
Factorization in Process Domains
(Second Approach)

Tom Verhoeff

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB EINDHOVEN, The Netherlands
E-mail: wstomv@win.tue.nl

March 1991, Revised June 1995

In this note we present a general theory about fac-
torization in process domains.

1 Introduction

By way of introduction, consider a process domainP
together with a binary relationv (refinement relation:
p v q expresses ‘q refinesp’ 1) and a binary opera-
tor ‖ (parallel composition). We assume that〈P,v〉
is a complete poset, in the sense that every subset
has a greatest lower bound. Furthermore, we assume
that‖ has unite and is commutative, associative, and
(universally) u-junctive. The latter means that for
processq and set of processesV we have

(uV) ‖ q = (u p : p ∈ V : p ‖ q). (1)

Finally, we assume that refinement isfully abstract
with respect to a form oftesting, that is, there exists a
processd such that

p v q ≡ (∀ r : p ‖ r w d : q ‖ r w d). (2)

One may interpret

p ‖ r w d

1Often, p v q corresponds to ‘q is more deterministic thanp’.

as ‘process p passes the test in the context of
processr ’. An immediate consequence of (2) is

p = q ≡ (∀ r :: p ‖ r w d ≡ q ‖ r w d), (3)

that is, two processes are equal if and only if they pass
the same tests. It the implication from right to left that
is important for full abstraction.

We are interested in thedesign equation

p :: p ‖ q w r (4)

for given processesq andr . The equation arises when
one has decided to implement specificationr as the
parallel composition of processq with some yet un-
known processp. In particular, we would like to know
thev-least solution to the design equation, which—if
it exists—could serve as specification forp.

2 Theory

We define thereflectionvq of processq by

vq = (u p : p ‖ q w d : p). (5)

It is a proper definition because all glb’s exist. Nota-
tionally, reflection binds stronger than parallel compo-
sition. According to Corollary 2.3 below, the reflection
of q is thev-least solution to a very particular design
equation, viz.p :: p ‖ q w d. The reflection ofq can

1

mailto:wstomv@win.tue.nl
http://www.win.tue.nl/~wstomv/


also be interpreted as the severest test thatq passes.
In Corollary 2.9 we shall see that the general design
equation can be solved in terms of reflection and par-
allel composition.

First of all we show thatvq is a solution to the de-
sign equationp :: p ‖ q w d.

2.1 Property For processq we have

vq ‖ q w d.

Proof We derive for processq

vq ‖ q

= { definition of reflection: (2)}
(u p : p ‖ q w d : p) ‖ q

≡ { parallel composition isu-junctive: (1)}
(u p : p ‖ q w d : p ‖ q)

w { property of greatest lower bound}
d

The next property turns out to be a very useful charac-
terization of reflection. In the remainder of this note,
it will be used instead of the definition of reflection.

2.2 Property For processesp andq we have

p ‖ q w d ≡ p w vq.

Proof We derive the implication from left to right

p ‖ q w d

⇒ { property of greatest lower bound}
p w (u p : p ‖ q w d : p)

≡ { definition of reflection: (5)}
p w vq

and the implication from right to left

p w vq

≡ { full abstraction of refinement: (2)}
(∀ r : vq ‖ r w d : p ‖ r w d)

⇒ { instantiation with r := q, using Prop-
erty 2.1}

p ‖ q w d

2.3 Corollary The set of solutions to the design
equationp :: p ‖ q w d is v-upward closed and the
v-least solution is given byvq.

It turns out thatd is the reflection of the unite, irre-
spective of which processd actually is. Note, however,
that the choice ofd is limited by (2) and that reflection
depends ond.

2.4 Property We have

ve = d.

Proof We derive for arbitrary processr

r w ve

= { Property 2.2}
r ‖ ew d

= { e is unit of parallel composition}
r w d

On account of

p = q ≡ (∀ r :: r w p ≡ r w q), (6)

we now inferve= d.

