
 The Untangler Project
by Tom Verhoeff and Christian Eggermont

We are fascinated by disentanglement puzzles. Why? Probably, at least in part,
because, unlike put-together puzzles (pieces-in-box), take-apart puzzles (puzzle
boxes), or inter-locking solid puzzles (burrs), there seems to be little theory to support
the design and solution of disentanglement puzzles. We have been intrigued by (our
lack of under-standing) how disentanglement puzzles are designed and what it takes
to solve them. Nevertheless, it also appears that you can do some systematic
thinking about these puzzles.

In this article we present a project to develop open-source software to assist in the
solution and design of (a limited class of) disentanglement puzzles. It is a follow-up
on the presentation about this topic at the Dutch Cube Day in October 2008.

For other puzzle types there is plenty of computer assistance. Computers are power-
ful enough to offer a good graphical user interface, and to do extensive complicated
searches. So, we think the time is right to start working on disentanglement puzzles
now. The project already has a presence at SourceForge:

http://untangler.wiki.sourceforge.net/

We are looking for people who are crazy about disentanglement puzzles and who
would like to participate in the project. This article tells you about this effort.

Kinds of disentanglement puzzles
We believe that there is a reasonable opportunity to provide computer aided support
for solving, and thereby also for designing, a subclass of disentanglement puzzles. In
particular, we intend to focus on puzzles that are mainly topological, without any
secrets to be discovered.

If the puzzle consists almost exclusively of (geo)metric details, such as Hanayama's
Cast Star (Figure 1), Cast Enigma, and Cast Quartet (Figure 1), then this information
needs to be modelled in the computer very accurately. But even when you can do
that, the 3D motions to change the state without violating the constraints can be very
difficult to discover, in particular determining whether an escape exists at all, and
even harder to describe in an understandable way. Geometric disentanglement
puzzles are related to the industrial field of robot motion planning, but this is not
where we think we can contribute.

Figure 1. Cast Star (left), Cast Quartet (middle) and Cast Nut Case (right)



If the puzzle involves secrets (hidden information), such in Hanayama's Cast NEWS
and Cast Nut Case (Figure 1), then it also seems hard to provide decent computer
assistance (except maybe by consulting some database of known tricks).

We have in mind puzzles like the Chinese Rings (Figure 2), Ball and Chain, Narrow
Escape, and Hemi-Spheres (Figure 2). These are mostly topological in nature. One
motivation is that there exist some interesting programs to assist in the area of
untying knots. For instance, in 1994 Lars Gislén wrote the program called
KnotSolver. He recently did some work to make available a Java version. There have
also been some recent scientific publications on particular disentanglement puzzles.
See the Untangler wiki pages for details and more references.

Figure 2. Chinese Rings (left) and Hemi-Spheres (right)

The Untangler Program (a vision)
We envision a program for stand-alone use on a personal computer, with a graphical
user interface plus some algebraic notation. The initial version will possibly only
handle an even more limited class of topological disentanglement puzzles.

A key ingredient is how to describe such disentanglement puzzles. The following
items somehow need to be captured:

• Elements that make up the puzzle: rigid parts, like rings and wireframes, hinges,
ropes, chains, beads, disks, slotted beams, etc.

• Relationships between elements: attachment, embracement, etc.

• Constraints: (in)ability to slide through each other, etc.

• Initial state and final state (the objective).

• Continuous versus discrete, and metric versus topological aspects; e.g. the exact
rope length (continuous/metric information) may not be so important, but whether
the rope is long enough (discrete, topological information) to allow one to slide a
loop over some ball could be important.

One also needs to have a pretty good idea of how to describe a solution. A solution
typically consists of a feasible path in the state space, leading from the initial state to
the final state, i.e. adhering to all constraints. Such a path can be described by a
sequence of state changes or as a sequence of discrete intermediate states, where
the user can readily infer how to fill in the actual continuous motions.



Ideally, topological disentanglement puzzles can be described completely alge-
braically, without resorting to pictures. A nice example of such a puzzle is Rope-and-
Rope by Markus Goetz (see Figure 3).

Figure 3. Rope-and-Rope puzzle

Rope-and-Rope consists of a (wooden) ring R, (wooden) bead B, (wooden) disk D,
(wooden) beam L bent at a right angle with slot S, (rope) cord C, (rope) noose N, with
relationships and constraints as described in the following.

D is attached to one end of C; the other end of C is attached to L, in the middle. C
goes through B. S is in one half of L, and N is attached to the other end of L. Table 1
characterises some relations between the puzzle elements of Rope-and-Rope.

element R B D L S N

R x over not over over thru thru
B thru x not over not over not thru (thru)
D not thru not thru x x thru thru
L thru not thru x x x x
S over not over over x x x
N over (over) over x x x

Table 1. Relationships between puzzle elements of Rope-and-Rope

The length of C is not given explicitly, but whatever is relevant about this length will
be discovered while exploring the state space.

Initial state: R is around L near the middle and on the side with S; C goes through S,
through N, back through S. B sits next to D. Final state: R is free.



You can imagine that a textual description of a solution starts as follows:

1. Put D back through S in the opposite direction of C attaching to D.
2. Slide R off L, in the direction of S, making R go over C six times.

(The rope is long enough to do this.)
3. Push B through R with C. R now goes four times over C.
4. ...

On YouTube you can find movies with solutions to several disentanglement puzzles.
See the Untangler wiki for links. But we will not aim for automatic generation of
computer animations, although it is an interesting extension to consider.

Ingredients for the program
The program can somehow be told (through a file or GUI) what puzzle to solve. It
then applies generic techniques to construct and explore the state space. If it finds a
solution, the program describes it in some algebraic notation. At a later stage,
visualisations of the state, and animations of state changes might be added.

Several techniques come to mind to search for and find solutions. In general, this
involves a systematic exploration of the state space. Typical techniques that are
useful: backtracking, working backwards (starting in the final state and trying to move
back toward the initial state), and relaxation, where one first drops some constraints
and attempts to solve a simplified puzzle first.

It may also be useful to have the program indicate that is impossible to solve the
puzzle, and provide evidence for the insolvability.

It may be necessary to incorporate user interaction, when the state space cannot
easily be generated automatically. In that case, the program could ask the user to
confirm whether a particular move is actually feasible. If it is, then that part of the
state space is included, and if not, it is pruned. For the Rope-and-Rope puzzle, this is
may be the simplest way to deal with the constraint imposed by the length of the
cord.

Call for help
We do not have a lot of time to spend on this project. But still we would like to make
some progress. We need help with the following:

• Discovering and describing the requirements for the software in more detail.

• Searching for relevant theory and literature on this topic.

• Inventing appropriate concepts and notations and further develop relevant theory.

• Setting up a generic software architecture.

• Implementing prototypes for some small-scale experiments.

• Providing feedback on what has been done.

If you are enthusiastic about this, please drop us an email.

Tom Verhoeff: T.Verhoeff@tue.nl
Christian Eggermont: C.E.J.Eggermont@tue.nl


