Chapter 5: Hard Problems

Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovic, ETH Zurich
Slides by Tom Verhoeff, TU Eindhoven

© 2009, T. Verhoeff @ TUE.NL 1/20 Ch. 5: Hard Problems

Quotation

There is no greater loss than time which has been wasted

Michelangelo Buonarroti

© 2009, T. Verhoeff @ TUE.NL 2/20 Ch. 5: Hard Problems

Undecidability Is Not Rare

e Decide* whether a Game of Life configuration stabilizes e
]

e Decide whether a set of Wang tiles can tile the plane

I D4 L X K DX
) £X0 (X X | X1 X

Decide whether a Diophantine equation (multivariable polyno-
mial equation, like a3 + b3 = ¢3) has a solution in integers

Decide whether a program has a specific non-trivial property, like
whether it always halts, always outputs 0, ... [cf. Rice's Theorem]

*In each case, the algorithm needs to work for all possible inputs (shown in yellow).
All these decision problems turn out to involve a universal mechanism.

© 2009, T. Verhoeff @ TUE.NL 3/20 Ch. 5: Hard Problems

Some Algorithms Are Very Inefficient

For some algorithmically solvable problems, our algorithmic solutions
turn out to be very slow

Slow algorithms are practical/y unusable:

O L 7z E——\|
[E— N 2

2
. £ s lmzm oS]
e Packing puzzles rlll +II §. -
5
6

|— O\ 7777 mm—)
2277 I time
[10 20 30 40 50 60

e Scheduling jobs on machines

‘Dmlﬂ Djob2 @job3 Mjob4 Mjob5 Imbﬁ‘

e Traveling Salesman Problem (TSP): find shortest tour visiting

each town in a given set, given their distances /N
/\ W
\\
How can we investigate this phenomenon? 7 \
SN

How can we overcome this limitation?

© 2009, T. Verhoeff @ TUE.NL 4/20 Ch. 5: Hard Problems

Algorithmic Complexity

The time complexity of algorithm A on input I:

number of instructions performed in computation of A on I

The space complexity of algorithm A on input I:

amount of memory used in computation of A on I

Complexity varies with size of the input (amount of input data)

The time complexity of algorithm A as function of input size:

Time 4(n) = worst-case number of instructions performed in
computation of A on any input of size n

© 2009, T. Verhoeff @ TUE.NL

5/20 Ch. 5: Hard Problems

Asymptotic Algorithmic Time Complexity

The function Timey(n) also depends on details of the programming
language and implementation of the algorithm as program

Definition Function f(n) > 0is O (g(n)) (‘'f is big oh of g') when
f(n) < C-g(n) for some constant C and all sufficiently large n
Example: 10n2 4+ 7n+20is O (nz) but not O (n) and not O (logn)

The asymptotic time complexity of algorithm A is f(n):
Times(n) is O(f(n)) and f(n) is O (Timey(n))
The asymptotic complexity is robust, independent of implementation

Complexity classes: Constant, Logarithmic, Linear, Linearithmic
O (n-logn), Quadratic, Cubic, ..., Polynomial, Exponential, ...

© 2009, T. Verhoeff @ TUE.NL 6/20 Ch. 5: Hard Problems

Asymptotic Time Complexity Examples

What Is the Limit of Practical Solvability?

Complexity | Name Example*

0 (1) Constant Determine whether n-bit number is even
O (logn) Logarithmic | Find item in sorted list by Binary Search

O (n) Linear Find item in list by Linear Search

O (nlogn) | Linearithmic | Sort list by Merge Sort
O (n2> Quadratic Sort list by Bubble Sort
(@) (nk> Polynomial Determine whether n-bit number is prime
O (2™) Exponential | Solve TSP by Dynamic Programming
O (n!) Factorial Solve TSP by Brute Force Search

*The input is a list of n elements (possibly bits)

© 2009, T. Verhoeff @ TUE.NL

7/20 Ch. 5: Hard Problems

n 10 50 100 300
f(n)
10n 100 500 1000 3000
2n2 200 5000 20000 180000
n3 1000 125000 1 000000 27 000 000
2mn 1024 16 digits 31 digits 91 digits
n! | ~3.6-10° 65 digits 158 digits 615 digits

A problem is called tractable when it can be solved by a polynomial
algorithm (asymptotic time complexity is O (nk> for some constant k)

P denotes the class of all polynomial decisions problems

© 2009, T. Verhoeff @ TUE.NL 8/20 Ch. 5: Hard Problems

How Much More Can You Do on a 2x Faster Machine?

Assume n = 100 takes 1 hour on machine A.
How much further do you get on a 2x faster machine B in 1 hour?

Time n on A|n on B | More on B | Factor

Logaritmic | Cilogon 100 10000 9900 100
Linear Con 100 200 100 2

Linearitmic | C3nlogon 100 178 78 1.78
Quadratic Cyqn? 100 141 41 1.41
Cubic Csn3 100 126 26 1.26
Exponential Cg2" 100 101 1 1.01

© 2009, T. Verhoeff @ TUE.NL 9/20 Ch. 5: Hard Problems

Polynomial-time Reduction

Algorithm R is a polynomial reduction from problem U; to U when

e R is a polynomial algorithm, and

e the solution for instance I l’
of problem U equals the l A
solution for instance R([) The reduction R efficiently
transforms each instance [solves Uy
of problem UQ, of the problem U, R efficiently
. into an instance R(I)
for all instances I of Uy of the problem U,
|7
B solves U, efficiently B
B(R(I))
© 2009, T. Verhoeff @ TUE.NL 11/20 Ch. 5: Hard Problems

Polynomial-time Reduction

By definition, the following statements are equivalent:
e Problem Uj is polynomial-time reducible to problem Us
e There exists a polynomial reduction R from U; to Us
e Uy <po U2
e Problem Uy is polynomially no harder than problem Us

An example follows

© 2009, T. Verhoeff @ TUE.NL 12/20 Ch. 5: Hard Problems

Knapsack Problem

Subset Sum Problem , or (simplified) Knapsack Problem :
For a given positive integer K and set S of items z with
positive integer size s(x), does there exists a subset T of S

whose total size Y7 s(x) equals K7

K is the size of the knapsack, S contains the items to pack, and s
gives their sizes.

