
Errata and Addenda for

“On Abstraction and Informatics” [17]

Tom Verhoeff

October 2011, August 2013, October 2014, April 2016, June 2019

p.7, below (5) The definition of morphism composition ◦ should read

(f ◦ g)(x) = f(g(x))

Note that the definition as was given (i.e., (g ◦ f)(x) = f(g(x))), is in-
deed used by some mathematicians. Also see [6]. Traditional notation
for functions is inherently confusing, because the implicit “directions”
in the signature descriptor f : A → B (left to right) and function
application f(x) (argument comes from the right) are in conflict.

For signature composition, it makes sense to write the composition of
f : A → B with g : B → C as f ◦ g : A → C, preserving the order

(A
f→ B

g→ C; and taking for granted that then (f ◦ g)(x) = g(f(x)),
where the order switches).

For function application, it makes sense to write the composition of
these same f and g as (g ◦ f)(x) = g(f(x)), maintaining the order of
the functions on the left and right, but their signatures do “match” in

the opposite order (A
f→ B

g→ C).

All this can easily be resolved by writing function application in the
reverse order: x.f = f(x). In that case, we could define x.(f ◦ g) =
(x.f).g, and everything would be “in order”. It seems less “natural”
to reverse the order in the signature, and write f : B ← A. However,
in some programming languages (C, C++, Java), that order is used
in definitions of functions/methods: double sqrt(double x).

p.10, line 3 below §6 Change ‘Others textbooks’ into ‘Other textbooks’.

1



p.6, recursive definitions It is worth-while to mention that a computa-
tional formalism can be universal even if it lacks both iteration and
recursion. Also see [18]. Examples are Untyped Lambda Calculus and
Combinatory Logic, but also in JavaScript, iteration and recursion
are not needed. These formalisms offer mechanisms to abstract from
functions and do self application, to obtain the same looping effect
as iteration or recursion. For instance, the recursive definition of the
factorial function

fac(n) := 1 if n = 0 else n× fac(n)

can be de-recursified by abstracting from the function fac in the func-
tion body, replacing it by a parameter g, which itself is a function:

FAC (g)(n) := 1 if n = 0 else n× g(n)

Note that FAC is neither recursive, nor iterative, and that fac is a
fixed point of FAC :

FAC (fac) = fac

However, to calculate fac(n), the g in (FAC (g))(n) need not be (a
completely defined) fac, but could be an ‘approximation’ of fac that
only works correctly for arguments less than n. In particular, for
n = 0, we could take any g, because g is then basically ignored.

Generalizing parameter g further to g′, so that g′ takes an additional
parameter of the same type as g′, we can define

FAC ′(g′)(n) := 1 if n = 0 else n× g′(g′)(n)

Note the self application of g′ to g′. We now have (by induction on n)

fac(n) = FAC ′(FAC ′)(n)

or more concisely

fac = FAC ′(FAC ′)

This de-recursification can even be mechanized through a fixed-point
combinator Y with the property

Y (F ) = F (Y (F ))

2



i.e., Y (F ) is a fixed point of F . We then have (by induction on n)

Y (FAC )(n) = fac(n)

Thus, we can define

fac = Y (FAC )

All we now need is a non-recursive, non-iterative definition of Y . This
exists for the formalisms mentioned above (see [14, 19]). The key
is self-application, as in the (non-recursive, non-iterative) definition
ω(f) := f(f). Note that ω(ω) does not terminate, in spite of the
absence of recursion and iteration.

p.5, “The biggest danger of axiomatic definitions is inconsistency”
Inconsistency can be the result of over-specification, by imposing too
many constraints, which turn out to be contradictory. Another dan-
ger is under-specification, by imposing too few constraints, thereby
allowing unintended ‘solutions’ to the axioms.

Quotes From [5, p.4]:

The result of being more abstract is not being more vague,
on the contrary: the purpose of abstraction is the creation
of a new semantic level at which one can again be abso-
lutely precise, but with less commitment. The virtue of the
new theory is that one can work in it, unburdened by the
irrelevant details of the model that inspired it. Experience
has shown that people’s first confrontation with mathemat-
ical abstraction is often emotionally disturbing; the rest of
the educational process hardly teaches the potential intel-
lectual advantages of ignoring available knowledge and the
manifest freedom of creating one’s own universe of discourse
could very well be frightening.

References Inexcusably missed references: [4, 10, 11, 13, 15]. Possibly
excusably missed references: [1, 2, 3, 7, 9], [8, Ch.2]; newer material:
[12] (especially Ch.1, “The Many Faces of Complexity in Software
Design” by José Luiz Fiadeiro), [16].

References

[1] Abbott, Russ. “The Reductionist Blind Spot”, Complexity,
14(5):10-22, May 2009.

