Algorithmic Adventures

From Knowledge to Magic

Book by Juraj Hromkovič，ETH Zurich Slides by Tom Verhoeff，TU Eindhoven

Undecidability Is Not Rare
－Decide＊whether a Game of Life configuration stabilizes
－Decide whether a set of Wang tiles can tile the plane

》 \triangle ® \triangle 【】囚囚囚囚囚囚

－Decide whether a Diophantine equation（multivariable polyno－ mial equation，like $a^{3}+b^{3}=c^{3}$ ）has a solution in integers
－Decide whether a program has a specific non－trivial property，like whether it always halts，always outputs $0, \ldots$［cf．Rice＇s Theorem］ ＊In each case，the algorithm needs to work for all possible inputs（shown in yellow）． All these decision problems turn out to involve a universal mechanism

Some Algorithms Are Very Inefficient

For some algorithmically solvable problems，our algorithmic solutions turn out to be very slow

Slow algorithms are practically unusable：
－Packing puzzles

－Scheduling jobs on machines

－Traveling Salesman Problem（TSP）：find shortest tour visiting each town in a given set，given their distances

How can we investigate this phenomenon？
How can we overcome this limitation？

Algorithmic Complexity

The time complexity of algorithm A on input I :
number of instructions performed in computation of A on I
The space complexity of algorithm A on input I :
amount of memory used in computation of A on I
Complexity varies with size of the input (amount of input data)
The time complexity of algorithm A as function of input size:

Time $_{A}(n)=$ worst-case $^{(n u m b e r ~ o f ~ i n s t r u c t i o n s ~ p e r f o r m e d ~ i n ~}$ computation of A on any input of size n
© 2009, T. Verhoeff @ TUE.NL

5/20
Ch. 5: Hard Problems
Ch. 5: Hard Probers

The function $\operatorname{Time}_{A}(n)$ also depends on details of the programming language and implementation of the algorithm as program

Definition Function $f(n) \geq 0$ is $\mathcal{O}(g(n))$ (' f is big oh of g ') when
$f(n) \leq C \cdot g(n)$ for some constant C and all sufficiently large n
Example: $10 n^{2}+7 n+20$ is $\mathcal{O}\left(n^{2}\right)$, but not $\mathcal{O}(n)$ and not $\mathcal{O}(\log n)$
The asymptotic time complexity of algorithm A is $f(n)$:

$$
\operatorname{Time}_{A}(n) \text { is } \mathcal{O}(f(n)) \text { and } f(n) \text { is } \mathcal{O}\left(\operatorname{Time}_{A}(n)\right)
$$

The asymptotic complexity is robust, independent of implementation
Complexity classes: Constant, Logarithmic, Linear, Linearithmic $\mathcal{O}(n \cdot \log n)$, Quadratic, Cubic, ..., Polynomial, Exponential, ...

C 2009, T. Verhoeff © TUE.NL
6/20
Ch. 5: Hard Problems

What Is the Limit of Practical Solvability?

n	10	50	100	300
$f(n)$				
$10 n$	100	500	1000	3000
$2 n^{2}$	200	5000	20000	180000
n^{3}	1000	125000	1000000	27000000
2^{n}	1024	16 digits	31 digits	91 digits
$n!$	$\approx 3.6 \cdot 10^{6}$	65 digits	158 digits	615 digits

A problem is called tractable when it can be solved by a polynomial algorithm (asymptotic time complexity is $\mathcal{O}\left(n^{k}\right)$ for some constant k)

P denotes the class of all polynomial decisions problems

How Much More Can You Do on a $2 \times$ Faster Machine?

Assume $n=100$ takes 1 hour on machine A.
How much further do you get on a $2 \times$ faster machine B in 1 hour?

	Time	n on A	n on B	More on B	Factor
Logaritmic	$C_{1} \log _{2} n$	100	10000	9900	100
Linear	$C_{2} n$	100	200	100	2
Linearitmic	$C_{3} n \log _{2} n$	100	178	78	1.78
Quadratic	$C_{4} n^{2}$	100	141	41	1.41
Cubic	$C_{5} n^{3}$	100	126	26	1.26
Exponential	$C_{6} 2^{n}$	100	101	1	1.01

© 2009, T. Verhoeff © TUE.NL

$$
9 / 20
$$

Ch. 5: Hard Problems

Algorithm R is a polynomial reduction from problem U_{1} to U_{2} when

- R is a polynomial algorithm, and
- the solution for instance I of problem U_{1} equals the solution for instance $R(I)$ of problem U_{2},
for all instances I of U_{1}

C 2009, T. Verhoeff © TUE.NL
11/20
Ch. 5: Hard Problems

Knapsack Problem

Subset Sum Problem, or (simplified) Knapsack Problem:

For a given positive integer K and set S of items x with positive integer size $s(x)$, does there exists a subset T of S whose total size $\sum_{x \in T} s(x)$ equals K ?
K is the size of the knapsack, S contains the items to pack, and s gives their sizes.

