

Problem(c) Not All Problem(c) Are Algorithmically Solvable For real number c. **Problem**(c) is defined by Because $|\mathbb{R}| > |\mathbb{N}|$, there are more algorithmic tasks than algorithms^{*}: There exist $c \in \mathbb{R}$ such that Problem(c) is not algorithmically solvable Input: a natural number $n \in \mathbb{N}$ **Output:** the number c up to n decimal digits Real numbers having a finite representation are exactly the numbers after the decimal point that can be algorithmically generated Algorithm A_c solves Problem(c) when There exist real numbers that do not possess a finite representation and so are not computable (algorithmically generable) for any given $n \in \mathbb{N}$, A_c outputs all digits of c before the decimal point and the first n digits of c after the decimal point For these unsolvable problems, c is not explicitly specifiable N.B. c is not an input of the problem, but a 'built-in' constant Are there other (more interesting) algorithmically unsolvable tasks? E.g., $A_{\sqrt{2}}$ with input n = 5 must output 1.41421 *Note that no algorithm can solve more than one Problem(c)© 2009-2010, T. Verhoeff @ TUE.NL 5/20 Ch. 4: Computability © 2009-2010, T. Verhoeff @ TUE.NL 6/20 Ch. 4: Computability

Decision Problem (\mathbb{N}, M)

For $M \subseteq \mathbb{N}$, decision problem (\mathbb{N}, M) is defined by

Example: for *primality testing* take $M := \{2, 3, 5, 7, 11, 13, 17, 19, ...\}$

Algorithm A solves decision problem (\mathbb{N}, M) when

for any given $n \in \mathbb{N}$, A outputs YES if $n \in M$ and NO if $n \notin M$

 (\mathbb{N},M) is called **decidable** when there exists an algorithm to solve it, and **undecidable** if no such algorithm exists

© 2009–2010, T. Verhoeff @ TUE.NL 7/20

Ch. 4: Computability

Not All Problems (\mathbb{N}, M) Are Decidable

Because $|\mathcal{P}(\mathbb{N})| > |\mathbb{N}|$, there are more problems (\mathbb{N}, M) than algorithms

There exist $M \subseteq \mathbb{N}$ such that (\mathbb{N}, M) is undecidable

Define set $DIAG = \{i \in \mathbb{N} \mid \text{program } P_i \text{ does } not \text{ output } YES \text{ on input } i\}$

N.B. Each way of enumerating all programs, gives rise to its own set DIAG

Problem $(\mathbb{N}, DIAG)$ is undecidable, because

no program P_i implements an algorithm A that solves (\mathbb{N} , DIAG):

 $\begin{array}{l} A \text{ outputs YES on input } i \\ \Rightarrow \qquad [\text{ by definition of "A solves } (\mathbb{N}, DIAG)"] \\ i \in DIAG \\ \Rightarrow \qquad [\text{ by definition of } DIAG] \end{array}$

 P_i does not output YES on input i

Comparing Problems for Algorithmic Solvability

By definition, the following statements are equivalent:

- Problem U_1 is easier than or as hard as problem U_2
- Problem U_1 is no harder than problem U_2
- $U_1 \leq_{\mathsf{Alg}} U_2$
- Algorithmic solvability of U_2 implies algorithmic solvability of U_1 (Note the order of U_2 and U_1 here)
- It is *not* the case that:

 U_2 is algorithmically solvable and U_1 is not algorithmically solvable

©	2009-2010,	Т.	Verhoeff	0	TUE.NL	9/20
---	------------	----	----------	---	--------	------

Ch. 4: Computability

How to Prove $U_1 \leq_{Alg} U_2$? Question Can you prove $U_1 \leq_{Alg} U_2$ without knowing about the algorithmic solvability of U_1 and U_2 ? Answer Yes, via problem reduction : Reduce algorithmic solvability of U_1 to that of U_2 Provide a solution for U_1 in terms of a hypothetic solution for U_2 U_1 can be algorithmically reduced to $U_2 \Rightarrow U_1 \leq_{Alg} U_2$ N.B. The converse implication does not necessarily hold It is not necessary to know whether U_2 is solvable, and if U_2 is solvable, it is not necessary to know how to solve U_2

