
Chapter 2: Algorithmics

Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich

Slides by Tom Verhoeff, TU Eindhoven

c© 2009–2010, T. Verhoeff @ TUE.NL 1/13 Ch. 2: Algorithmics



Quotation

Perfection is based upon small things,

but perfection itself is no small thing at all.

Michelangelo Buonarroti

c© 2009–2010, T. Verhoeff @ TUE.NL 2/13 Ch. 2: Algorithmics



Algorithmic Cooking

An algorithm provides simple and unambiguous advice on how
to proceed step by step in order to reach a specified goal.

To what extent may one view a cooking recipe as an algorithm?

Ingredients for apricot flan:
3 egg whites
1 pinch of salt
6 tablespoons of hot water

100 g cane sugar
3 egg yolks
1 teaspoon of lemon peel

150 g flour
1/2 teaspoon of baking powder

400 g peeled apricots

Recipe for apricot flan:

1. Put greaseproof paper into a
springform pan!

2. Heat the oven up to 180◦C!

3. Heat up 6 tablespoons of
water!

4. Mix three egg whites with
the hot water and a pinch of
salt, beat them until you get
whipped egg white!

... ...

c© 2009–2010, T. Verhoeff @ TUE.NL 3/13 Ch. 2: Algorithmics



Cooking Recipe

4.6 Mix the content of G for 2 minutes.

Refine this as:

4.6 Mix the content of G for 10 seconds.

4.7 Test whether the content of G is stiff or not.

If the answer is “YES”, then continue with step 5.

If the answer is “NO”, then continue with step 4.6.

NO

4.4

4.5

5

4.6

Is the content
of G stiff?

Mix the content
of G for 10 seconds

YES

Flowchart

c© 2009–2010, T. Verhoeff @ TUE.NL 4/13 Ch. 2: Algorithmics



Computer Algorithms

• Fix a list of fundamental instructions (operations) that a computer

can execute without any doubt.

• Possible (abstract) inputs: (infinitely many) problem instances

• Required output solving the problem

An algorithm for solving a problem (a task) has to ensure that

it works correctly for each possible problem instance.

To work correctly means that, for any input, it finishes its

work in a finite time and produces the correct result.

c© 2009–2010, T. Verhoeff @ TUE.NL 5/13 Ch. 2: Algorithmics



Computer Programs and Programming

A program is a sequence of computer instructions that is represented

in a form understandable by a computer.

1. A program does not need to be a representation of an algorithm.

A program may be a meaningless sequence of computer instruc-

tions.

2. An algorithm need not be written in the form of a program. An

algorithm can also be described in a natural language or in the

language of mathematics. A program must be expressed in a

special formalism of the given programming language.

Programming is the activity of rewriting algorithms into programs.

c© 2009–2010, T. Verhoeff @ TUE.NL 6/13 Ch. 2: Algorithmics



Computer Model

memory

Register(0) Register(1)

Register(2)

Register(3)

Register(4)

Register(5)

Register(6)

1
2

m
:
.

:
.

program
written in rows

execution

instructions

CPU

of

writing/printing

COMPUTERreading

Input values
in the input queue

c© 2009–2010, T. Verhoeff @ TUE.NL 7/13 Ch. 2: Algorithmics



Computer Model (Terminology)

• A memory that consists of a large number of memory cells, called

registers, numbered by positive integers, called addresses of the

registers. Each register can save an arbitrarily large number.

• A special memory in which the whole program is saved. Each line

of the program consists of exactly one instruction of the program.

The lines are numbered starting at 1.

• There is a special register Register(0) that contains the number

of the just executed instruction (line) of the program.

• A CPU (central processing unit) that is connected to all other

parts of the computer, doing all the work.

c© 2009–2010, T. Verhoeff @ TUE.NL 8/13 Ch. 2: Algorithmics



Programming Language ‘TRANSPARENT’, Part 1

(1) Read into Register(n).

(2) Register(n) ← k

(3) Register(n) ← Register(j) + Register(i)

(4) Register(n) ← Register(j) - Register(i)

(5) Register(n) ← Register(j) ∗ Register(i)

(6) Register(n) ← Register(j) / Register(i)

(7) Register(n) ←
√
Register(m)

c© 2009–2010, T. Verhoeff @ TUE.NL 9/13 Ch. 2: Algorithmics



Programming Language ‘TRANSPARENT’, Part 2

(8) If Register(n) = 0, then go to row j

(9) If Register(n) ≤ Register(m), then go to row j

(10) Go to row j

(11) Output ← Register(j)

(12) Output ← “Text”

(13) End.

(14) Register(Register(i)) ← Register(j)

c© 2009–2010, T. Verhoeff @ TUE.NL 10/13 Ch. 2: Algorithmics



Never-Ending Execution

One of our most important demands on the definition of an algorithm

for a computing task is that the algorithm finishes its work for any

input and provides a result.

In the formal language of computer science, we speak about halting.

If an algorithm A finishes its work on an input (a problem instance)

in a finite time, then we say that algorithm A halts on x.

In this terminology, we force a halt of the algorithm on every possible

input and in such a case we say that A always halts.

A program can engage in never-ending execution.

c© 2009–2010, T. Verhoeff @ TUE.NL 11/13 Ch. 2: Algorithmics



Example

Read into Register(1)

Read into Register(2)
Register(3) ← −1

Register(1)= 0

NOYES

Register(1) ← Register(1)+ Register(3)

Register(4) ← Register(4)+ Register(2)

Output ← Register(4)

End

What does this program compute? What if Register(1) starts < 0?

c© 2009–2010, T. Verhoeff @ TUE.NL 12/13 Ch. 2: Algorithmics



Summary

• One has to be able to apply an algorithm even if one is not an
expert in solving the considered problem. One does not need
to understand why the algorithm provides the solution of the
problem. It suffices to be able to execute the simple activities the
algorithm consists of.

• Defining the notion of an algorithm, one has to list all such simple
activities and everybody has to agree that all these activities are
executable by a machine.

• An algorithm is designed not only to solve a problem instance, but
it must be applicable to solving all possible instances of a given
problem.

• We require a guarantee that an algorithm for a problem success-
fully finds a solution for each problem instance.

c© 2009–2010, T. Verhoeff @ TUE.NL 13/13 Ch. 2: Algorithmics


