
A Domain-Specific Language with Semantics for Shot Puzzles

COREF work in progress

Presented at SET Meeting

11 January 2011, TU/e

Tom Verhoeff
In cooperation with Ulyana Tikhonova and Maarten Manders

Eindhoven University of Technology
Dept. of Math. & CS

Model-Drive Software Engineering

Software Engineering & Technology

c© 2012, T. Verhoeff @ TUE.NL 1/30 DSL for Shot Puzzles

Motivation behind COREF

• Software components are systems exhibiting behavior

• Wanted: tools to define, to generate code, to analyze, to . . .

• Approach: Domain Specific Language (syntax) to describe . . .

• Define formal semantics for this language once in DSL framework

• Use model transformations to realize tools

c© 2012, T. Verhoeff @ TUE.NL 2/30 DSL for Shot Puzzles

Goals of Shot Puzzle Case Study

• Become familiar with state of the art in DSL tooling

Use Eclipse Modeling Framework (EMF)

• Find out what it takes to define semantics in a DSL framework

Take ad hoc approach

Why Shot puzzles:

• involve behavior

• are simple but not trivial

c© 2012, T. Verhoeff @ TUE.NL 3/30 DSL for Shot Puzzles

Shot Puzzle

c© 2012, T. Verhoeff @ TUE.NL 4/30 DSL for Shot Puzzles

Shot Puzzle: Dynamics (informal)

• A move consists of pushing a marble (horizontally or vertically)

over an empty cell hitting another marble.

• The push propagates across a chain of aligned marbles.

• The last marble being hit disappears from the grid.

~ ~ ~-

A B C ~ ~ ~-

A B C ~ ~ ~-

A B C ~ ~A B

start configuration intermediate 1 intermediate 2 end configuration

c© 2012, T. Verhoeff @ TUE.NL 5/30 DSL for Shot Puzzles

Shot Puzzle: Objective

The objective is to remove all marbles but one.

c© 2012, T. Verhoeff @ TUE.NL 6/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Statics

A Shot puzzle is a triple (M,G ,g), where

• M is a finite set (the marbles),

• G ⊆ Z× Z (the grid), and

• g : M � G is an injection from M to G (marble locations).

Mapping g is called the initial configuration of the puzzle.

Injection: no two marbles at the same location

c© 2012, T. Verhoeff @ TUE.NL 7/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Example

({A,B,C },G , {A 7→ (0, 2),B 7→ (3, 2),C 7→ (5, 2) })

where

G = Z6 × Z5 = { (x , y) ∈ Z× Z | 0 ≤ x < 6 ∧ 0 ≤ y < 5 }

0

1

2

3

4

0 1 2 3 4 5

A B C

c© 2012, T. Verhoeff @ TUE.NL 8/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Push

A push is a pair (m, v), where

• m ∈M is a marble of the puzzle, and

• v ∈ DIR = {EAST ,NORTH,WEST , SOUTH } is a direction vector

with

EAST = (1, 0)

NORTH = (0, 1)

WEST = (−1, 0)
SOUTH = (0,−1)

c© 2012, T. Verhoeff @ TUE.NL 9/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Current Configuration

The current configuration is given by a partial injection from M to G ,

that is, g : M 7� G .

The set of marbles present on the grid is given by dom(g) , that is,

the subset of M for which g is defined.

The range of g, denoted by ran(g) , is the set of grid locations with

a marble.

c© 2012, T. Verhoeff @ TUE.NL 10/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Push Applicability

A push (m, v) can be applied in configuration g whenever

• m is present on the grid: m ∈ dom(g) , and

• its v -neighbor is empty: g(m) + v 6∈ ran(g) , and

• there exists a k ∈ N+ such that

– m ‘sees’ a marble in direction v : g(m) + kv ∈ ran(g) , and

– the path to that marble belongs to the grid:

{ ` : N | 1 ≤ ` ≤ k • g(m) + `v } ⊆ G

The latter condition is superfluous when the grid is convex .

c© 2012, T. Verhoeff @ TUE.NL 11/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Dynamic Configuration

