lie: flip a_{q} (replace it by $1-a_{q}$)
- Alice' secret number was $N=8 a_{3}+4 a_{5}+2 a_{6}+a_{7}$

How It Works

Q_{3}									8	9	10	11	12	13	14	15
Q_{5}					4	5	6	7					12	13	14	15
Q_{6}		2	3			6	7			10	11			14	15	
Q_{7}	1		3		5		7		9		11		13		15	
Q_{1}	1		3	4		6		8		10			13		15	
Q_{2}	1	2			5	6		8			11	12			15	
Q_{4}	1	2		4			7		9	10		12			15	

Questions Q_{3}, Q_{5}, Q_{6}, and Q_{7} do a Binary Search; works without lie.
The three other questions help detect a single lie:

$$
\begin{array}{cccccccc}
\cdot & Q_{1} & \cdot & Q_{3} & \cdot & Q_{5} & \cdot & Q_{7} \\
\cdot & \cdot & Q_{2} & Q_{3} & \cdot & \cdot & Q_{6} & Q_{7} \\
\cdot & \cdot & \cdot & \cdot & Q_{4} & Q_{5} & Q_{6} & Q_{7}
\end{array}
$$

There are $8=2^{3}$ possibilities: no lie, or 7 possible lies.

Error-Correcting Hamming(7,4) Code

Less efficient solution repeats questions $Q_{3}, Q_{5}, Q_{6}, Q_{7}$ three times.
We used a Hamming $(7,4)$ code .

It has 4 data bits, 3 parity/check bits, and can correct one bit error.

The 4 data bits encode a value from 0 through 15.

Each question corresponds to the transmission of a bit.

A lie corresponds to a bit error.
Can be generalized to $2^{k}-k-1$ data bits and k parity/check bits.
Variation (for kids): lie every time except once.

