
Chapter 4: Computability

Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich

Slides by Tom Verhoeff, TU Eindhoven

c� 2009–2010, T. Verhoeff @ TUE.NL 1/20 Ch. 4: Computability

Quotation

Discuss, commit errors, make mistakes,

but for God’s sake think –

even if you should be wrong –

but think your own thoughts.

Gotthold Ephraim Lessing

c� 2009–2010, T. Verhoeff @ TUE.NL 2/20 Ch. 4: Computability

How Large Is the Set of All Texts?

There are infinitely many texts, but what kind of infinity?

A text is a sequence of symbols from an enumerable alphabet A

(often: from a finite alphabet, cf. ASCII keyboard)

Each text can be encoded in a tuple of natural numbers,

by representing each symbol of A by a unique natural number

Juraj & Tom → (74, 117, 72, 97, 106, 32, 38, 32, 84, 111, 109)

The number of all texts over A is equal to |N∗| = |N| (Ch. 3)

c� 2009–2010, T. Verhoeff @ TUE.NL 3/20 Ch. 4: Computability

How Large Is the Set of All Programs?

Every program is a text over some suitable enumerable alphabet A

Not every text over A is program: it must be syntactically correct
according to the rules of the programming language

A compiler checks the syntactical correctness of a text as a program

(but not semantical correctness: whether the text is an algorithm)

Construct an enumeration
∗

of all programs from an enumeration of

all texts over A by deleting all texts that are not syntactically correct:

P0, P1, P2, . . . , Pi, . . .

where Pi denotes the i-th program

Every algorithm
†
appears in the sequence, not every Pi is an algorithm

∗
Each programming language gives rise to its own enumeration

†
Provided the programming language is sufficiently expressive

c� 2009–2010, T. Verhoeff @ TUE.NL 4/20 Ch. 4: Computability

Problem(c)

For real number c, Problem(c) is defined by

Input: a natural number n ∈ N
Output: the number c up to n decimal digits

after the decimal point

Algorithm Ac solves Problem(c) when

for any given n ∈ N, Ac outputs all digits of c before the decimal

point and the first n digits of c after the decimal point

N.B. c is not an input of the problem, but a ‘built-in’ constant

E.g., A√
2

with input n = 5 must output 1.41421

c� 2009–2010, T. Verhoeff @ TUE.NL 5/20 Ch. 4: Computability

Not All Problem(c) Are Algorithmically Solvable

Because |R| > |N|, there are more algorithmic tasks than algorithms
∗
:

There exist c ∈ R such that Problem(c) is not algorithmically solvable

Real numbers having a finite representation are exactly the numbers

that can be algorithmically generated

There exist real numbers that do not possess a finite representation

and so are not computable (algorithmically generable)

For these unsolvable problems, c is not explicitly specifiable

Are there other (more interesting) algorithmically unsolvable tasks?

∗
Note that no algorithm can solve more than one Problem(c)

c� 2009–2010, T. Verhoeff @ TUE.NL 6/20 Ch. 4: Computability

Decision Problem (N, M)

For M ⊆ N, decision problem (N, M) is defined by

Input: a natural number n ∈ N
Output: YES if n ∈ M

NO if n �∈ M

Example: for primality testing take M := {2,3,5,7,11,13,17,19, . . . }

Algorithm A solves decision problem (N, M) when

for any given n ∈ N, A outputs YES if n ∈ M and NO if n �∈ M

(N, M) is called decidable when there exists an algorithm to solve it,

and undecidable if no such algorithm exists

c� 2009–2010, T. Verhoeff @ TUE.NL 7/20 Ch. 4: Computability

Not All Problems (N, M) Are Decidable

Because |P(N)| > |N|, there are more problems (N, M) than algorithms

There exist M ⊆ N such that (N, M) is undecidable

Define set DIAG = { i ∈ N | program Pi does not output YES on input i }

N.B. Each way of enumerating all programs, gives rise to its own set DIAG

Problem (N, DIAG) is undecidable , because

no program Pi implements an algorithm A that solves (N, DIAG):