3



[2] A.V. Aho, J.D. Ullman. Chapter 1, “Computer Science: The
Mechanization of Abstraction”, Foundations of Computer Science: C
Edition. W.H. Freeman, 1992.
i.stanford.edu/~ullman/focs.html (accessed 05-Sep-2012).

[3] Grady Booch. Object-Oriented Design with Applications.
Benjamin-Cummings, Redwood City, 1990.

[4] T. Colburn, G. Shute. “Abstraction in Computer Science”, Minds and
Machines, 17(2):169–184 (2007). DOI: 10.1007/s11023-007-9061-7

[5] E. W. Dijkstra. The unification of three calculi. EWD1123, 10 June
1992.

[6] Functional Composition. Wikipedia.
en.wikipedia.org/wiki/Function_composition (accessed
03-Oct-2011).

[7] P. Guo. What is Computer Science? Efficiently Implementing
Automated Abstractions. Feb. 2010.
www.pgbovine.net/what-is-computer-science.htm (accessed
05-Sep-2012).

[8] J. Greenfield and K. Short. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley,
2004. softwarefactories.com (accessed 27-Apr-2016).

[9] M. Hailperin, B. Kaiser, K. Knight. Concrete Abstractions: An
Introduction to Computer Science Using Scheme. Brooks/Cole, 1999.
https://gustavus.edu/+max/concrete-abstractions.html

(accessed 05-Sep-2012).

[10] O. Hazzan. “Abstraction in Computer Science & Software
Engineering: A Pedagogical Perspective”, System Design Frontier
(Dec. 2006)
edu.technion.ac.il/Faculty/OritH/HomePage/FrontierColumns/

OritHazzan_SystemDesigFrontier_Column5.pdf (accessed
05-Sep-2012).

[11] O. Hazzan, J. Kramer (Eds.). Proceedings of the 2nd International
Workshop on the Role of Abstraction in Software Engineering, Leipzig,
Germany, ACM, 2008.

4

i.stanford.edu/~ullman/focs.html
en.wikipedia.org/wiki/Function_composition
www.pgbovine.net/what-is-computer-science.htm
softwarefactories.com
https://gustavus.edu/+max/concrete-abstractions.html
edu.technion.ac.il/Faculty/OritH/HomePage/FrontierColumns/OritHazzan_SystemDesigFrontier_Column5.pdf
edu.technion.ac.il/Faculty/OritH/HomePage/FrontierColumns/OritHazzan_SystemDesigFrontier_Column5.pdf


[12] Mike Hinchey, Lorcan Coyle (Eds.). Conquering Complexity. Springer,
2012.

[13] B. Liskov. The Power of Abstraction. ACM A.M. Turing Award 2008
Lecture. Nov. 2009.

[14] Matt Might. Fixed-point combinators in JavaScript: Memoizing
recursive functions.
http://matt.might.net/articles/

implementation-of-recursive-fixed-point-y-combinator-in-javascript-for-memoization/

(accessed 23-Aug-2013).

[15] Giuseppe Primiero. “Proceeding in Abstraction: From Concepts to
Types and the Recent Perspective on Information”. History and
Philosophy of Logic, 30(3):257–282 (2009). DOI:
https://doi.org/10.1080/01445340902872630

[16] Alexander A. Stepanov, Daniel E. Rose. From Mathematics to
Generic Programming. Addison-Wesly, 2015. Blurb: “In this
substantive yet accessible book, pioneering software designer Alexander
Stepanov and his colleague Daniel Rose illuminate the principles of
generic programming and the mathematical concept of abstraction on
which it is based, helping you write code that is both simpler and more
powerful.”

[17] T. Verhoeff. “On Abstraction and Informatics”, Proceedings of ISSEP
2011, Bratislava, Slovakia.

[18] Tom Verhoeff. “A Master Class on Recursion”. in Adventures Between
Lower Bounds and Higher Altitudes. Lecture Notes in Computer
Science Vol.11011, pp.610–633, Springer, 2018. DOI:
https://doi.org/10.1007/978-3-319-98355-4_35

[19] Wikipedia. Fixed-point Combinator.
http://en.wikipedia.org/wiki/Fixed-point_combinator (accessed
23-Aug-2013).

5

http://matt.might.net/articles/implementation-of-recursive-fixed-point-y-combinator-in-javascript-for-memoization/
http://matt.might.net/articles/implementation-of-recursive-fixed-point-y-combinator-in-javascript-for-memoization/
https://doi.org/10.1080/01445340902872630
https://doi.org/10.1007/978-3-319-98355-4_35
http://en.wikipedia.org/wiki/Fixed-point_combinator