Examples for Proving $U_1 \leq_{Alg} U_2$ by Algorithmic Reduction Example 1 U_1 : ? $_x$: $a \neq 0$: $ax^2 + bx + c = 0$ U_2 : ? $_x$:: $x^2 + 2px + q = 0$ Solve U_1 by taking $p, q := \frac{b}{2a}, \frac{c}{a}$ in an algorithm for U_2 , if it exists Thus, $U_1 \leq_{Alg} U_2$ N.B. Also $U_2 \leq_{Alg} U_1$, by reduction a, b, c := 1, 2p, qExample 2 U_1 : ? $_x$: $a_5 \neq 0$: $\sum_{i=0}^5 a_i x^i = 0$ (5-th degree equation) U_2 : ? $_x$: $b_6 \neq 0$: $\sum_{i=0}^6 b_i x^i = 0$ (6-th degree equation) Solve U_1 by taking $b_i := a_{i-1} - a_i$ with $a_6 = a_{-1} = 0$ in an algorithm for U_2 and dropping result x = 1: $(x-1) \sum_{i=0}^5 a_i x^i = \sum_{i=0}^6 (a_{i-1} - a_i) x^i$ Thus, $U_1 \leq_{Alg} U_2$ (N.B. Also $U_2 \leq_{Alg} U_1$, but not by reduction)

© 2009-2010, T. Verhoeff @ TUE.NL 11/20

Diagram for Problem Reduction a, b, c with $a \neq 0$ algorithm C $p := \frac{b}{a}$ А for solving general $q := \frac{c}{a}$ reduction quadratic equations \dot{p} à $ax^2 + bx + c = 0$ Solve the quadratic equation В $x^2 + px + q = 0$ by applying the *p-q*-formula (x_1, x_2) or "no solution" © 2009-2010, T. Verhoeff @ TUE.NL 12/20 Ch. 4: Computability How to Use $U_1 \leq_{\text{Alg}} U_2$?

Assumption We know $U_1 \leq_{Alg} U_2$ i.e. solvability of problem U_2 implies solvability of problem U_1

Question How can we use that knowledge?

Answer In two ways:

- 1. If you solve problem U_2 , then you know that U_1 is solvable as well But you do not necessarily then also know *how* to solve U_1 If you have a *reduction* of U_1 to U_2 , you do know how to solve U_1
- 2. If you know U_1 is *not* solvable, then you know the same about U_2

© 2009-2010, T. Verhoeff @ TUE.NL 13/20

Ch. 4: Computability

Properties of \leq_{Alg}

Relation \leq_{Alg} is transitive :

 $U_1 \leq_{\mathsf{Alg}} U_2 \leq_{\mathsf{Alg}} U_3 \ \Rightarrow \ U_1 \leq_{\mathsf{Alg}} U_3$

Solvability propagates from right to left across a chain of the form

 $U_1 \leq_{\mathsf{Alg}} U_2 \leq_{\mathsf{Alg}} U_3$

Unsolvability propagates from *left to right* across the chain

Algorithmic reducibility is also transitive:

If you can reduce U_1 to U_2 and you can reduce U_2 to $U_3,$ then you can reduce U_1 to U_3

© 2009-2010, T. Verhoeff @ TUE.NL 15/20

Ch. 4: Computability

1. We know $?_x : a \neq 0 : ax^2 + bx + c = 0 \leq_{Alg} ?_x :: x^2 + 2px + q = 0$ The second problem is solvable: $x = -p \pm \sqrt{p^2 - q}$ when $p^2 - q \ge 0$ Hence, first problem is solvable: $x = \frac{-b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 2. We know $?_x : a_5 \neq 0 : \sum_{i=0}^5 a_i x^i = 0 \leq_{Alg} ?_x : b_6 \neq 0 : \sum_{i=0}^6 b_i x^i = 0$ The first problem is *not* solvable in radicals* (Abel, 1824) Hence, the second problem is *not* solvable in radicals Note that the reductions were also 'in radicals' *'In radicals' means 'by using $+, -, \times, /$, and $\sqrt{$ only'

Examples for Using $U_1 \leq_{Alg} U_2$

© 2009-2010, T. Verhoeff @ TUE.NL 14/20

Ch. 4: Computability

Problems UNIV and HALT

More interesting problems:

UNIV (the universal problem)

Input: a program *P* and a natural number $i \in \mathbb{N}$ **Output:** YES, if *P* outputs YES on input *i*

NO, if P outputs NO or does not halt on input i

HALT (the halting problem)

Input:a program P and a natural number $i \in \mathbb{N}$ Output:YES, if P halts on input iNO, if P does not halt on input i

N.B. Simulation of P will not work, because it need not terminate

© 2009-2010, T. Verhoeff @ TUE.NL 16/20

Ch. 4: Computability