A outputs YES on input i
⇒ [by definition of “A solves (N, DIAG)”]

i ∈ DIAG
⇒ [by definition of DIAG]

Pi does not output YES on input i

c� 2009–2010, T. Verhoeff @ TUE.NL 8/20 Ch. 4: Computability

Comparing Problems for Algorithmic Solvability

By definition, the following statements are equivalent:

• Problem U1 is easier than or as hard as problem U2

• Problem U1 is no harder than problem U2

• U1 ≤Alg U2

• Algorithmic solvability of U2 implies algorithmic solvability of U1

(Note the order of U2 and U1 here)

• It is not the case that:

U2 is algorithmically solvable and U1 is not algorithmically solvable

c� 2009–2010, T. Verhoeff @ TUE.NL 9/20 Ch. 4: Computability

How to Prove U1 ≤Alg U2?

Question Can you prove U1 ≤Alg U2 without knowing about the

algorithmic solvability of U1 and U2?

Answer Yes, via problem reduction :

Reduce algorithmic solvability of U1 to that of U2

Provide a solution for U1 in terms of a hypothetic solution for U2

U1 can be algorithmically reduced to U2 ⇒ U1 ≤Alg U2

N.B. The converse implication does not necessarily hold

It is not necessary to know whether U2 is solvable, and

if U2 is solvable, it is not necessary to know how to solve U2

c� 2009–2010, T. Verhoeff @ TUE.NL 10/20 Ch. 4: Computability

Examples for Proving U1 ≤Alg U2 by Algorithmic Reduction

Example 1 U1 : ?x : a �= 0 : ax2
+ bx + c = 0

U2 : ?x :: x2
+ 2px + q = 0

Solve U1 by taking p, q :=
b
2a, c

a in an algorithm for U2, if it exists

Thus, U1 ≤Alg U2 N.B. Also U2 ≤Alg U1, by reduction a, b, c := 1,2p, q

Example 2 U1: ?x : a5 �= 0 :
�

5
i=0

aix
i
= 0 (5-th degree equation)

U2: ?x : b6 �= 0 :
�

6
i=0

bix
i
= 0 (6-th degree equation)

Solve U1 by taking bi := ai−1 − ai with a6 = a−1 = 0 in an algorithm

for U2 and dropping result x = 1: (x−1)
�

5
i=0

aix
i
=

�
6
i=0

(ai−1−ai)x
i

Thus, U1 ≤Alg U2 (N.B. Also U2 ≤Alg U1, but not by reduction)

c� 2009–2010, T. Verhoeff @ TUE.NL 11/20 Ch. 4: Computability

Diagram for Problem Reduction

algorithm C
for solving
general
quadratic
equations
ax2 + bx + c = 0

Solve the quadratic
equation

by applying the

p := b
a

q := c
a

A

reduction

B

a, b, c with a �= 0

p q

x2 + px + q = 0

(x1, x2) or “no solution”

p-q-formula

c� 2009–2010, T. Verhoeff @ TUE.NL 12/20 Ch. 4: Computability

How to Use U1 ≤Alg U2?

Assumption We know U1 ≤Alg U2

i.e. solvability of problem U2 implies solvability of problem U1

Question How can we use that knowledge?

