Algorithmic Adventures

From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich Slides by Tom Verhoeff, TU Eindhoven

There are infinitely many texts, but what kind of infinity?

A text is a sequence of symbols from an enumerable alphabet A (often: from a finite alphabet, cf. ASCII keyboard)

Each text can be encoded in a tuple of natural numbers,
by representing each symbol of A by a unique natural number

Juraj \& Tom $\rightarrow(74,117,72,97,106,32,38,32,84,111,109)$

The number of all texts over A is equal to $\left|\mathbb{N}^{*}\right|=|\mathbb{N}| \quad$ (Ch. 3)

How Large Is the Set of All Programs?

Every program is a text over some suitable enumerable alphabet A Not every text over A is program: it must be syntactically correct according to the rules of the programming language

A compiler checks the syntactical correctness of a text as a program (but not semantical correctness: whether the text is an algorithm)

Construct an enumeration* of all programs from an enumeration of all texts over A by deleting all texts that are not syntactically correct:

$$
P_{0}, P_{1}, P_{2}, \ldots, P_{i}, \ldots
$$

where P_{i} denotes the i-th program
Every algorithm ${ }^{\dagger}$ appears in the sequence, not every P_{i} is an algorithm
*Each programming language gives rise to its own enumeration
${ }^{\dagger}$ Provided the programming language is sufficiently expressive

For real number c, $\operatorname{Problem}(c)$ is defined by

Input: a natural number $n \in \mathbb{N}$
Output: the number c up to n decimal digits after the decimal point

Algorithm A_{c} solves Problem(c) when
for any given $n \in \mathbb{N}, A_{c}$ outputs all digits of c before the decimal point and the first n digits of c after the decimal point
N.B. c is not an input of the problem, but a 'built-in' constant
E.g., $A_{\sqrt{2}}$ with input $n=5$ must output 1.41421
© 2009-2010, T. Verhoeff @ TUE.NL
5/20
Ch. 4: Computability

Because $|\mathbb{R}|>|\mathbb{N}|$, there are more algorithmic tasks than algorithms*
There exist $c \in \mathbb{R}$ such that Problem (c) is not algorithmically solvable
Real numbers having a finite representation are exactly the numbers that can be algorithmically generated

There exist real numbers that do not possess a finite representation and so are not computable (algorithmically generable)

For these unsolvable problems, c is not explicitly specifiable
Are there other (more interesting) algorithmically unsolvable tasks?
*Note that no algorithm can solve more than one Problem (c)
© 2009-2010, T. Verhoeff @ TUE.NL
6/20
Ch. 4: Computability

Not All Problems (\mathbb{N}, M) Are Decidable

Because $|\mathcal{P}(\mathbb{N})|>|\mathbb{N}|$, there are more problems (\mathbb{N}, M) than algorithms There exist $M \subseteq \mathbb{N}$ such that (\mathbb{N}, M) is undecidable

Define set DIAG $=\left\{i \in \mathbb{N} \mid\right.$ program P_{i} does not output YES on input $\left.i\right\}$
N.B. Each way of enumerating all programs, gives rise to its own set DIAG

Problem ($\mathbb{N}, D I A G$) is undecidable, because
no program P_{i} implements an algorithm A that solves (\mathbb{N}, DIAG):
A outputs YES on input i
$\Rightarrow \quad$ [by definition of "A solves $(\mathbb{N}$, DIAG $)$ "] $i \in$ DIAG
$\Rightarrow \quad$ [by definition of $D I A G$] P_{i} does not output yes on input i and undecidable if no such algorithm exists

By definition, the following statements are equivalent:

- Problem U_{1} is easier than or as hard as problem U_{2}
- Problem U_{1} is no harder than problem U_{2}
- $U_{1} \leq$ Alg U_{2}
- Algorithmic solvability of U_{2} implies algorithmic solvability of U_{1} (Note the order of U_{2} and U_{1} here)
- It is not the case that:
U_{2} is algorithmically solvable and U_{1} is not algorithmically solvable
© 2009-2010, T. Verhoeff © TUE.NL
9/20
Ch. 4: Computability

How to Prove $U_{1} \leq_{\mathbf{A l g}} U_{2}$?

Question Can you prove $U_{1} \leq \leq_{\text {Alg }} U_{2}$ without knowing about the algorithmic solvability of U_{1} and U_{2} ?

