
The Lost Group Chart and Related Problems∗

Tom Verhoeff

1 Introduction

Last year, Marga and I bought ourselves a new home. This solved our problem of room
shortage but created others . . .

In the basement of the house is a fuse box, where the main electricity supply is distributed
over ten separately fused groups. Each fuse protects a number of the—more than fifty—
power outlets in and around the house. For reasons that need not concern us here, the
mapping from outlet to fuse group is rather haphazard. Unfortunately, the previous owner
had lost the group chart that lists for every outlet the fuse group to which it belongs. Thus,
I encountered the problem of reconstructing the lost group chart.

The fuse box in the basement also has ten switches, one for each group. All outlets in a
group are connected to the mains supply through the corresponding switch. A voltage tester
can be used to determine whether an outlet is ‘alive’ or not. By suitably toggling switches
and testing outlets it should be possible to reconstruct the group chart. Because I like brain
teasers better than manual labor, I imposed the additional constraint that the number of
switch toggles and outlet tests be minimized.

2 Specification

The reconstruction problem can be formulated as a programming exercise in the following
way (also see Figure 1).M outlets labeled 1 throughM (at A) are connected byM wires
to N switches labeled 1 throughN (at B). Each outlet is connected to exactly one of the
switches. Each switch can be connected to zero1 or more wires.

The reconstruction procedure has to determine how the outlets are connected to the switches
using the following two kinds of operations. Each switch can betoggledfrom a conducting
state to a non-conducting state and vice versa. Initially all switches are, say, non-conducting.

∗Appeared in:Simplex Sigillum Veri, Een Liber Amicorum voor prof. dr. F. E. J. Kruseman Aretz. Eindhoven
University of Technology, Faculty of Mathematics and Computing Science. December 1995. (pp. 308–313)

1This takes into account the possibility of unused fuses.

1

http://www.win.tue.nl/~wstomv/

P

L

11

2

3

A B

2

3

Figure 1: Three outlets connected to three switches (M = N = 3)

An outlet can betestedwith probeP: lamp L will light up if and only if the tested outlet is
connected to a conducting switch.

A more formal specification of the programming exercise is given below in a dialect of the
programming language Pascal.

const
M: integer= . . . ; { number of outlets, 1≤ M }
N: integer= . . . ; { number of switches, 1≤ N }

type
outlet= 1..M;
switch= 1..N;
chart = array [outlet] of switch;

const
f : chart = . . . ; { the group chart to be reconstructed}

var
C: set ofswitch; { the set of conducting switches}

function test(i : outlet): boolean; { return: f [i] ∈ C }

procedure toggle(j : switch); { pre: C = C′ ; post:C = C′ ÷ [j] }

procedure reconstruct(var g: chart); { pre: C = [] ; post: g = f }

Function calltest(i) returns whether the lamp lights up when testing outleti . Procedure
call toggle(j) changes the state of switchj (operator÷ stands for the symmetric set differ-
ence). Procedurereconstructis to be programmed using onlytest to inspect f and toggle
to modify C, while minimizing the number of calls oftestandtoggle.

2

3 Straightforward Solution

A straightforward design for procedurereconstructdetermines for each outlet the switch to
which that outlet is connected, based on the property

C = [j] ∧ test(i) ⇒ f [i] = j

Here is the code (the heading ofreconstructis not be repeated):

var i : outlet; j : switch;
begin
for i := 1 to M do { inv: C = [] ∧ (∀ a : 1≤ a < i : g[a] = f [a]) }

for j := 1 to N do begin
toggle(j) ; { C = [j] }
if test(i) then g[i] := j ;
toggle(j)
end { for j }

end; { reconstruct}

This procedure does 2M N toggles andM N tests. The average-case performance can be
improved by breaking off the inner loop (overj) as soon asg[i] has been determined. This
would halve the expected number of toggles and tests.