Answer In two ways:

1. If you solve problem U2, then you know that U1 is solvable as well

But you do not necessarily then also know how to solve U1

If you have a reduction of U1 to U2, you do know how to solve U1

2. If you know U1 is not solvable, then you know the same about U2

c� 2009–2010, T. Verhoeff @ TUE.NL 13/20 Ch. 4: Computability

Examples for Using U1 ≤Alg U2

1. We know ?x : a �= 0 : ax2
+ bx + c = 0 ≤Alg ?x :: x2

+ 2px + q = 0

The second problem is solvable: x = −p±
�

p2 − q when p2− q ≥ 0

Hence, first problem is solvable: x =
−b
2a±

��
b
2a

�
2
− c

a =
−b±

√
b2−4ac

2a

2. We know ?x : a5 �= 0 :
�

5
i=0

aix
i
= 0 ≤Alg ?x : b6 �= 0 :

�
6
i=0

bix
i
= 0

The first problem is not solvable in radicals
∗

(Abel, 1824)

Hence, the second problem is not solvable in radicals

Note that the reductions were also ‘in radicals’

∗
‘In radicals’ means ‘by using +, −, ×, /, and

√
only’

c� 2009–2010, T. Verhoeff @ TUE.NL 14/20 Ch. 4: Computability

Properties of ≤Alg

Relation ≤Alg is transitive :

U1 ≤Alg U2 ≤Alg U3 ⇒ U1 ≤Alg U3

Solvability propagates from right to left across a chain of the form

U1 ≤Alg U2 ≤Alg U3

Unsolvability propagates from left to right across the chain

Algorithmic reducibility is also transitive:

If you can reduce U1 to U2 and you can reduce U2 to U3,

then you can reduce U1 to U3

c� 2009–2010, T. Verhoeff @ TUE.NL 15/20 Ch. 4: Computability

Problems UNIV and HALT

More interesting problems:

UNIV (the universal problem)

Input: a program P and a natural number i ∈ N
Output: YES, if P outputs YES on input i

NO, if P outputs NO or does not halt on input i

HALT (the halting problem)

Input: a program P and a natural number i ∈ N
Output: YES, if P halts on input i

NO, if P does not halt on input i

N.B. Simulation of P will not work, because it need not terminate

c� 2009–2010, T. Verhoeff @ TUE.NL 16/20 Ch. 4: Computability

UNIV ≤Alg HALT by Reduction

algorithm B

B

decides

algorithm that

decides the

halting problem

AHALT

UNIV

simulates the finite

computation of

P on i
S

P i

YES

P i

i P
NO

P answers

NO for i
P answers

YES for i

NO YES

c� 2009–2010, T. Verhoeff @ TUE.NL 17/20 Ch. 4: Computability

HALT ≤Alg UNIV by Reduction

that decides,

D

algorithm

whether P
halts on i

P i

NOYES

Modify P into P �

in such a way, that

P never answers

NO by exchanging

all occurences of

NO for YES

C

AUNIV

iP �

AUNIV decides

whether i is in

M(P �
) or not

YES NO

c� 2009–2010, T. Verhoeff @ TUE.NL 18/20 Ch. 4: Computability

(N, DIAG) ≤Alg UNIV by Reduction

and only if

ADIAG

accepts i if

the ith

Pi does not

i

NOYES

AUNIV
accept i

AUNIV decides whether

i belongs to M(Pi) or not

YES NO

Agen
Agen generates the ith

program Pi

i

i Pi

YES NO

program

Agen

Generate the subsequent text

of TEXT and save it into TEXT

Read i into I

K ← 0

TEXT ← “λ”

END

YES

NO

output TEXT

NO K
?
= I

K ← K + 1

Is TEXT a

program? The answer is given

by a compiler.

Conclusion: UNIV and HALT are also not solvable by an algorithm

c� 2009–2010, T. Verhoeff @ TUE.NL 19/20 Ch. 4: Computability

Summary

• There exist tasks that cannot be automatically solved.

• This claim is true independent of computer technologies.

• Algorithmic reductions help to compare problems for solvability.

• Among the algorithmically unsolvable problems, one can find:

– Is a program correct?

– Does a program avoid endless computations?

• Syntactic tasks, usually related to the correct representation of

a program, are algorithmically solvable.

• Semantic questions, related to the meaning of a program, are

not algorithmically solvable, unless trivial.

c� 2009–2010, T. Verhoeff @ TUE.NL 20/20 Ch. 4: Computability