Answer Yes, via problem reduction:
Reduce algorithmic solvability of U_{1} to that of U_{2}

Provide a solution for U_{1} in terms of a hypothetic solution for U_{2}
U_{1} can be algorithmically reduced to $U_{2} \Rightarrow U_{1} \leq$ Alg U_{2}
N.B. The converse implication does not necessarily hold

It is not necessary to know whether U_{2} is solvable, and if U_{2} is solvable, it is not necessary to know how to solve U_{2}
© 2009-2010, T. Verhoeff @ TUE.NL
10/20
Ch. 4: Computability

Examples for Proving $U_{1} \leq$ Alg U_{2} by Algorithmic Reduction

Example $1 \quad U_{1}: ?_{x}: a \neq 0: a x^{2}+b x+c=0$ $U_{2}: ?_{x}:: x^{2}+2 p x+q=0$

Solve U_{1} by taking $p, q:=\frac{b}{2 a}, \frac{c}{a}$ in an algorithm for U_{2}, if it exists Thus, $U_{1} \leq_{\text {Alg }} U_{2}$ N.B. Also $U_{2} \leq_{\text {Alg }} U_{1}$, by reduction $a, b, c:=1,2 p, q$

Example $2 U_{1}: ?_{x}: a_{5} \neq 0: \sum_{i=0}^{5} a_{i} x^{i}=0$ (5-th degree equation) $U_{2}: ?_{x}: b_{6} \neq 0: \sum_{i=0}^{6} b_{i} x^{i}=0$ (6-th degree equation)

Solve U_{1} by taking $b_{i}:=a_{i-1}-a_{i}$ with $a_{6}=a_{-1}=0$ in an algorithm for U_{2} and dropping result $x=1:(x-1) \sum_{i=0}^{5} a_{i} x^{i}=\sum_{i=0}^{6}\left(a_{i-1}-a_{i}\right) x^{i}$ Thus, $U_{1} \leq_{\text {Alg }} U_{2} \quad$ (N.B. Also $U_{2} \leq_{\text {Alg }} U_{1}$, but not by reduction)
© 2009-2010, T. Verhoeff © TUE.NL
11/20
Ch. 4: Computability

Diagram for Problem Reduction

Assumption We know $U_{1} \leq$ Alg U_{2}
i.e. solvability of problem U_{2} implies solvability of problem U_{1}

Question How can we use that knowledge?

Answer In two ways:

1. If you solve problem U_{2}, then you know that U_{1} is solvable as well But you do not necessarily then also know how to solve U_{1} If you have a reduction of U_{1} to U_{2}, you do know how to solve U_{1}
2. If you know U_{1} is not solvable, then you know the same about U_{2}
© 2009-2010, T. Verhoeff © TUE.NL
13/20
Ch. 4: Computability
3. We know $?_{x}: a \neq 0: a x^{2}+b x+c=0 \leq$ Alg $?_{x}:: x^{2}+2 p x+q=0$

The second problem is solvable: $x=-p \pm \sqrt{p^{2}-q}$ when $p^{2}-q \geq 0$
Hence, first problem is solvable: $x=\frac{-b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
2. We know $?_{x}: a_{5} \neq 0: \sum_{i=0}^{5} a_{i} x^{i}=0 \leq_{\text {Alg }} ?_{x}: b_{6} \neq 0: \sum_{i=0}^{6} b_{i} x^{i}=0$

The first problem is not solvable in radicals* (Abel, 1824)
Hence, the second problem is not solvable in radicals
Note that the reductions were also 'in radicals'
*'In radicals' means 'by using,,$+- \times, /$, and $\sqrt{ }$ only'
© 2009-2010, T. Verhoeff @ TUE.NL 14/20
Ch. 4: Computability

Problems UNIV and HALT

More interesting problems:

UNIV (the universal problem)

Input: a program P and a natural number $i \in \mathbb{N}$
Output: YES, if P outputs YES on input i
no, if P outputs no or does not halt on input i

HALT (the halting problem)

Input:
a program P and a natural number $i \in \mathbb{N}$

Output: YES, if P halts on input i
No, if P does not halt on input i
N.B. Simulation of P will not work, because it need not terminate
© 2009-2010, T. Verhoeff @ TUE.NL 16/20
Ch. 4: Computability

c 2009-2010, T. Verhoeff @ TUE.NL
17/20

HALT \leq AIg UNIV by Reduction

© 2009-2010, T. Verhoeff @ TUE.NL
18/20 Ch. 4: Computability

Summary

- There exist tasks that cannot be automatically solved.
- This claim is true independent of computer technologies.
- Algorithmic reductions help to compare problems for solvability.
- Among the algorithmically unsolvable problems, one can find:
- Is a program correct?
- Does a program avoid endless computations?
- Syntactic tasks, usually related to the correct representation of a program, are algorithmically solvable.
- Semantic questions, related to the meaning of a program, are not algorithmically solvable, unless trivial.

[^0]Ch. 4: Computability

[^0]: c 2009-2010, T. Verhoeff @ TUE.NL
 20/20