The question is whether the knapsack can be filled exactly with a suitable selection T of the items.

Example: item sizes $110,90,70,50,30,30,20$, and $K=150$
© 2009, T. Verhoeff @ TUE.NL

A group of friends lend each other money throughout the year. They carefully record each transaction. When Alice lends 10 euro to Bob, this is recorded as Alice $\xrightarrow{10}$ Bob.

At the end of the year they wish to settle all their debts. Money can be transferred between any pair of persons.

Problem variants:

- minimize the number of transfers
- minimize the total amount transferred
- minimize both
© 2009, T. Verhoeff @ TUE.NL
14/20
Ch. 5: Hard Problems

Using Polynomial-time Reducibility $U_{1} \leq$ pol U_{2}

(Compare to algorithmic reducibility and its uses, in Ch. 4)
If we know $U_{1} \leq_{\text {pol }} U_{2}$, then this can be used in two ways:

1. Polynomial solvability of U_{2} implies polynomial solvability of U_{1} (Note the order of U_{2} and U_{1} here)
2. If U_{1} cannot be solved by a polynomial algorithm, then U_{2} cannot be solved by a polynomial algorithm

Many problems for which we have not found polynomial algorithms are polynomially equally hard: $U_{1} \leq_{\text {pol }} U_{2}$ and $U_{2} \leq_{\text {pol }} U_{1}$

These problems are called NP-hard
Knapsack (Subset Sum) is known to be NP-hard Hence, Settling Debts in minimum number of transfers is NP-hard

Given an instance I for Knapsack, construct an instance $R(I)$ for Settling Debts: $|S|$ positive balances $s(x)$ for $x \in S$, and two negative balances $-K$ and $K-\sum_{x \in S} s(x)$. N.B. The total balance $=0$.

```
+110+90 +70 +50 +30 +30 +20
    -150
    -250
```

The instance $R(I)$ requires at least $|S|$ transfers to settle, since each positive balance needs an outgoing transfer. A settling of all debts for $R(I)$ with $|S|$ transfers exists if and only if there exists a subset T of S whose total size equals K, that is, when it solves I.

Thus: Knapsack $\leq_{\text {pol }}$ Settling Debts in minimum number of transfers
© 2009, T. Verhoeff © TUE.NL
15/20
Ch. 5: Hard Problems

Easy/Hard Pairs

- Hard: Determine whether a graph has a Hamiltonian circuit that visits each vertex exactly once
Easy: Determine whether a graph has an Euler circuit that visits each edge exactly once
- Hard: Determine a settling of all debts, that minimizes the number of transfers

Easy: Determine a settling of all debts, that minimizes the total amount transferred

- Hard: Traveling Salesman Problem (TSP)

Easy: Determine a Minimum Spanning Tree (MST) of a connected, edge-weighted graph: a set of edges of minimum total weight that connects all vertices (this is a tree; see figure)

Settling Debts, Minimizing Total Amount Transferred, Is Easy

Here is a greedy* algorithm:

1. Determine the balance b_{i} for each person
2. While there is still someone with a nonzero balance, do:
(a) Select any person i with $b_{i}<0$, and any person j with $b_{j}>0$
(b) Let m be the minimum of $-b_{i}$ and b_{j}; hence, $m>0$
(c) Include transfer $i \xrightarrow{m} j$ in the settlement
(d) Increase b_{i} by m and decrease b_{j} by m
3. All $b_{k}=0$, hence the included transfers settle all debts
*Step 2a makes it greedy: settle maximally among the first candidate pair found
© 2009, T. Verhoeff @ TUE.NL
18/20
Ch. 5: Hard Problems

Settling Debts, Minimizing Total Amount Transferred: Proof
$\sum_{k} b_{k}=0$ holds initially and after every iteration of Step 2.
Step 2 a is always possible, because $\sum_{k} b_{k}=0$ and not all $b_{k}=0$.
The repetition of Step 2 terminates, because in each iteration at least one nonzero b_{k} is reduced to zero by Step 2d.

Therefore, the number of transfers is at most N (number of persons). In fact, it is at most $N-1$, because the final two nonzero balances cancel each other in a single transfer.

Let P be the total amount of the positive balances, and N the total amount of the negative balances. Hence, $P=-N$. The minimum total amount to be transferred equals P.

The total amount transferred equals P, and hence is minimal.
© 2009, T. Verhoeff © TUE.NL

Summary

- Time complexity of an algorithm: how many steps it takes to compute an answer, in relation to input size (worst-case)
- Space complexity of an algorithm: how many variables it takes to compute an answer, in relation to input size (worst-case)
- Complexity classes defined in terms of asymptotic complexity: Polynomial time (P), Exponential time (EXP), .
- NP decision problem \approx YES answer verifiable in polynomial time
- NP-hard : class of hardest NP problems (polynomial reduction)
- $\mathbf{P} \stackrel{?}{=}$ NP: Can all NP problems be solved in polynomial time?
- Today we know only exponential algorithms for NP-hard problems: intractable, practically unsolvable for larger inputs; not hopeless

