
Chapter 5: Hard Problems

Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich
Slides by Tom Verhoeff, TU Eindhoven

c© 2009, T. Verhoeff @ TUE.NL 1/20 Ch. 5: Hard Problems

Quotation

There is no greater loss than time which has been wasted

Michelangelo Buonarroti

c© 2009, T. Verhoeff @ TUE.NL 2/20 Ch. 5: Hard Problems

Undecidability Is Not Rare

• Decide∗ whether a Game of Life configuration stabilizes

• Decide whether a set of Wang tiles can tile the plane

• Decide whether a Diophantine equation (multivariable polyno-
mial equation, like a3 + b3 = c3) has a solution in integers

• Decide whether a program has a specific non-trivial property, like
whether it always halts, always outputs 0, ... [cf. Rice’s Theorem]

∗In each case, the algorithm needs to work for all possible inputs (shown in yellow).
All these decision problems turn out to involve a universal mechanism.

c© 2009, T. Verhoeff @ TUE.NL 3/20 Ch. 5: Hard Problems

Some Algorithms Are Very Inefficient

For some algorithmically solvable problems, our algorithmic solutions
turn out to be very slow

Slow algorithms are practically unusable:

• Packing puzzles

• Scheduling jobs on machines

• Traveling Salesman Problem (TSP): find shortest tour visiting
each town in a given set, given their distances

How can we investigate this phenomenon?

How can we overcome this limitation?

c© 2009, T. Verhoeff @ TUE.NL 4/20 Ch. 5: Hard Problems

Algorithmic Complexity

The time complexity of algorithm A on input I:

number of instructions performed in computation of A on I

The space complexity of algorithm A on input I:

amount of memory used in computation of A on I

Complexity varies with size of the input (amount of input data)

The time complexity of algorithm A as function of input size:

TimeA(n) = worst-case number of instructions performed in
computation of A on any input of size n

c© 2009, T. Verhoeff @ TUE.NL 5/20 Ch. 5: Hard Problems

Asymptotic Algorithmic Time Complexity

The function TimeA(n) also depends on details of the programming
language and implementation of the algorithm as program

Definition Function f(n) ≥ 0 is O (g(n)) (‘f is big oh of g’) when

f(n) ≤ C · g(n) for some constant C and all sufficiently large n

Example: 10n2 + 7n + 20 is O
(
n2

)
, but not O (n) and not O (logn)

The asymptotic time complexity of algorithm A is f(n):

TimeA(n) is O (f(n)) and f(n) is O (TimeA(n))

The asymptotic complexity is robust, independent of implementation

Complexity classes: Constant, Logarithmic, Linear, Linearithmic
O (n · logn), Quadratic, Cubic, . . . , Polynomial, Exponential, . . .

c© 2009, T. Verhoeff @ TUE.NL 6/20 Ch. 5: Hard Problems

Asymptotic Time Complexity Examples

Complexity Name Example∗

O (1) Constant Determine whether n-bit number is even

O (logn) Logarithmic Find item in sorted list by Binary Search

O (n) Linear Find item in list by Linear Search

O (n logn) Linearithmic Sort list by Merge Sort

O
(
n2

)
Quadratic Sort list by Bubble Sort

O
(
nk

)
Polynomial Determine whether n-bit number is prime

O (2n) Exponential Solve TSP by Dynamic Programming

O (n!) Factorial Solve TSP by Brute Force Search

∗The input is a list of n elements (possibly bits)

c© 2009, T. Verhoeff @ TUE.NL 7/20 Ch. 5: Hard Problems

What Is the Limit of Practical Solvability?

n 10 50 100 300

f(n)

10n 100 500 1000 3000

2n2 200 5 000 20 000 180 000

n3 1000 125 000 1 000 000 27 000 000

2n 1024 16 digits 31 digits 91 digits

n! ≈ 3.6 · 106 65 digits 158 digits 615 digits

A problem is called tractable when it can be solved by a polynomial

algorithm (asymptotic time complexity is O
(
nk

)
for some constant k)

P denotes the class of all polynomial decisions problems

c© 2009, T. Verhoeff @ TUE.NL 8/20 Ch. 5: Hard Problems

How Much More Can You Do on a 2× Faster Machine?

Assume n = 100 takes 1 hour on machine A.
How much further do you get on a 2× faster machine B in 1 hour?

Time n on A n on B More on B Factor

Logaritmic C1 log2 n 100 10000 9900 100

Linear C2 n 100 200 100 2

Linearitmic C3 n log2 n 100 178 78 1.78

Quadratic C4 n2 100 141 41 1.41

Cubic C5 n3 100 126 26 1.26

Exponential C6 2n 100 101 1 1.01

c© 2009, T. Verhoeff @ TUE.NL 9/20 Ch. 5: Hard Problems

Polynomial-time Reduction

Algorithm R is a polynomial reduction from problem U1 to U2 when

• R is a polynomial algorithm, and

• the solution for instance I
of problem U1 equals the
solution for instance R(I)
of problem U2,
for all instances I of U1

A

solves U1
efficiently

I

The reduction R efficiently
transforms each instance I
of the problem U1
into an instance R(I)
of the problem U2

R

B solves U2 efficiently

R(I)

B

B(R(I))

c© 2009, T. Verhoeff @ TUE.NL 11/20 Ch. 5: Hard Problems

Polynomial-time Reduction

By definition, the following statements are equivalent:

• Problem U1 is polynomial-time reducible to problem U2

• There exists a polynomial reduction R from U1 to U2

• U1 ≤pol U2

• Problem U1 is polynomially no harder than problem U2

An example follows

c© 2009, T. Verhoeff @ TUE.NL 12/20 Ch. 5: Hard Problems

Knapsack Problem

Subset Sum Problem , or (simplified) Knapsack Problem :

For a given positive integer K and set S of items x with
positive integer size s(x), does there exists a subset T of S

whose total size
∑

x∈T s(x) equals K?