The question is whether the knapsack can be filled exactly with a
suitable selection T of the items.

Example: item sizes 110, 90, 70, 50, 30, 30, 20, and K = 150

© 2009, T. Verhoeff @ TUE.NL 13/20 Ch. 5: Hard Problems

Settling Debts Problems

A group of friends lend each other money throughout the year. They
carefully record each transaction. When Alice lends 10 euro to Bob,
this is recorded as Alice 10, Bob.

At the end of the year they wish to settle all their debts. Money can
be transferred between any pair of persons.

Problem variants:
e minimize the number of transfers
e minimize the total amount transferred

e minimize both

© 2009, T. Verhoeff @ TUE.NL 14/20 Ch. 5: Hard Problems

Reduce Knapsack to Settling Debts

Given an instance I for Knapsack, construct an instance R(I) for

Settling Debts : |S| positive balances s(x) for x € S, and two negative

balances —K and K — Y ,cg s(z). N.B. The total balance = 0.
+110 490 +70 +50 +30 +30 +20

—150 —250

The instance R([I) requires at least |S| transfers to settle, since each
positive balance needs an outgoing transfer. A settling of all debts
for R(I) with |S| transfers exists if and only if there exists a subset T
of S whose total size equals K, that is, when it solves I.

Thus: Knapsack <, Settling Debts in minimum number of transfers

© 2009, T. Verhoeff @ TUE.NL 15/20 Ch. 5: Hard Problems

Using Polynomial-time Reducibility U; <pq U>

(Compare to algorithmic reducibility and its uses, in Ch. 4)
If we know Uy <po Up, then this can be used in two ways:

1. Polynomial solvability of Us implies polynomial solvability of Uy
(Note the order of U, and Uj here)

2. If U1 cannot be solved by a polynomial algorithm, then U, cannot
be solved by a polynomial algorithm

Many problems for which we have not found polynomial algorithms
are polynomially equally hard: Uy <pq Uz and Us <pq) Uz

These problems are called NP-hard

Knapsack (Subset Sum) is known to be NP-hard
Hence, Settling Debts in minimum number of transfers is NP-hard

© 2009, T. Verhoeff @ TUE.NL 16/20 Ch. 5: Hard Problems

Easy/Hard Pairs

e Hard: Determine whether a graph has a Hamiltonian circuit
that visits each vertex exactly once

Easy: Determine whether a graph has an Euler circuit that
visits each edge exactly once

e Hard: Determine a settling of all debts,
that minimizes the number of transfers

Easy: Determine a settling of all debts,
that minimizes the total amount transferred

e Hard: Traveling Salesman Problem (TSP)

Easy: Determine a Minimum Spanning Tree (MST) of a con-
nected, edge-weighted graph: a set of edges of minimum total
weight that connects all vertices (this is a tree; see figure)

© 2009, T. Verhoeff @ TUE.NL 17/20 Ch. 5: Hard Problems

Settling Debts, Minimizing Total Amount Transferred, Is Easy

Here is a greedy* algorithm :

1. Determine the balance b; for each person

2. While there is still someone with a nonzero balance, do:

(a) Select any person i with b; < 0, and any person j with b; >0
(b) Let m be the minimum of —b; and b;; hence, m >0

(c) Include transfer + —% j in the settlement

(d) Increase b; by m and decrease b; by m

3. All b, = 0, hence the included transfers settle all debts

*Step 2a makes it greedy: settle maximally among the first candidate pair found

© 2009, T. Verhoeff @ TUE.NL 18/20 Ch. 5: Hard Problems

Settling Debts, Minimizing Total Amount Transferred: Proof

>k b = 0 holds initially and after every iteration of Step 2.
Step 2a is always possible, because > ;. b, = 0 and not all b, = 0.

The repetition of Step 2 terminates, because in each iteration at least
one nonzero by, is reduced to zero by Step 2d.

Therefore, the number of transfers is at most N (number of persons).
In fact, it is at most N — 1, because the final two nonzero balances
cancel each other in a single transfer.

Let P be the total amount of the positive balances, and N the total
amount of the negative balances. Hence, P = —N. The minimum
total amount to be transferred equals P.

The total amount transferred equals P, and hence is minimal.

© 2009, T. Verhoeff @ TUE.NL 19/20 Ch. 5: Hard Problems

Summary

e Time complexity of an algorithm: how many steps it takes to
compute an answer, in relation to input size (worst-case)

e Space complexity of an algorithm: how many variables it takes
to compute an answer, in relation to input size (worst-case)

e Complexity classes defined in terms of asymptotic complexity:
Polynomial time (P), Exponential time (EXP), ...

e NP decision problem ~ YES answer verifiable in polynomial time

e NP-hard : class of hardest NP problems (polynomial reduction)

5
e P = NP : Can all NP problems be solved in polynomial time?

Today we know only exponential algorithms for NP-hard problems:
intractable , practically unsolvable for larger inputs; not hopeless

© 2009, T. Verhoeff @ TUE.NL 20/20 Ch. 5: Hard Problems

