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What is Information?
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Qualitative Definition of Information

You receive (consume) information when obtaining a (possibly partial)
answer to a question; i.e., information reduces uncertainty

The amount of information depends on:

e [ he size of the reduction in uncertainty:
More answers possible = more information

E.g.: The outcome of a coin flip versus a die roll

e [ he probabilities involved:
LLower probability of an answer = more information

E.g.: The answer "No" versus "Yes' to "Will you marry ...7"
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Anti-Information

People like/want to consume information (obtain more certainty)

They even are willing to pay in order to get into a situation where
they can enjoy the consumption of information: gambling

A casino sells anti-information (uncertainty), and
subsequently provides information (certainty) as the game evolves;
once you know the outcome, the fun is over

Noise on a communication channel increases uncertainty
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Shannon’s Quantitative Definition of Information

Let the possible answers be A; (i € S) with probabilities p; satisfying

O<p;<1lforallzesS

> =1l

€5

Amount of information in answer A; equals Z(A;) = |0921% = — 109> p;

T(A;) can (also) be viewed as the amount of surprise in A,

Unit of information : receiving an answer whose probability is 0.5
pa = 5, thus Z(A) = logp 55 = 1 bit

bit = binary digit (equiprobable choice among two options)
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Properties of Shannon’s Information Measure

e 7(A) —» oo if py — 0 (impossible answer, never occurs)

e 7(A) =0 (no information) if p4 = 1 (certainty): —log>1 =0

e 0<TZ(A)<oo forall0<pyu <1

e 7(A) <Z(B) if and only if p4 > pp

e 7(AB) <I(A)+Z(B) (Z is subadditive)

e 7(AB) =ZI(A)+Z(B) if A and B are statistically independent,
where AB stands for receiving answer A followed by answer B
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Entropy: Mean Amount of Information

Information Source S : repeatedly answers questions (an oracle)
Message (answer) stored in memory or communicated over a channel
Entropy H(S) : mean (expected) amount of information per message
Examples of stochastic sources:

e independent identically distributed (i.d.d.) random variables
also known as discrete memoryless source

Entropy H(S) =) pZ(i) =— > p;lodop;
i€S i€S

e Markov proces (dependencies possible); good model for language
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Entropy: Example 1

Source: Two messages, with probabilities p and 1 —p =g

Entropy H(p) = —plogop — glogs g

p|1/2] 13 | 14 | 1/5 | 1/9 | 1/10
H| 1 |0.918296 0.811278|0.721928|0.503258 | 0.468996
Entropy
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Entropy: Example 2

Source: N messages, each with probability p =1/N

Entropy H(IN) = —Nplogs p = logo N

N|2| 3 |4 5 | 6 | 7 |8
H | 1]1.58496|2|2.32193 | 2.58496 | 2.80735 | 3
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Entropy: Example 3

Source: Three messages, with probabilities p, p, and 1 —2p =g¢

Entropy H(p) = —2plogop — qlogs g

p| 1/3 |1/4| 1/5 | 1/6 | 1/7 | 1/8 | 1/9
H | 1.58496 | 1.5 | 1.37095 | 1.25163 | 1.14883 | 1.0612 | 0.986427

Entropy
15/
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Properties of Entropy

e Entropy bounds: 0 < H(S) <log, N, for source with N messages
e H(S)=0 ifandonlyifpy = 1 for some message A € S (certainty)

e H(S)=1log, N if and only if py = % for all A (max. uncertainty)

Entropy in physics measures the amount of disorder in a system
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Source Coding Theorem

Source Coding Theorem (Shannon, 1948):

On average, each message can be encoded in =~ H bits,
where H is the entropy of the message source.

More precisely:

For every € > O,

there exist lossless encoding/decoding algorithms such that
each message is encoded in < H + ¢ bits on average,

and

no algorithm can achieve < H bits per message on average.

This theorem motivates the relevance of entropy.
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Source Coding Theorem: Proof

The proof of this theorem is too involved to present here.

However, it is noteworthy that basically a ‘random’ code works.

T he more messages are packed together and ‘randomly’ encoded, the
better it approaches the entropy.

The engineering challenge is to find codes with practical encoding
and decoding algorithms.
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Source Coding Theorem: Example 1

e Two messages, A and B, each with probability 0.5 (H=1)
Encode A as O, and B as 1

Mean number of bits per message: 0.5x14+05x1=1

e Two messages, A and B with probabilities 0.2 and 0.8 (H = 0.72)

Encoding A as 0, and B as 1 gives a mean of 1 bit / message

message sequence| A | BA | BBA | BBB
probability 0.2]10.160.128 | 0.512
encode as OO0 | 010 | O11 1

bits / message 2 | 3/2 1 1/3

0.2x240.16 x3/2+0.128x140.512x 1/3 = 0.94 bits/message
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Source Coding Theorem: Example 2

Three messages, A, B, and C, each with probability 1/3 (H = 1.58)
Encode A as 00, B as 01, and C as 10: 2 bits / message

Can be improved (on average):

33 =27 sequences of 3 messages (all with the same probability)

Encode each sequence of 3 messages in 5 bits (2° = 32 > 27)

Mean number of bits per message: 5/3 = 1.67
32 = 243 sequences of 5 messages, encode in 8 bits (28 = 256 > 243)
Mean number of bits per message: 8/5= 1.6
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Source Coding Theorem: Example 3

