

Algorithmic Complexity

The **time complexity** of algorithm *A* on input *I*:

number of instructions performed in computation of A on I

The **space complexity** of algorithm *A* on input *I*:

amount of memory used in computation of A on I

Complexity varies with size of the input (amount of input data)

The time complexity of algorithm *A* as function of input size:

 $Time_A(n) = worst-case$ number of instructions performed in computation of A on any input of size n

5/20

© 2009, T. Verhoeff @ TUE.NL

Ch. 5: Hard Problems

Asymptotic Time Complexity Examples

Complexity	Name	Example*		
$\mathcal{O}\left(1 ight)$	Constant	Determine whether <i>n</i> -bit number is even		
$\mathcal{O}\left(\log n\right)$	Logarithmic	Find item in sorted list by Binary Search		
$\mathcal{O}\left(n ight)$	Linear	Find item in list by Linear Search		
$\mathcal{O}\left(n\log n\right)$	Linearithmic	Sort list by Merge Sort		
$\mathcal{O}\left(n^2\right)$	Quadratic	Sort list by Bubble Sort		
$\mathcal{O}\left(n^k\right)$	Polynomial	Determine whether <i>n</i> -bit number is prime		
$\mathcal{O}\left(2^n\right)$	Exponential	Solve TSP by Dynamic Programming		
$\mathcal{O}\left(n! ight)$	Factorial	Solve TSP by Brute Force Search		

*The input is a list of *n* elements (possibly bits)

Asymptotic Algorithmic Time Complexity

The function $Time_A(n)$ also depends on details of the programming language and implementation of the algorithm as program

Definition Function $f(n) \ge 0$ is $\mathcal{O}(g(n))$ ('f is big oh of g') when

 $f(n) \leq C \cdot g(n)$ for some constant C and all sufficiently large n

Example: $10n^2 + 7n + 20$ is $\mathcal{O}(n^2)$, but not $\mathcal{O}(n)$ and not $\mathcal{O}(\log n)$

The **asymptotic time complexity** of algorithm A is f(n):

 $Time_A(n)$ is $\mathcal{O}(f(n))$ and f(n) is $\mathcal{O}(Time_A(n))$

The asymptotic complexity is *robust*, independent of implementation

Complexity classes: Constant, Logarithmic, Linear, Linearithmic $\mathcal{O}(n \cdot \log n)$, Quadratic, Cubic, ..., Polynomial, Exponential, ...

6/20

© 2009, T. Verhoeff @ TUE.NL

Ch. 5: Hard Problems

What Is the Limit of Practical Solvability?

n	10	50 100		300	
f(n)					
10n	100	500	1000	3000	
2 <i>n</i> ²	200	5 000	20 000	180 000	
n ³	1000	125 000	1 000 000	27 000 000	
2 ⁿ	1024	16 digits	31 digits	91 digits	
n!	$\approx 3.6\cdot 10^6$	65 digits	158 digits	615 digits	

A problem is called **tractable** when it can be solved by a **polynomial** algorithm (asymptotic time complexity is $O(n^k)$ for some constant k)

P denotes the class of all **polynomial decisions problems**

© 2009, T. Verhoeff @ TUE.NL

Ch. 5: Hard Problems

© 2009, T. Verhoeff @ TUE.NL

How Much More Can You Do on a 2× Faster Machine?

Assume n = 100 takes 1 hour on machine A. How much further do you get on a $2 \times$ faster machine B in 1 hour?

	Time	<i>n</i> on <i>A</i>	<i>n</i> on <i>B</i>	More on B	Factor
Logaritmic	$C_1 \log_2 n$	100	10000	9900	100
Linear	$C_2 n$	100	200	100	2
Linearitmic	$C_3 n \log_2 n$	100	178	78	1.78
Quadratic	$C_4 n^2$	100	141	41	1.41
Cubic	$C_{5} n^{3}$	100	126	26	1.26
Exponential	$C_{6} 2^{n}$	100	101	1	1.01

© 2009, T. Verhoeff @ TUE.NL

Ch. 5: Hard Problems

Polynomial-time Reduction

9/20

By definition, the following statements are equivalent:

- Problem U_1 is **polynomial-time reducible** to problem U_2
- There exists a polynomial reduction R from U_1 to U_2
- $U_1 \leq_{\mathsf{pol}} U_2$
- Problem U_1 is polynomially no harder than problem U_2

An example follows

© 2009, T. Verhoeff @ TUE.NL

12/20

Ch. 5: Hard Problems

Polynomial-time Reduction

Algorithm R is a **polynomial reduction** from problem U_1 to U_2 when

- R is a *polynomial* algorithm, and
- the solution for instance I of problem U₁ equals the solution for instance R(I) of problem U₂, for all instances I of U₁

© 2009. T. Verhoeff @ TUE.NL

Knapsack Problem

Subset Sum Problem, or (simplified) Knapsack Problem :

For a given positive integer K and set S of items x with positive integer size s(x), does there exists a subset T of S whose total size $\sum_{x \in T} s(x)$ equals K?

 ${\cal K}$ is the size of the knapsack, ${\cal S}$ contains the items to pack, and s gives their sizes.

The question is whether the knapsack can be filled exactly with a suitable selection T of the items.