K is the size of the knapsack, S contains the items to pack, and s

gives their sizes.

The question is whether the knapsack can be filled exactly with a
suitable selection T of the items.

Example: item sizes 110, 90, 70, 50, 30, 30, 20 , and K = 150

c© 2009, T. Verhoeff @ TUE.NL 13/20 Ch. 5: Hard Problems

Settling Debts Problems

A group of friends lend each other money throughout the year. They
carefully record each transaction. When Alice lends 10 euro to Bob,
this is recorded as Alice 10−→ Bob.

At the end of the year they wish to settle all their debts. Money can
be transferred between any pair of persons.

Problem variants:

• minimize the number of transfers

• minimize the total amount transferred

• minimize both

c© 2009, T. Verhoeff @ TUE.NL 14/20 Ch. 5: Hard Problems

Reduce Knapsack to Settling Debts

Given an instance I for Knapsack, construct an instance R(I) for
Settling Debts : |S| positive balances s(x) for x ∈ S, and two negative
balances −K and K −∑

x∈S s(x). N.B. The total balance = 0.

+110 +90 +70 +50 +30 +30 +20

−150 −250

The instance R(I) requires at least |S| transfers to settle, since each
positive balance needs an outgoing transfer. A settling of all debts
for R(I) with |S| transfers exists if and only if there exists a subset T
of S whose total size equals K, that is, when it solves I.

Thus: Knapsack ≤pol Settling Debts in minimum number of transfers

c© 2009, T. Verhoeff @ TUE.NL 15/20 Ch. 5: Hard Problems

Using Polynomial-time Reducibility U1 ≤pol U2

(Compare to algorithmic reducibility and its uses, in Ch. 4)

If we know U1 ≤pol U2, then this can be used in two ways:

1. Polynomial solvability of U2 implies polynomial solvability of U1
(Note the order of U2 and U1 here)

2. If U1 cannot be solved by a polynomial algorithm, then U2 cannot
be solved by a polynomial algorithm

Many problems for which we have not found polynomial algorithms
are polynomially equally hard: U1 ≤pol U2 and U2 ≤pol U1

These problems are called NP-hard

Knapsack (Subset Sum) is known to be NP-hard
Hence, Settling Debts in minimum number of transfers is NP-hard

c© 2009, T. Verhoeff @ TUE.NL 16/20 Ch. 5: Hard Problems

Easy/Hard Pairs

• Hard: Determine whether a graph has a Hamiltonian circuit
that visits each vertex exactly once

Easy : Determine whether a graph has an Euler circuit that
visits each edge exactly once

• Hard: Determine a settling of all debts,
that minimizes the number of transfers

Easy : Determine a settling of all debts,
that minimizes the total amount transferred

• Hard: Traveling Salesman Problem (TSP)

Easy : Determine a Minimum Spanning Tree (MST) of a con-
nected, edge-weighted graph: a set of edges of minimum total
weight that connects all vertices (this is a tree; see figure)

c© 2009, T. Verhoeff @ TUE.NL 17/20 Ch. 5: Hard Problems

Settling Debts, Minimizing Total Amount Transferred, Is Easy

Here is a greedy∗ algorithm :

1. Determine the balance bi for each person

2. While there is still someone with a nonzero balance, do:

(a) Select any person i with bi < 0, and any person j with bj > 0

(b) Let m be the minimum of −bi and bj; hence, m > 0

(c) Include transfer i
m−→ j in the settlement

(d) Increase bi by m and decrease bj by m

3. All bk = 0, hence the included transfers settle all debts
∗Step 2a makes it greedy: settle maximally among the first candidate pair found

c© 2009, T. Verhoeff @ TUE.NL 18/20 Ch. 5: Hard Problems

Settling Debts, Minimizing Total Amount Transferred: Proof

∑
k bk = 0 holds initially and after every iteration of Step 2.

Step 2a is always possible, because
∑

k bk = 0 and not all bk = 0.

The repetition of Step 2 terminates, because in each iteration at least
one nonzero bk is reduced to zero by Step 2d.

Therefore, the number of transfers is at most N (number of persons).
In fact, it is at most N − 1, because the final two nonzero balances
cancel each other in a single transfer.

Let P be the total amount of the positive balances, and N the total
amount of the negative balances. Hence, P = −N . The minimum
total amount to be transferred equals P .

The total amount transferred equals P , and hence is minimal.

c© 2009, T. Verhoeff @ TUE.NL 19/20 Ch. 5: Hard Problems

Summary

• Time complexity of an algorithm: how many steps it takes to
compute an answer, in relation to input size (worst-case)

• Space complexity of an algorithm: how many variables it takes
to compute an answer, in relation to input size (worst-case)

• Complexity classes defined in terms of asymptotic complexity:
Polynomial time (P), Exponential time (EXP), . . .

• NP decision problem≈ YES answer verifiable in polynomial time

• NP-hard : class of hardest NP problems (polynomial reduction)

• P
?
= NP : Can all NP problems be solved in polynomial time?

• Today we know only exponential algorithms for NP-hard problems:
intractable , practically unsolvable for larger inputs; not hopeless

c© 2009, T. Verhoeff @ TUE.NL 20/20 Ch. 5: Hard Problems

