# IMO 2007, Problem 1 

Tom Verhoeff

4 August 2007

## Introduction

I will present a calculational solution to Problem 1 of the 48th International Mathematical Olympiad (IMO) held in July 2007 in Hanoi, Vietnam [3]. This is the first of six problems at IMO 2007. On each of the two competition days, the contestants were given three problems to be solved in four and a half hours.

## Problem Statement

The original problem statement reads:
Problem 1. Real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are given. For each $i$ $(1 \leq i \leq n)$ define

$$
d_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\}-\min \left\{a_{j}: i \leq j \leq n\right\}
$$

and let

$$
d=\max \left\{d_{i}: 1 \leq i \leq n\right\} .
$$

(a) Prove that, for any real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{*}
\end{equation*}
$$

(b) Show that there are real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that equality holds in (*).

## Solution

It surprises me a bit that the problem statement mentions no restrictions on $n$, for example that it is a nonnegative integer. The case $n=0$ is uninteresting (or ill-defined, if you prefer). So, let us assume $1 \leq n$.

I will not constantly repeat the range restriction on indices. Indices range over the interval $\{1,2, \ldots, n\}$. For maximum and minimum I use the notation $\uparrow$ and $\downarrow$.

The notation that I use is based on that of Edsger W. Dijkstra [1], who wrote a large collection of (mostly technical) essays [2], many of them with inspiring solutions to nice problems.

The problem statement can now be disentangled as follows:
Given is a sequence $a$ of $n$ real numbers. For each $i$ define

$$
\begin{aligned}
m . i & =(\downarrow j: i \leq j: a \cdot j) \\
M . i & =(\uparrow j: j \leq i: a \cdot j) \\
d . i & =M . i-m . i \\
d & =(\uparrow i:: d . i) .
\end{aligned}
$$

(a) Prove that, for any ascending sequence $x$ of $n$ real numbers,

$$
\begin{equation*}
(\uparrow i::|x . i-a . i|) \geq \frac{d}{2} . \tag{1}
\end{equation*}
$$

(b) Show that there is an ascending sequence $x$ of $n$ real numbers with

$$
\begin{equation*}
(\uparrow i::|x . i-a . i|)=\frac{d}{2} . \tag{2}
\end{equation*}
$$

Note the different ranges in the definitions of m.i and M.i. For increasing $i$, the range of $m . i$ decreases (in terms of set containment), and the range of M.i increases. Hence, both m. $i$ and M.i are ascending in $i$ :

$$
\begin{aligned}
m \cdot i & \leq m \cdot j \\
M . i & \leq M \cdot j
\end{aligned}
$$

for $i \leq j$. It is also worthwhile to observe that for all $i$

$$
\begin{equation*}
m . i \leq a . i \leq M . i \tag{3}
\end{equation*}
$$

This yields $d . i \geq 0$ and, hence, also $d \geq 0$.

The goal of part (a) is to prove (1), which can be restated as

$$
\begin{equation*}
(\exists i::|x . i-a . i| \geq d / 2) \tag{4}
\end{equation*}
$$

The definition of $d$ involves several quantifications. Let's analyze it:

$$
\begin{aligned}
& d=(\uparrow i:: d . i) \\
\Rightarrow \quad & \{\text { property of } \uparrow, \text { guided by } \exists \text {-shape of goal }(4)\} \\
& (\exists i:: d=d . i) \\
\equiv \quad & \{\text { definition of } d . i\} \\
& (\exists i:: d=M . i-m . i) \\
\equiv \quad & \{\text { definitions of } M . i \text { and } m . i, \text { using a fresh dummy for } m . i\} \\
& (\exists i:: d=(\uparrow j: j \leq i: a . j)-(\downarrow k: i \leq k: a . k)) \\
\Rightarrow \quad & \{\text { property of } \uparrow \text { and } \downarrow, \text { guided by } \exists \text {-shape of goal }(4)\} \\
& (\exists i, j, k: j \leq i \leq k: d=a . j-a . k)))
\end{aligned}
$$

Now, take $j$ and $k$ with $j \leq k$ such that

$$
\begin{equation*}
a . j-a . k=d \tag{5}
\end{equation*}
$$

Note that $x . j \leq x . k$ and thus

$$
\begin{equation*}
x . k-x . j \geq 0 \tag{6}
\end{equation*}
$$

Adding (5) and (6) yields

$$
\begin{equation*}
a . j-x . j+x . k-a . k \geq d . \tag{7}
\end{equation*}
$$

Consequently (generalized pigeon-hole principle, or converse of monotonicity of addition),

$$
a . j-x . j \geq d / 2 \quad \vee \quad x . k-a . k \geq d / 2 .
$$

Using $d \geq 0$, this establishes (4) and thereby settles part (a) of the problem.

