
On Abstraction and Informatics

Presented at ISSEP 2011

26 October 2011, Bratislava, Slovakia

Tom Verhoeff
Eindhoven University of Technology

Dept. of Mathematics & Computer Science
Software Engineering & Technology

www.win.tue.nl/~wstomv

T.Verhoeff@tue.nl

c© 2011, T. Verhoeff @ TUE.NL 1/16 Abstraction & Informatics

My Goal

Get

more, better, and explicit attention for

abstraction itself,

in the informatics curriculum.

c© 2011, T. Verhoeff @ TUE.NL 2/16 Abstraction & Informatics

Inspiration: Teaching Formal Methods 2009, Eindhoven

© Kramer TFM 09 1

Jeff Kramer

Imperial College

London

Abstraction and Modelling
a complementary partnership

 “Is Abstraction the key to
Computing?” CACM April 2007

c© 2011, T. Verhoeff @ TUE.NL 3/16 Abstraction & Informatics

Jeff Kramer believes . . .

© Kramer TFM 09 6

I believe …..

… that the heart of the
problem lies in a difficulty in
dealing with

c© 2011, T. Verhoeff @ TUE.NL 4/16 Abstraction & Informatics

Why is Abstraction Important in Informatics?

© Kramer TFM 09 18

Why is abstraction important in Software Engineering?

“Once you realize that computing is all about
constructing, manipulating, and reasoning about
abstractions, it becomes clear that an
important prerequisite for writing (good)
computer programs is the ability to handle
abstractions in a precise manner.”

 Keith Devlin CACM Sept.2003

Software is abstract!

c© 2011, T. Verhoeff @ TUE.NL 5/16 Abstraction & Informatics

Jeannette Wing on Computational Thinking (2008)

“The essence of computational thinking is abstraction.

In computing, we abstract notions beyond the physical dimensions of

time and space.

Our abstractions are extremely general because they are symbolic,

where numeric abstractions are just a special case.

. . . [O]ur abstractions tend to be richer and more complex than those

in the mathematical and physical sciences.”

c© 2011, T. Verhoeff @ TUE.NL 6/16 Abstraction & Informatics

Abstraction in Informatics Curriculum

• Underexposed

• Not treated well enough

• Implicit

Students sometimes (often?) get the (mistaken) impression that

abstraction = vagueness and imprecision

Informatics teachers often do not know either . . .

c© 2011, T. Verhoeff @ TUE.NL 7/16 Abstraction & Informatics

Abstraction in Mathematics

• How to explain what a fraction is to someone who does not know?

• Start overspecific: a pair of integers (a, b) with b > 0

• Equivalence relation abstracts from unintended distinctions:

(a, b) ∼ (c, d) ⇐⇒ ad = bc

• Define fractions by dividing out the equivalence:

Q =
(
Z× Z+

)
/∼

• A fraction, in the abstract, is an equivalence class in
(
Z× Z+

)
under the equivalence relation ∼

c© 2011, T. Verhoeff @ TUE.NL 8/16 Abstraction & Informatics

Abstractions in Programming: Client-Server Contracts

Procedural abstraction applied to compute 100th Fibonacci number:

{ Contract: precondition 0 <= n; return n-th Fibonacci number }

function fib (n : integer) : integer;

begin ... { implementation omitted } ... end;

begin

writeln (fib (100))

end.

• Client calls (invokes) the function

• Server implements the function

• Contract is the abstraction: binds/(de)couples client and server

c© 2011, T. Verhoeff @ TUE.NL 9/16 Abstraction & Informatics

Procedure Abstraction involves multiple abstractions

• Implementation details hidden from client

To use the abstraction (at design time), the client designer does

not need to know about the implementation.

• Identity/value of things operated on hidden from server

To implement the abstraction (at design time), the server imple-

menter does not need to know where the data is and what its

value is; the parameters abstract from that.

• Context of usage hidden from server

Neither does the server implementer need to know in what context

the facility is used.

c© 2011, T. Verhoeff @ TUE.NL 10/16 Abstraction & Informatics

Reasoning through contracts is central to Divide and Conquer

contract

↗ ‖ ↖
invocation ‖ implementation

‖

• Reason about invocation (call) in terms of contract, and

reason about implementation in terms of (same) contract.

• Never reason about invocation and implementation together.

Thus, ‘divide’ fails, leading to complexity, and not to ‘conquer’.

Also applies to Data Abstraction, Iteration Abstraction, . . .

Recursion is hard to master without contractual reasoning.

c© 2011, T. Verhoeff @ TUE.NL 11/16 Abstraction & Informatics

Musical Intermezzo

Jacob van Eyck (approx. 1590 – 1657)

Dutch carilloneur (church bell player) and recorder player/composer

Prelude for recorder

c© 2011, T. Verhoeff @ TUE.NL 12/16 Abstraction & Informatics

Teaching Abstraction: Forward Chaining

In the development process and in forward-chaining, you (learn to)

1. Draw up a contract for an abstraction

2. Validate the contract

3. Design/implement it (can be split)

4. Review the design/implementation

5. Test the implementation

6. Use the abstraction

c© 2011, T. Verhoeff @ TUE.NL 13/16 Abstraction & Informatics

Teaching Abstraction: Backward Chaining

In backward-chaining, you learn to

1. Use an abstraction, given its contract

2. Test an abstraction, given its contract

3. Review a given design/implementation

4. Design/implement a given contract

5. Validate contracts

6. Draw up a contract for an abstraction

c© 2011, T. Verhoeff @ TUE.NL 14/16 Abstraction & Informatics

Conclusion

• Abstraction needs explicit attention in informatics curriculum

• Abstraction has many facets, requiring appropriate terminology

and teaching methods

• Backward chaining can be used for teaching abstraction

• Needs follow-up research, e.g. definition of TRUCs for abstraction

TRUC = Testable, Reusable Unit of Cognition (Meyer, 2006)

For details, see my article in the proceedings (on CD-ROM), or at

www.win.tue.nl/~wstomv/publications/issep-2011-on-abstraction.pdf

c© 2011, T. Verhoeff @ TUE.NL 15/16 Abstraction & Informatics

