A Beautiful Characterization of Equivalence Relations

Tom Verhoeff

Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB EINDHOVEN, The Netherlands E-mail: wstomv@win.tue.nl

18 July 1991

While recording a proof today, I found myself deriving something like:

 $x \sim z$ $\equiv \{ \sim \text{ is an equivalence relation and } x \sim y \text{ is assumed } \}$ $y \sim z$

Having read EWD 1102 ("Why preorders are beautiful") the other day, I still had a heightened awareness of beauty. Thus, I started wondering.

Apparently, in my derivation I use the following property of an equivalence relation \sim :

$$(\forall x, y :: x \sim y \Rightarrow (\forall z :: x \sim z \equiv y \sim z)). \tag{0}$$

This property follows immediately from the transitivity and symmetry of \sim . From the reflexivity of \sim one can infer

$$(\forall x, y :: x \sim y \iff (\forall z :: x \sim z \equiv y \sim z)), \tag{1}$$

by instantiating the *z*-quantification with z := y. Hence, an equivalence relation \sim satisfies the conjunction of (0) and (1), which is equivalent to

$$(\forall x, y :: x \sim y \equiv (\forall z :: x \sim z \equiv y \sim z)).$$
⁽²⁾

The beautiful thing now is that (2) completely characterizes equivalence relations, that is, relation \sim is an equivalence relation *if and only if* it satisfies (2).

From EWD 1102 we know that (2) implies " \sim is a preorder", that is, " \sim is reflexive and transitive". In fact, (0) implies " \sim is transitive" and (1) is equivalent to " \sim is reflexive". The reader can easily verify this without reference to EWD 1102. Symmetry of \sim follows immediately from (2) and the symmetry of \equiv .