Number Guessing with Lies

Tom Verhoeff

Department of Mathematics & Computer Science Software Engineering & Technology

www.win.tue.nl/~wstomv/edu/hci

The Game

- 1. Alice picks a number N in the range 0 through 15.
- 2. Bob asks a series of Yes/No questions.
- 3. Alice answers each question, and may lie once.
- 4. Bob then tells the number N and which answer was a lie (if any).

How can Bob do this?

|--|

		1	2	5	6	8	11	12		15
--	--	---	---	---	---	---	----	----	--	----

				8	9	10	11	12	13	14	15

1 2 4 4 7 9 10 12 15

4 5 6 7 12 13 14 19

2 3 6 7 10 11 14 15

		1	3	5	7	9	11	13	15
--	--	---	---	---	---	---	----	----	----

Figuring it out

- Let the answers be a_i (0 = No; 1 = Yes) for i = 1, ..., 7
- Compute

$$p_1 = a_1 + a_3 + a_5 + a_7 \pmod{2}$$

 $p_2 = a_2 + a_3 + a_6 + a_7 \pmod{2}$
 $p_3 = a_4 + a_5 + a_6 + a_7 \pmod{2}$

- Compute $q = p_1 + 2p_2 + 4p_3$ (each p_i is 0 or 1)
- If q = 0, then there was no lie
- If $q \neq 0$, then answer a_q was a lie: flip a_q (replace it by $1 a_q$)
- Alice' secret number was $N = 8a_3 + 4a_5 + 2a_6 + a_7$

How It Works

Q_3								8	9	10	11	12	13	14	15
Q_5				4	5	6	7					12	13	14	15
Q_6		2	3			6	7			10	11			14	15
Q_7	1		3		5		7		9		11		13		15
Q_1	1		3	4		6		8		10			13		15
Q_2	1	2			5	6		8			11	12			15
Q_{4}	1	2		4			7		9	10		12			15

Questions Q_3 , Q_5 , Q_6 , and Q_7 do a *Binary Search*; works *without* lie.

The three other questions help detect a single lie:

.
$$Q_1$$
 . Q_3 . Q_5 . Q_7
. . Q_2 Q_3 . . Q_6 Q_7
. . . Q_4 Q_5 Q_6 Q_7

There are $8 = 2^3$ possibilities: no lie, or 7 possible single lies.

Error-Correcting Hamming(7,4) Code

Less efficient solution repeats questions Q_3 , Q_5 , Q_6 , Q_7 three times.

We used a Hamming(7,4) code.

It has 4 data bits, 3 parity/check bits, and can correct one bit error.

The 4 data bits encode a value from 0 through 15.

Each question corresponds to the transmission of a bit.

A lie corresponds to a bit error.

Can be generalized to $2^k - k - 1$ data bits and k parity/check bits.

Variation (for kids): lie every time except once.