Example: item sizes 110, 90, 70, 50, 30, 30, 20, and K = 150

© 2009, T. Verhoeff @ TUE.NL

13/20

Settling Debts Problems Reduce Knapsack to Settling Debts A group of friends lend each other money throughout the year. They Given an instance I for Knapsack, construct an instance R(I) for carefully record each transaction. When Alice lends 10 euro to Bob. Settling Debts: |S| positive balances s(x) for $x \in S$, and two negative this is recorded as Alice $\xrightarrow{10}$ Bob. balances -K and $K - \sum_{x \in S} s(x)$. N.B. The total balance = 0. At the end of the year they wish to settle all their debts. Money can +110 +90 +70 +50 +30 +30 +20be transferred between any *pair* of persons. -150-250Problem variants: The instance R(I) requires at least |S| transfers to settle, since each • minimize the number of transfers positive balance needs an outgoing transfer. A settling of all debts for R(I) with |S| transfers exists if and only if there exists a subset T • minimize the total amount transferred of S whose total size equals K, that is, when it solves I. Thus: Knapsack \leq_{pol} Settling Debts in minimum number of transfers • minimize both © 2009, T. Verhoeff @ TUE.NL 14/20 Ch. 5: Hard Problems © 2009, T. Verhoeff @ TUE.NL 15/20 Ch. 5: Hard Problems Using Polynomial-time Reducibility $U_1 \leq_{\text{pol}} U_2$ Easy/Hard Pairs (Compare to *algorithmic* reducibility and its uses, in Ch. 4) • Hard: Determine whether a graph has a **Hamiltonian circuit** that visits each vertex exactly once If we know $U_1 \leq_{\text{pol}} U_2$, then this can be used in two ways: *Easy*: Determine whether a graph has an **Euler circuit** that visits each edge exactly once 1. Polynomial solvability of U_2 implies polynomial solvability of U_1 (Note the order of U_2 and U_1 here) • Hard: Determine a settling of all debts, that minimizes the number of transfers 2. If U_1 cannot be solved by a polynomial algorithm, then U_2 cannot be solved by a polynomial algorithm Easy: Determine a settling of all debts, that minimizes the total amount transferred Many problems for which we have not found polynomial algorithms are polynomially equally hard: $U_1 \leq_{\text{pol}} U_2$ and $U_2 \leq_{\text{pol}} U_1$ • Hard: Traveling Salesman Problem (TSP) These problems are called **NP-hard** *Easy*: Determine a Minimum Spanning Tree (MST) of a connected, edge-weighted graph: a set of edges of minimum total Knapsack (Subset Sum) is known to be NP-hard weight that connects all vertices (this is a *tree*; see figure) Hence, Settling Debts in minimum number of transfers is NP-hard © 2009, T. Verhoeff @ TUE.NL Ch. 5: Hard Problems Ch. 5: Hard Problems 16/20 © 2009, T. Verhoeff @ TUE.NL 17/20

Settling Debts, Minimizing Total Amount Transferred, Is Easy

Here is a greedy* algorithm :

- 1. Determine the balance b_i for each person
- 2. While there is still someone with a nonzero balance, do:
- (a) Select any person *i* with $b_i < 0$, and any person *j* with $b_j > 0$
- (b) Let *m* be the minimum of $-b_i$ and b_j ; hence, m > 0
- (c) Include transfer $i \xrightarrow{m} j$ in the settlement
- (d) Increase b_i by m and decrease b_j by m

3. All $b_k = 0$, hence the included transfers settle all debts *Step 2a makes it greedy: settle maximally among the first candidate pair found

18/20

© 2009, T. Verhoeff @ TUE.NL

Ch. 5: Hard Problems

Summary

- **Time complexity** of an algorithm: how many steps it takes to compute an answer, in relation to input *size* (worst-case)
- **Space complexity** of an algorithm: how many variables it takes to compute an answer, in relation to input *size* (worst-case)
- **Complexity classes** defined in terms of *asymptotic* complexity: Polynomial time (**P**), Exponential time (**EXP**), ...
- **NP decision problem** \approx YES answer *verifiable* in polynomial time
- **NP-hard**: class of *hardest* NP problems (**polynomial reduction**)
- $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$: Can all NP problems be solved in polynomial time?
- Today we know only *exponential* algorithms for NP-hard problems: intractable, practically unsolvable for larger inputs; not hopeless

Settling Debts, Minimizing Total Amount Transferred: Proof

 $\sum_k b_k = 0$ holds initially and after every iteration of Step 2.

Step 2a is always possible, because $\sum_k b_k = 0$ and not all $b_k = 0$.

The repetition of Step 2 terminates, because in each iteration at least one nonzero b_k is reduced to zero by Step 2d.

Therefore, the number of transfers is at most N (number of persons). In fact, it is at most N - 1, because the final *two* nonzero balances cancel each other in a *single* transfer.

Let *P* be the total amount of the positive balances, and *N* the total amount of the negative balances. Hence, P = -N. The *minimum* total amount to be transferred equals *P*.

19/20

The total amount transferred equals *P*, and hence is minimal.

© 2009, T. Verhoeff @ TUE.NL

Ch. 5: Hard Problems