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Introduction

I will present a calculational solution to Problem 1 of the 48th International
Mathematical Olympiad (IMO) held in July 2007 in Hanoi, Vietnam [3]. This
is the first of six problems at IMO 2007. On each of the two competition
days, the contestants were given three problems to be solved in four and a
half hours.

Problem Statement

The original problem statement reads:

Problem 1. Real numbers a1, a2, . . . , an are given. For each i
(1 ≤ i ≤ n) define

di = max{aj : 1 ≤ j ≤ i} −min{aj : i ≤ j ≤ n}

and let
d = max{di : 1 ≤ i ≤ n}.

(a) Prove that, for any real numbers x1 ≤ x2 ≤ · · · ≤ xn,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ d

2
. (∗)

(b) Show that there are real numbers x1 ≤ x2 ≤ · · · ≤ xn such
that equality holds in (∗).
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Solution

It surprises me a bit that the problem statement mentions no restrictions
on n, for example that it is a nonnegative integer. The case n = 0 is unin-
teresting (or ill-defined, if you prefer). So, let us assume 1 ≤ n.

I will not constantly repeat the range restriction on indices. Indices range
over the interval { 1, 2, . . . , n }. For maximum and minimum I use the nota-
tion ↑ and ↓.

The notation that I use is based on that of Edsger W. Dijkstra [1], who
wrote a large collection of (mostly technical) essays [2], many of them with
inspiring solutions to nice problems.

The problem statement can now be disentangled as follows:

Given is a sequence a of n real numbers. For each i define

m.i = (↓ j : i ≤ j : a.j)

M.i = (↑ j : j ≤ i : a.j)

d.i = M.i−m.i

d = (↑ i :: d.i) .

(a) Prove that, for any ascending sequence x of n real numbers,

(↑ i :: |x.i− a.i|) ≥ d

2
. (1)

(b) Show that there is an ascending sequence x of n real numbers
with

(↑ i :: |x.i− a.i|) =
d

2
. (2)

Note the different ranges in the definitions of m.i and M.i. For increas-
ing i, the range of m.i decreases (in terms of set containment), and the range
of M.i increases. Hence, both m.i and M.i are ascending in i:

m.i ≤ m.j

M.i ≤ M.j

for i ≤ j. It is also worthwhile to observe that for all i

m.i ≤ a.i ≤ M.i . (3)

This yields d.i ≥ 0 and, hence, also d ≥ 0.
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The goal of part (a) is to prove (1), which can be restated as

(∃ i :: |x.i− a.i| ≥ d/2) (4)

The definition of d involves several quantifications. Let’s analyze it:

d = (↑ i :: d.i)

⇒ { property of ↑, guided by ∃-shape of goal (4) }
(∃ i :: d = d.i)

≡ { definition of d.i }
(∃ i :: d = M.i−m.i)

≡ { definitions of M.i and m.i, using a fresh dummy for m.i }
(∃ i :: d = (↑ j : j ≤ i : a.j)− (↓ k : i ≤ k : a.k))

⇒ { property of ↑ and ↓, guided by ∃-shape of goal (4) }
(∃ i, j, k : j ≤ i ≤ k : d = a.j − a.k)))

Now, take j and k with j ≤ k such that

a.j − a.k = d . (5)

Note that x.j ≤ x.k and thus

x.k − x.j ≥ 0 . (6)

Adding (5) and (6) yields

a.j − x.j + x.k − a.k ≥ d . (7)

Consequently (generalized pigeon-hole principle, or converse of monotonicity
of addition),

a.j − x.j ≥ d/2 ∨ x.k − a.k ≥ d/2 .

Using d ≥ 0, this establishes (4) and thereby settles part (a) of the problem.

Part (b)

Once we have part (a), the goal of part (b) can be weakened to

Show that there is an ascending sequence x of n real numbers
with

(↑ i :: |x.i− a.i|) ≤ d

2
. (8)
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Equation (8) can be rephrased as

(∀ i :: |x.i− a.i| ≤ d/2) . (9)

By definition of d we have

(∀ i :: M.i−m.i ≤ d) (10)

In view of (3) — m.i ≤ a.i ≤ M.i — it seems sweetly reasonable to take

x.i =
M.i + m.i

2
,

that is, take x.i as midpoint of m.i and M.i. It remains to ascertain that
this sequence x is ascending and that it satisfies (9).

Ascendingness follows immediately from the ascendingness of m and M .
And (9) follows from (3) and (10). This is intuitively obvious, but here is a
calculation:

|a.i− x.i|
= { definition of x.i }

|a.i− (M.i + m.i)/2|
= { rearrange terms }

|(a.i−M.i)/2 + (a.i−m.i)/2|
≤ { triangle inequality }

|(a.i−M.i)/2|+ |(a.i−m.i)/2|
= { (3): m.i ≤ a.i ≤ M.i }

(M.i− a.i)/2 + (a.i−m.i)/2

= { algebra }
(M.i−m.i)/2

≤ { (10) }
d/2

Q.E.D.

Conclusion

I must confess that initially I drew some diagrams, only to find out that they
did not really help me in giving a rigorous and elegant proof. In hindsight,
studying the case n = 2 actually suffices for this problem.
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The definition of d could have been simplified as follows, but it is not
necessary to discover this explicitly:

d

= { definition of d }
(↑ i :: d.i)

= { definition of d.i }
(↑ i :: M.i−m.i)

= { definition of M.i and m.i, using a fresh dummy for m.i }
(↑ i :: (↑ j : j ≤ i : a.j)− (↓ k : i ≤ k : a.k))

= { −(↓ k :: E.k) = (↑ k :: −E.k) }
(↑ i :: (↑ j : j ≤ i : a.j) + (↑ k : i ≤ k : −a.k)))

= { distribute + over ↑ (nonempty range, twice) }
(↑ i :: (↑ j, k : j ≤ i ≤ k : a.j − a.k)))

= { change order of ↑ quantifcations }
(↑ j, k : j ≤ k : (↑ i : j ≤ i ≤ k : a.j − a.k)))

= { a.j − a.k does not depend on i, the range for i is nonempty }
(↑ j, k : j ≤ k : a.j − a.k)))

There are various alternative definitions for sequence x in part (b), such as

x.i = M.i− d/2

x.i = m.i + d/2 .

In summary, the two “key” properties used in my solution are:

b + c ≥ d ⇒ b ≥ d

2
∨ c ≥ d

2

b ≤ a ≤ c ⇒
∣∣∣∣∣a− b + c

2

∣∣∣∣∣ ≤ c− b

2
.
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