Another improvement is obtained by reordering the two loops and taking the calls totoggle
outside the inner loop, that is, by determining for each switch all outlets that are connected
to that switch:

var i : outlet; j : switch;
begin
for j := 1 to N do begin
{ inv: C = [] ∧ (∀ i : f [i] < j : g[i] = f [i]) }
toggle(j) ;
for i := 1 to M do { inv: C = [j] }

if test(i) then g[i] := j ;
toggle(j)
end { for j }

end; { reconstruct}

The procedure now does 2N toggles andM N tests. The average-case performance can be
improved by not testing outlets that have already been determined. This also removes the
need to reset the switches. Furthermore, whenN−1 switches have been covered the re-
maining outlets are known to be connected to switchN. The following design incorporates
these three improvements. It is based on the property

C = [1.. j] ∧ f [i] ≥ j ∧ test(i) ⇒ f [i] = j

3

Below is the—surprisingly compact—code. The number of toggles is nowN−1, the bare
minimum under worst-case conditions. The expected number of tests is1

2 M(N−1).

var i : outlet; j : switch;
begin
for i := 1 to M do g[i] := N ;
for j := 1 to N−1 do begin
{ inv: C = [1.. j−1] ∧ (∀ i :: g[i] = if f [i] < j then f [i] elseN) }
toggle(j) ;
for i := 1 to M do { inv: C = [1.. j] }

if g[i] = N then { f [i] ≥ j }
if test(i) then g[i] := j

end { for j }
end; { reconstruct}

4 Sophisticated Solution

The total number of possible charts isNM . Because each test provides at most one bit of in-
formation, the worst-case minimum number of tests to reconstruct the chart isdM log2 Ne.
This analysis can be refined as follows.

The knowledge gathered aboutf during reconstruction can be captured by stating for each
outlet to whatset of switches it is possibly connected. Let me denote the candidate set
for outlet i by F(i). Initially, F(i) = [1..N] for all i . If testing outleti yields true, its
set of candidate switches is reduced toF(i) ∩ C. If the test yieldsfalse, the candidate set
reduces toF(i)−C. Testing continues until allF(i) are singletons. The best one can hope
to accomplish by one test is halving the outlet’s candidate set. Therefore, the worst-case
minimum number of tests to reduce one candidate set to a singleton isdlog2 Ne. This lower
bound can be attained by a binary search:

procedure BinarySearch(i : outlet); { post:g[i] = f [i] }
var L , R, j , k: switch; p: boolean;
begin
L := 1 ; R := N ; p := false; { L ≤ f [i] ≤ R, switches [L ..R] are p-conducting}
while L 6= R do begin

k := (L + R− 1) div 2 ; { L ≤ k ≤ R, #[L ..k] ≤ #[k+1..R] }
for j := L to k do toggle(j) ;
{ switches [L ..k] are¬p-conducting, [k+1..R] are p-conducting}
if test(i) = p then { f [i] ∈ [k+1..R] } L := k+1
else{ f [i] ∈ [L ..k] } begin R := k ; p := not p end
end { while } ;

g[i] := L
end; { BinarySearch}

4

Note that to reduce the number oftoggle calls the shorter half of the interval is toggled.
Reconstructing the whole chart requires at leastMdlog2 Ne tests (under worst-case condi-
tions) and this can indeed be accomplished by combining allM binary searches. For each
outlet theinterval of candidate switches is maintained in an arrayh:

var i : switch;
h: array [outlet] of record hL,hR: switchend;
{ h[i].hL ≤ f [i] ≤ h[i].hR}

begin
for i := 1 to M do beginh[i].hL := 1 ; h[i].hR := N end ;
CBS(1, N, false,M) ;
for i := 1 to M do g[i] := h[i].hL
end; { reconstruct}

Recursive procedureCBShalves candidate intervals until they are singletons, minimizing
the total number of calls totoggleandtest:

procedure CBS(L , R: switch; p: boolean; t : integer);
{ pre: L ≤ R, switches [L ..R] are p-conducting and servicet outlets}
var i : outlet; j , k: switch; u: integer;
begin
if (L 6= R) and (t > 0) then begin

k := (L + R− 1) div 2 ;
for j := L to k do toggle(j) ;
{ switches [L ..k] are¬p-conducting, [k+1..R] are p-conducting}
u := 0 ; { switches [L ..k] serviceu outlets in [1..i−1] }
for i := 1 to M do with h[i] do

if (hL= L) and (hR= R) then
if test(i) = p then hL := k+1 ;
else beginhR := k ; u := u+1 end