A dynamic configuration is a pair (g,h) of a configuration and a

push mapping h : M 7→ DIR, such that

• only marbles present on the grid can have a push:

dom(h) ⊆ dom(g)

• and at most one marble has a push:

#dom(h) ≤ 1

Configuration g with push (m, v) corresponds to dynamic configura-

tion (g, {m 7→ v }) .

c© 2012, T. Verhoeff @ TUE.NL 12/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Step

A dynamic configuration (g,h) where h = {m 7→ v } evolves in one of

three ways to a next dynamic configuration step(g,h) = (g′,h′) :

1. ~- If g(m) + v ∈ G and g(m) + v 6∈ ran(g) then ~-

(g′,h′) = (g ⊕ {m 7→ g(m) + v },h)

2. ~ ~- If g(m)+ v ∈ G and g(m)+ v ∈ ran(g), let m′ ∈M such that

g(m′) = g(m) + v ; then ~ ~-

(g′,h′) = (g, {m′ 7→ v })

3. ~- If g(m) + v 6∈ G then

(g′,h′) = ({m } −C g,∅)

c© 2012, T. Verhoeff @ TUE.NL 13/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Move

If grid G is finite , then repeated (nested) application of step to dy-

namic configuration (g,h) eventually yields a next configuration of the

form (g′,∅).

Repeated application of step is as a function steps from dynamic con-

figurations to configurations, inductively defined by

steps(g,∅) = g

steps(g, {m 7→ v }) = steps(step(g, {m 7→ v }))

Note that steps(g,h) indeed has one fewer marble than g.

Define move(g, (m, v)) = steps(g, {m 7→ v }) as the result of the move.

c© 2012, T. Verhoeff @ TUE.NL 14/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Moves Example

(B,E)
↗

~B

~C (C ,W)←− ~ ~B C ~B

↑(C ,W) ↑(B,W) ↑(B,W)

~ ~B C (C ,W)←− ~ ~ ~A B C (A,E)−→ ~ ~A B

↓(B,E) ↓(B,E) ↓(A,E)

~B ~ ~A B (A,E)−→ ~A

~B
(B,W)
↙

c© 2012, T. Verhoeff @ TUE.NL 15/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Objective

Reduce the set of marbles on the grid to a singleton by a sequence

of moves.

c© 2012, T. Verhoeff @ TUE.NL 16/30 DSL for Shot Puzzles

Alternative Mathematical Model for Shot Puzzles

There are numerous, equivalent ways to model Shot puzzles formally.

Model development is a process with trade offs and design decisions .

Alternative: Simplify statics by omitting the grid.

A Shot puzzle is a pair (M,g), where

• M is a finite set (the marbles), and

• g : M � Z2 is an injection from M to Z× Z (marble locations).

Complicates dynamics a bit (requiring quantifiers).

c© 2012, T. Verhoeff @ TUE.NL 17/30 DSL for Shot Puzzles

Alternative Mathematical Model for Shot Puzzles: Dynamics

Dynamic configuration (g,h) where h = {m 7→ v } evolves in one of

two ways to a next dynamic configuration step(g,h) = (g′,h′):

1. m will hit m′ If ∃ j : N+ • g(m) + jv ∈ ran(g), then let

k = min{ j : N+ | g(m) + jv ∈ ran(g) • j }

and let m′ ∈M such that g(m′) = g(m) + kv ; then

(g′,h′) = (g ⊕ {m 7→ g(m) + (k − 1)v }, {m } −C h ⊕ {m′ 7→ v })

2. m disappears If ∀ j : N+ • g(m) + jv 6∈ ran(g), then

(g′,h′) = ({m } −C g,∅)

c© 2012, T. Verhoeff @ TUE.NL 18/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Validation

Formulate basic properties and prove them:

• A move reduces the number of marbles by one.

• Marble identity is irrelevant for solutions (isomorphism).

• The rules are symmetric under rotation over 90◦ and reflection.

• The size of a rectangular grid does not matter (for solvability).