Reflection reverses the order.

2.5 Property For processesp andq we have

p v q ≡ vp w vq.

Proof For processesp andq we derive

p v q

≡ { refinement is fully abstract: (2)}
(∀ r : p ‖ r w d : q ‖ r w d)

≡ { parallel composition is commutative}
(∀ r : r ‖ p w d : r ‖ q w d)

≡ { Property 2.2}
(∀ r : r w vp : r w vq)

≡ { property of partial ordering}

2



vp w vq

The next property is a slight modification of Prop-
erty 2.2.

2.6 Property For processesp andq we have

p w q ≡ p ‖vq w d.

Proof We derive for processesp andq

p w q

≡ { Property 2.5}
vq w vp

≡ { Property 2.2, using commutativity of‖ }
p ‖vq w d

Reflection is an involution, that is, its own inverse.

2.7 Property For processp we have

vvp = p.

Proof We derive for processesp andr

r w vvp

≡ { Property 2.2}
r ‖vp w d

≡ { Property 2.6}
r w p

On account of (6), we now infervvp = p.

Finally, we can derive an elegant expression for the
v-least solution to the design equation (4).

2.8 Theorem For processesp, q, andr we have

p ‖ q w r ≡ p w v(q ‖vr ).

Proof For processesp, q, andr we derive

p ‖ q w r

≡ { Property 2.6}
(p ‖ q) ‖vr w d

≡ { parallel composition is associative}

p ‖ (q ‖vr ) w d

≡ { Property 2.2}
p w v(q ‖vr )

2.9 Corollary Thev-least solution to the design
equation (4) is

v(q ‖vr ). (7)

A common notation for thev-least solution to the de-
sign equation (4) isr/q. The operator/ on processes
is completely characterized by the equivalence

p ‖ q w r ≡ p w r/q. (8)

Using this notation, reflection can be expressed by
vq = d/q. It is often more convenient to manipu-
late / using (8) than to manipulate the fairly awkard
definition of/ in terms ofv and‖.

3 Additional Results

Note that in the preceding section we have used the
u-junctivity of parallel composition only once, viz.
in Property 2.1, where it is used to distribute parallel
composition over the greatest lower bound of a very
particular set of processes. Hence, to obtain all re-
sults, in particular Theorem 2.8, it suffices to assume
Property 2.1 instead of theu-junctivity of ‖. But u-
junctivity of ‖ cannot be denied, because it follows
from Theorem 2.8:

Proof Let q be a process andV a set of processes.
We derive for processr

(uV) ‖ q w r

≡ { Theorem 2.8}
uV w v(q ‖vr )

≡ { property of greatest lower bound}
(∀ p : p ∈ V : p w v(q ‖vr ))

≡ { Theorem 2.8}
(∀ p : p ∈ V : p ‖ q w r )

3



≡ { property of greatest lower bound}
(u p : p ∈ V : p ‖ q) w r

On account of (6), we then have

p ‖ uV = (uq : q ∈ V : p ‖ q). (9)

Finally, we observe that, since〈P,v〉 is self-dual
(underv), it is not only a complete poset but, in fact,
a complete lattice, in the sense that every subset has
a greatest lower bound and a least upper bound. Ac-
tually, the completeness assumption is too strong. We
only used the existence of greatest lower bounds of
sets like

{r : p ‖ r w d : r },
for instance, in the definition of reflection.

4 Conclusion

We have shown that under certain conditions (espe-
cially full abstraction: (2)) the design equation over a
process domain has an elegant solution in terms of a
reflection operator. In various domains, the reflection
operator is very simple. Of course, our presentation
raises new questions. These will be addressed else-
where.

I would like to thank Roland Backhouse for some
helpful comments on an earlier version. In particular
his insistence on ‘narrower’ proofs has stimulated me.

4


	Factorization in Process Domains
	1 Introduction
	2 Theory
	3 Additional Results
	4 Conclusion