Three messages: A, B, C, with probabilities 1/4, 1/4, 1/2 (H=1.5)
Encode A as 00, B as 01, and C as 10: 2 bits / message
Can be improved (on average):

Encode A as 00, B as 01, and C as 1: 1.5 bits / message
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Practical Source Coding

e For discrete memoryless source with known probabilities:

Huffman Prefix Code : construct optimal encoding tree

Possibly, apply to blocks of messages

e In practice, probabilities are not known and may be dependent:

Lempel-Ziv Code : parse input, build dictionary, encode
Dictionary contains shortest newly encountered subsequences

Applied in the zip compression standard

Price paid for better source codes: higher latency
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Noisy Channels

The capacity of a communication channel measures how many bits,
on average, it can deliver reliably per transmitted bit.

A noisy channel corrupts the transmitted messages ‘randomly’.

Sender Channel Receiver

Noise

The entropy of the noise must be subtracted from the raw capacity
(i.e., 1) to obtain the effective capacity.
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Noisy-Channel Models

Some forms of noise can be modeled as a discrete memoryless source
that is ‘added’ (modulo 2) to the transmitted message bits:

A bit is transmitted erroneously (flipped) with probability p
and transmitted correctly with probability 1 —p = gq.

Also known as binary symmetric channel with bit-error probability p

Other models: binary erasure, bursty bit error (cf. scratch on CD)
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Noisy-Channel Example

Binary symmetric channel:
e p=3: H(p) =1, no information can be transmitted

o p= 5 H(p) =0.413817, so < 0.6 bits can be transmitted

Out of every 7 bits, 7 x 0.413817 = 2.89672 are ‘useless’, and
only 4.10328 bits remain for information.

What if p > 37
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Noisy-Channel Coding Theorem

Noisy-Channel Coding Theorem (Shannon, 1948):

Given: a channel with capacity C' and a source with entropy H.
If H < C, then for every € > O,

there exist encoding/decoding algorithms
such that the source is transmitted with a residual error < g,

and

if H > C, then the source cannot be reproduced without a loss
of at least H — C..

This theorem motivates the relevance of channel capacity.
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Noisy-Channel Coding Theorem: Proof

T he proof of this theorem is, again, too involved to present here.

However, again, a ‘random’ code basically works.

T he more messages are packed together and ‘randomly’ encoded, the
better it approaches the capacity.

The engineering challenge is to find codes with practical encoding
and decoding algorithms.

© 2010, T. Verhoeff @ TUE.NL 22/29 Information



Error Control Coding

T he Noisy-Channel Coding Theorem does not promise error-free trans-
mission.

It only states that the residual error can be made as small as desired.

Idea: Use excess capacity C—H to transmit error-control information .
Encoding is imagined to consist of source bits and error-control bits.
Code rate = number of source bits / number of bits in encoding

Error-control information is redundant but protects against noise.
Two techniques for error control:

e Error-detecting code with feedback and retransmission

e Error-correcting code (a.k.a. forward error correction)
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Error-detecting Codes

e Append a parity control bit:
Append extra (redundant) bit making total number of 1's even

Can detect a single bit error, but cannot correct it;
code rate = k/(k+ 1), for k source bits

Appending a parity bit to each source bit repeats the source;

code rate = 1/2

e Append a Cyclic Redundancy Check (CRC, generalized parity):
E.g., 32 check bits computed from the source bits

Only for detection, not correction
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Error-detecting Decimal Codes in Practice

e Dutch Bank Account Number (IBAN)

e International Standard Book Number (ISBN)

e Burgerservicenummer (BSN, Dutch Citizen's Service Number)

e Student Identity Number at TU/e
These all use a single check digit (or X in ISBN-10)
International Bank Account Numbers (IBAN) use two check digits
Main goal: detect human error (single digit, or neighbor transposition)
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Error-correcting Codes: Example 1

Repetition code: Repeat each source bit k times
Example: Source bits 10110 are encoded as 111000111111000
Code rate = 1/3 (so, this introduces a lot of redundancy)
Can correct a single bit error per encoded source bit:

Decode by majority voting

Cannot correct two bit errors (in that case, decoding makes it worse!)
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Error-correcting Codes: Example 2

Hamming(7,4) error-correcting code

Every block of 4 source bits is encoded in 7 bits; code rate = 4/7

Encoding algorithm:

e Place the 4 source bits
in the circles at positions d;

e Compute 3 parity bits p; such that
each circle contains
an even number of 1's

Decoding algorithm can correct 1 error: redo the encoding and
use differences in the recomputed party bits to locate an error
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Practical Noisy-Channel Coding

Used in (deep-space) communication, on audio CDs and DVDs, ...
Convolutional codes versus Block codes
Most systematic codes known are bad; good block codes:

e Concatenated Reed-Solomon codes (on CD, DVD)
e Low-Density Parity-Check codes (LDPC)

e [urbo codes
Price paid for better channel codes: higher latency

Consult an expert
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Summary

e Notion of information, entropy, capacity of noisy channel
e Storage and communication of information

e Source coding : compress data, remove redundancy

Source Coding/Lossless Compression Theorem establishes limits

e Channel coding: protect data against random errors (noise),
add redundancy

Noisy-Channel Coding Theorem establishes limits

e Encryption : protect data against unauthorized access
(cf. cryptography)
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