Compare to unit test cases expressing expectations about a program.

c© 2012, T. Verhoeff @ TUE.NL 19/30 DSL for Shot Puzzles

Mathematical Model for Shot Puzzles: Reflection

• Implicitly defined state space

• More work than expected: Shot puzzles are not so trivial

Two levels of granularity: step and move

• More useful than expected: details matter and are discovered

• Easy to make mistakes

• Tool support desirable

• Z notation is very compact and usable

(and I did not (yet) use Z schemas)

c© 2012, T. Verhoeff @ TUE.NL 20/30 DSL for Shot Puzzles

Enter Software

• How to describe concrete Shot puzzles? Need notation/language.

• How to process Shot puzzles?

• Ad hoc approach: define Shot-specific data types and I/O routines

• MDSE approach:

– Define DSL and generate I/O routines

– Define transformations to other domains, and use their tools

c© 2012, T. Verhoeff @ TUE.NL 21/30 DSL for Shot Puzzles

Domain Specific Languages

• Benefits:

– Tooling available to support DSL development

– DSL is independent of programming language

– Syntax-aware editor for your DSL comes free

• Challenges:

– Deal with semantics

– Deal with (meta)model (co)evolution

c© 2012, T. Verhoeff @ TUE.NL 22/30 DSL for Shot Puzzles

DSL for Shot

• Abstract Syntax, the meta-model

Compare to Abstract Data Type

• Eclipse Modeling Framework (EMF), using Ecore

OCL for contraints

• Concrete Syntax (using EMFText)

• Semantics via meta-model extension of abstract syntax

and model-to-model transformation

• Connect to other tools: via M2M, M2T, and T2M transformations

c© 2012, T. Verhoeff @ TUE.NL 23/30 DSL for Shot Puzzles

Abstract Syntax: Meta-Model for Statics

c© 2012, T. Verhoeff @ TUE.NL 24/30 DSL for Shot Puzzles

Meta-Model Derived Attributes

In EClass Configuration:

property marbles : Marble[*] { derived volatile }

{

derivation: positions->collect(marble);

}

property points : Point[*] { derived volatile }

{

derivation: positions->collect(point);

}

c© 2012, T. Verhoeff @ TUE.NL 25/30 DSL for Shot Puzzles

Meta-Model Constraints

In EClass Puzzle:

invariant ExactlyAllMarblesHaveInitialPosition:

marbles->asBag() = configuration.marbles->asBag();

invariant MarbleNamesUnique:

marbles->forAll(m1 : Marble, m2 : Marble

| m1.name = m2.name implies m1 = m2)

In EClass Configuration:

invariant MarblePositionsUnique:

points->forAll(p1 : Point, p2 : Point

| p1.equals(p2) implies p1 = p2)

c© 2012, T. Verhoeff @ TUE.NL 26/30 DSL for Shot Puzzles

Conrete Syntax: Grammar (without pretty-printing info)

RULES {

Puzzle ::=

"Shot_puzzle" name[IDENTIFIER] "{"

"marbles" marbles ("," marbles)* ";"

configuration

"}";

Marble ::= name[IDENTIFIER];

Configuration ::= "configuration" "{" (positions)+ "}";

MarblePosition ::= marble[] "@" point ";";

Point ::= "(" x[INTEGER] "," y[INTEGER] ")";

}

c© 2012, T. Verhoeff @ TUE.NL 27/30 DSL for Shot Puzzles

Concrete Syntax: Example of Textual Shot Puzzle Description

Shot_puzzle Easy {

marbles A, B, C;

configuration {

A @ (0, 2);

B @ (3, 2);

C @ (5, 2);

}

}

c© 2012, T. Verhoeff @ TUE.NL 28/30 DSL for Shot Puzzles

Meta-Model for Semantic Concepts (old version)

c© 2012, T. Verhoeff @ TUE.NL 29/30 DSL for Shot Puzzles

Conclusion

• Modeling concepts are usable to express semantics

But: still useful to develop a mathematical model first

• EMF tools are quite usable, but still need further maturing

Especially: Refactoring (cf. Refactory)

c© 2012, T. Verhoeff @ TUE.NL 30/30 DSL for Shot Puzzles

