
Chapter 6: Randomization

Algorithmic Adventures
From Knowledge to Magic

Book by Juraj Hromkovič, ETH Zurich
Slides by Tom Verhoeff, TU Eindhoven

c© 2009, T. Verhoeff @ TUE.NL 1/20 Ch. 6: Randomization

Quotation

Chance favours only those whose spirit has been prepared
already, those unprepared cannot see the hand stretched
out to them by fortune.

Louis Pasteur

c© 2009, T. Verhoeff @ TUE.NL 2/20 Ch. 6: Randomization

Changing the Requirements to Make Them Tractable

For an optimization problem we might be satisfied with a good
approximation of the optimum (within some acceptable factor)

For some NP-hard problems, there are good polynomial approximation
algorithms, for others not

Alternatively, we might accept an unreliable answer (within some
acceptable confidence interval)

Randomized algorithms can be quick and reliable, though not 100%

c© 2009, T. Verhoeff @ TUE.NL 3/20 Ch. 6: Randomization

Randomness as Concept

• Unpredictable : not predictable by an algorithm (?)

• Nondeterministic : fundamentally undetermined/open

• Stochastic : following mathematical axioms of probability theory

• Chaotic : extremely sensitive to initial conditions

• Incompressible : without shorter algorithmic description

Democritos believed that randomness is the unknown,

Nature is fundamentally determined.

Epicures claimed that randomness is objective,

it is the proper nature of events.

c© 2009, T. Verhoeff @ TUE.NL 4/20 Ch. 6: Randomization

Two Styles of Randomization in Algorithms

1. Algorithm may make random choices (flip a coin) at any moment

2. Algorithm randomly chooses a deterministic algorithm from a set

Random = according to some prescribed probability distribution

N.B. Probability distribution determines nature of randomness

E.g. Uniform distribution != Normal distribution

c© 2009, T. Verhoeff @ TUE.NL 5/20 Ch. 6: Randomization

Bit-String Equality Problem

communication channelRI RII

memory memory
x1x2x3 . . . xn y1y2y3 . . . yn

Input: two n-bit strings in separate locations:

x1x2x3 . . . xn and y1y2y3 . . . yn

Output: whether the strings are equal

Cost: communication between the two locations

Näıve approach: send n bits to other party and compare bitwise

1 TB: n ≈ 243 ≈ 1013 bits

c© 2009, T. Verhoeff @ TUE.NL 6/20 Ch. 6: Randomization

Randomized Communication Protocol WITNESS

Number(x) :=
n∑

i=1
2n−i · xi

PRIM(m) := { p is a prime | p ≤ m }

1. RI chooses∗ random p ∈ PRIM(n2)

2. RI computes† s := Number(x) mod p

RI sends s and p to RII

3. RII computes† q = Number(y) mod p

RII outputs “equal” if q = s , and else outputs “unequal”

∗This is not so easy and needs special care
†This can be done in O (n) time

c© 2009, T. Verhoeff @ TUE.NL 7/20 Ch. 6: Randomization

WITNESS: Communication Cost

• 0 ≤ Number(x) < 2n

• 0 ≤ p, s ≤ n2

• Binary representation of p and s uses ≤
⌈
log2 n2

⌉
≤ 2 ·

⌈
log2 n

⌉
bits

• Total communication cost: 4 · 'log2 n(bits

• Huge savings for large n: 4 · 'log2 n() n

• 1 TB: n ≈ 243 ≈ 1013 ⇒ communicate 4 · 43 = 172 bits

c© 2009, T. Verhoeff @ TUE.NL 8/20 Ch. 6: Randomization

WITNESS: Reliability (Definitions)

When the protocol says “unequal”, it is always correct:

Number(x) = Number(y) ⇒ Number(x) mod p = Number(y) mod p

s != q ⇒ Number(x) != Number(y)

One-sided error possible: protocol could say “equal” erroneously
N.B. Operation ‘. . . mod p’ throws away information

p is called good/bad for (x, y) when it gives right/wrong answer

ErrorWITNESS(x, y) :=
the number of bad primes for (x, y)

Prim(n2)

where Prim(m) := |PRIM(m)|
bad
primes
for (x, y)

good primes for
the input instance (x, y)

c© 2009, T. Verhoeff @ TUE.NL 9/20 Ch. 6: Randomization

WITNESS: Reliability Analysis

Prime Number Theorem : Prim(m) ≈
m

lnm

For n ≥ 9: Prim
(
n2

)
>

n2

lnn2 =
n2

2 lnn

Define: Dif(x, y) := Number(x)−Number(y)

p is bad for (x, y) ⇔ x != y and Number(x) mod p = Number(y) mod p

⇔ x != y and (Number(x)−Number(y)) mod p = 0
⇔ x != y and p divides Dif(x, y)

Fundamental Theorem of Arithmetic : each positive integer has
a unique prime factorization (apart from reordering factors)

2n > Dif(x, y) = pe1
1 · pe2

2 · · · pek
k ≥ 2e1+e2+···+ek ≥ 2k, hence k < n

ErrorWITNESS(x, y) <
n

n2/ lnn2 ≤
2 lnn

n
n = 243 ⇒ Error < 6.8× 10−12

c© 2009, T. Verhoeff @ TUE.NL 10/20 Ch. 6: Randomization

Paradigms for Randomized Algorithms

• Foiling an adversary

• Random sampling

• Abundance of witnesses (cf. string equality)

• Fingerprinting and hashing (cf. string equality)

• Random re-ordering, load balancing

• . . .