CBS(L , k,not p,u) ; CBS(k+1, R, p, t−u)
end { if }

end; { CBS}

The following table summarizes the intervals that occur when doing a combined binary
search involving ten switches:

phases switches→ #toggles
↓ 1 2 3 4 5 6 7 8 9 10 ↓
1 • • • • • ◦ ◦ ◦ ◦ ◦ 5
2 ◦ ◦ • • • • • ◦ ◦ ◦ 4
3 • ◦ ◦ • • ◦ • • ◦ ◦ 4
4 ◦ • • ◦ 2

#toggles→ 3 2 2 2 1 2 1 1 1 0 15

5

For instance, in phase 1, switches [1..5] are made conducting (marked•) and switches [6..10]
are kept non-conducting (marked◦). In total, at most 15 toggles are done. In general the
number of toggles is approximately1

2 N log2 N, since in each phase at most half the switches
are toggled.

Parametert and variableu were introduced to suppress superfluous toggles. To under-
stand their effect consider a chartf for ten switches (see table above) where no outlets
are connected to switches [1..2]. This will already be detected in phase 2, when invoking
CBS(1,2, false,0). Without parametert , switch 1 would still be toggled. For the worst-
case situation with ten switches,CBSeither saves a toggle (when no outlet is connected to
switches [1..2]) or a test (when some outlet is connected to switches [1..2]) compared to
omitting parametert .

5 Practical Solution

Let me consider a slightly more general problem, where chartf is apartial function from
outlets to switches. That is, outlets need not be connected at all (possibly due to broken
wires, which is not unrealistic in older houses). The specification is modified as follows:

type
switch′ = 0..N;
chart = array [outlet] of switch′;
{ for f : chart, f [i] = 0 means that outleti is not connected}

The earlier solutions can easily be adapted. The following solution is of interest because it
is efficient and can be carried out with a minimum of administrative overhead. It is based
on writing the switch numbers in binary notation. Each bit is used to determine the switch
state in the corresponding test phase. Each test yields one bit of the switch number of the
tested outlet. Here is the code:

var i : outlet; j : switch; k: integer;
begin
for i := 1 to M do g[i] := 0 ;
k := 1 ; while k ≤ N do k := 2 ∗ k ;
while k 6= 1 do begin

k := k div 2 ;
for j := 1 to N do

if odd(j div k) 6= (j in C) then toggle(j) ;
for i := 1 to M do

if test(i) then g[i] := g[i] + k
end { while }

end; { reconstruct}

6

Note thatodd(j divk) yields the bit of weightk in j . The number of tests isMdlog2(N+1)e.
The number of toggles is slightly more than the binary search method of the preceding
section. For practical reasons I have used the binary notation method at home.

6 Conclusion

The reconstruction problem (withM = N ≤ 90) appeared as a programming task at the 7th
International Olympiad in Informatics2 which was held at Eindhoven University of Tech-
nology in 1995. There were more than two hundred participants from secondary schools of
some fifty countries all over the world. To my surprise ten competitors came up with the
intended optimized solution (doing a combined binary search and suppressing superfluous
toggles).

The problem has some intriguing variants. I already mentioned the extension from total to
partial chartsf . But what if, for instance, the initial state of the switches is unknown and
C may not be inspected? This corresponds to a randomized fuse box where the visible state
of the switches does not reveal their conductivity.

What if each wire is also connected to a unique switch on sideA, allowing multiple wires
to be tested? In that case the minimum number of tests (under worst-case conditions) is
conjectured to bedM log2 Ne insteadMdlog2 Ne. For instance, forM = N = 3 there are
27 possible charts. With switches on sideB only, at least 3dlog2 3e = 6 tests are required.
With additional switches on sideA, it can be done ind3 log2 3e = 5 tests (try it).

What if chart f is known to be a permutation? This situation arises when recycling cables
with indistinguishable wires. Can the reconstruction be done indlog2 N!e tests? I have
the feeling that this variant is as hard as minimum-comparison sorting. Would additional
switches on sideA help?

When considered carefully, the reconstruction problem produces little programs that read
like lovely poems. I would like to thank Frans, whom I have always enjoyed as an excellent
educator, for helping me develop a taste for such poetry.

2For more information about the IOI see URL http://olympiads.win.tue.nl/ioi/

7

http://olympiads.win.tue.nl/ioi/

	The Lost Group Chart and Related Problems
	1 Introduction
	2 Specification
	3 Straightforward Solution
	4 Sophisticated Solution
	5 Practical Solution
	6 Conclusion