## Part (b)

Once we have part (a), the goal of part (b) can be weakened to
Show that there is an ascending sequence $x$ of $n$ real numbers with

$$
\begin{equation*}
(\uparrow i::|x . i-a . i|) \leq \frac{d}{2} . \tag{8}
\end{equation*}
$$

Equation (8) can be rephrased as

$$
\begin{equation*}
(\forall i::|x . i-a . i| \leq d / 2) \tag{9}
\end{equation*}
$$

By definition of $d$ we have

$$
\begin{equation*}
(\forall i:: M . i-m . i \leq d) \tag{10}
\end{equation*}
$$

In view of (3) - m. $i \leq a . i \leq M . i$ - it seems sweetly reasonable to take

$$
x . i=\frac{M . i+m . i}{2},
$$

that is, take $x . i$ as midpoint of $m . i$ and M.i. It remains to ascertain that this sequence $x$ is ascending and that it satisfies (9).

Ascendingness follows immediately from the ascendingness of $m$ and $M$. And (9) follows from (3) and (10). This is intuitively obvious, but here is a calculation:

$$
\begin{aligned}
& |a . i-x . i| \\
= & \{\text { definition of } x . i\} \\
& |a . i-(M . i+m . i) / 2| \\
= & \quad\{\text { rearrange terms }\} \\
& |(a . i-M . i) / 2+(a . i-m . i) / 2| \\
\leq \quad & \{\text { triangle inequality }\} \\
& |(a . i-M . i) / 2|+|(a . i-m . i) / 2| \\
= & \quad\{(3): m . i \leq a . i \leq M . i\} \\
& \quad(M . i-a . i) / 2+(a . i-m . i) / 2 \\
= & \quad\{\text { algebra }\} \\
& (M . i-m . i) / 2 \\
\leq \quad & \{(10)\} \\
& d / 2
\end{aligned}
$$

Q.E.D.

## Conclusion

I must confess that initially I drew some diagrams, only to find out that they did not really help me in giving a rigorous and elegant proof. In hindsight, studying the case $n=2$ actually suffices for this problem.

The definition of $d$ could have been simplified as follows, but it is not necessary to discover this explicitly:

$$
\begin{aligned}
& d \\
& =\{\text { definition of } d\} \\
& \text { ( } \uparrow i:: d . i \text { ) } \\
& =\quad\{\text { definition of } d . i\} \\
& \text { ( } \uparrow i:: M . i-m . i) \\
& =\quad\{\text { definition of } M . i \text { and } m . i \text {, using a fresh dummy for } m . i\} \\
& (\uparrow i::(\uparrow j: j \leq i: a . j)-(\downarrow k: i \leq k: a . k)) \\
& =\quad\{-(\downarrow k:: E . k)=(\uparrow k::-E . k)\} \\
& (\uparrow i::(\uparrow j: j \leq i: a \cdot j)+(\uparrow k: i \leq k:-a . k))) \\
& =\{\text { distribute }+ \text { over } \uparrow \text { (nonempty range, twice) }\} \\
& (\uparrow i::(\uparrow j, k: j \leq i \leq k: a . j-a . k))) \\
& =\quad\{\text { change order of } \uparrow \text { quantifcations }\} \\
& (\uparrow j, k: j \leq k:(\uparrow i: j \leq i \leq k: a . j-a . k))) \\
& =\quad\{a . j-a . k \text { does not depend on } i \text {, the range for } i \text { is nonempty }\} \\
& (\uparrow j, k: j \leq k: a . j-a . k)))
\end{aligned}
$$

There are various alternative definitions for sequence $x$ in part (b), such as

$$
\begin{aligned}
& x . i=M . i-d / 2 \\
& x . i=m . i+d / 2 .
\end{aligned}
$$

In summary, the two "key" properties used in my solution are:

$$
\begin{aligned}
& b+c \geq d \Rightarrow b \geq \frac{d}{2} \vee c \geq \frac{d}{2} \\
& b \leq a \leq c \Rightarrow\left|a-\frac{b+c}{2}\right| \leq \frac{c-b}{2} .
\end{aligned}
$$

## References

[1] Edsger W. Dijkstra, 1930-2002.
Web: http://en.wikipedia.org/wiki/Edsger_Dijkstra
[2] E. W. Dijkstra Archive, University of Texas at Austin.
Web: http://www.cs.utexas.edu/users/EWD/,
[3] 48th International Mathematical Olympiad, 19-31 July 2007, Vietnam. Web: http://www.imo-official.org/year_country_r.asp?year=2007