Derandomization: Eliminate randomness, preserve good properties

c© 2009, T. Verhoeff @ TUE.NL 11/20 Ch. 6: Randomization

Las Vegas Algorithms versus Monte Carlo Algorithms

Las Vegas : Answer always correct; probabilistic runtime

Monte Carlo : Answer probably correct; deterministic runtime

Combination also possible

c© 2009, T. Verhoeff @ TUE.NL 12/20 Ch. 6: Randomization

Improve Reliability by Repeated Execution

Independent repetitions: multiply error probability

Error probability decreases exponentially with number of repetitions

10 cycles of WITNESS for 1 TB :

• Cost = 10 · 172 = 1720 bits communicated

• Error probability <

(
2 log243

243

)10

< 2.1× 10−112

c© 2009, T. Verhoeff @ TUE.NL 13/20 Ch. 6: Randomization

Randomization in Sorting and Finding

Input: array of N elements, and an order relation

QuickSort sorts: running time expected O (N logN), worst O
(
N2

)

QuickFind finds median: running time expected O (N), worst O
(
N2

)

Algorithm:

1. Pick a random pivot value P from the array

2. Partition the array into two parts: elements ≤ P and those > P

3. QuickSort: recursively apply to both parts

4. QuickFind: recursively apply to part known to contain the median

N.B. There exist deterministic O (N logN) sorting and O (N) median algorithms

c© 2009, T. Verhoeff @ TUE.NL 14/20 Ch. 6: Randomization

Randomized Volume Estimation and Counting

Packing puzzles can be solved recursively by backtracking

This gives rise to a search tree with all partial solutions

Estimate size of search tree:

1. Construct a random root path in the search tree

2. Assume that search tree is uniform with fan-outs as on this path

3. Calculate size of this uniform implied tree

4. Take average over multiple samples

c© 2009, T. Verhoeff @ TUE.NL 15/20 Ch. 6: Randomization

Randomized On-line Scheduling Algorithm

See Chapter 10.3

c© 2009, T. Verhoeff @ TUE.NL 16/20 Ch. 6: Randomization

Practical Problems with Randomization

How to analyse randomness, what distribution? Statistical tests

Human subjects are bad at creating/assessing randomness

Exploit natural phenomena (white noise, radioactive decay, . . .)
See: random.org

Need for reproducibility: seeding

Need for good statistical properties

Cryptographic protocols need unpredictability

N.B. Good statistical properties != Unpredictability

c© 2009, T. Verhoeff @ TUE.NL 17/20 Ch. 6: Randomization

Randomization by Software

It is notoriously hard to generate random events/numbers by software:
Pseudo Random Number Generator (PRNG)

Linear Congruential Generator (LCG):

Xn+1 = (aXn + c) mod m

for appropriate fixed integers a, c, m; X0 is seed
LCG is periodic, and predictable after one sample (if a, c, m known)

Guideline: keep number of samples < square root of the period

Mersenne Twister : seeded, period 219937 − 1 ≈ 43× 106000

Predictable after 624 samples

See: en.wikipedia.org/wiki/Mersenne_twister

c© 2009, T. Verhoeff @ TUE.NL 18/20 Ch. 6: Randomization

Application of Randomization in Games

Three sources of uncertainty in game playing (can be mixed):

1. Combinatorial : full information, large number of combinations

Monte Carlo methods for the board game Go: random game play

2. Stochastic : fortune, neutral interfering daemon

Markov Decision Processes, deterministic optimal play

3. Strategic : hidden information, adversary with secrets

Randomization guarantees unpredictability, prevents being exploited

Role of variance : N repetitions reduce standard deviation by
1√
N

c© 2009, T. Verhoeff @ TUE.NL 19/20 Ch. 6: Randomization

Summary

• Even exact algorithms are not 100% reliable when executed on
real hardware, because hardware is inherently unreliable

• The longer the run time of a program, the higher the probability
that something goes wrong, physically

• Sacrificing exactness, by using randomization, can lead to very
efficient and still highly reliable algorithms

• Two techniques illustrated with bit-string equality protocol:

1. Exploit an abundance of witnesses

2. Repeat random computation to increase success probability

c© 2009, T. Verhoeff @ TUE.NL 20/20 Ch. 6: Randomization

