
Numerical Computing: An Introduction

Gyula Horváth Tom Verhoeff

Horvath@inf.u-szeged.hu T.Verhoeff@TUE.NL

University of Szeged Eindhoven University of Technology

Hungary The Netherlands

c© 2003, 2007, T. Verhoeff Numerical Computing–1

IOI 2002: Bus Terminals

A B

Given a set of points with integer coordinates,

select two points as ‘hubs’ and

assign each of the remaining points to a hub,

while minimizing the maximum value (over all P, Q) of

c(P, Q) = d(P, H(P)) + d(H(P), H(Q)) + d(H(Q), Q)

c© 2003, 2007, T. Verhoeff Numerical Computing–2

Integer Computations

Z = the set of integers

How well is integer arithmetic implemented on a computer?

c© 2003, 2007, T. Verhoeff Numerical Computing–3

Non-Integer Numbers

• Fractions, percentages, fixed-point currency values

• Real numbers, complex numbers

• Scientific notation: 6.022142× 1023

• Floating-point types in programming languages

How well is non-integer arithmetic implemented on a computer?

c© 2003, 2007, T. Verhoeff Numerical Computing–4

Quote from Donald E. Knuth

“Floating point computation is by nature inexact, and programmers

can easily misuse it so that the computed answers consist almost

entirely of “noise.” One of the principal problems of numerical ana-

lysis is to determine how accurate the results of certain numerical

methods will be. There is a “credibility-gap” : We don’t know how

much of the computer’s answers to believe. Novice computer users

solve this problem by implicitly trusting in the computer as an infalli-

ble authority; they tend to believe that all digits of a printed answer

are significant. Disillusioned computer users have just the opposite

approach; they are constantly afraid that their answers are almost

meaningless.”

The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (3rd Ed.),

Addison-Wesley, 1998, §4.2.2.

c© 2003, 2007, T. Verhoeff Numerical Computing–5

Count Down

Pascal C

const D = 0.1;

var x: Real;

begin

x := 1.0

;

while x > 0.0 do

x := x - D

;

writeln (x:1:2)

end.

#include <stdio.h>

#define D 0.1

int main (void)

{ double x = 1.0;

while (x > 0.0)

x = x - D;

printf ("%1.2f\n", x);

}

What value does this program print?

c© 2003, 2007, T. Verhoeff Numerical Computing–6

Euclidean Paths

A B C D

(2,5,31) (1,2,9) (0,7,27) (1,8,10)

Consider the two V-shaped paths via the origin O: AOB and COD.

Are the lengths of these two paths equal?

If not, which is bigger?

Now also tackle the case with

A B C D

(4,12,28) (2,6,14) (1,1,23) (1,13,19)

c© 2003, 2007, T. Verhoeff Numerical Computing–7

Parallel Resistors

R1

R2

Write a program to compute the effective resistance ,

given the non-negative values R1 and R2 as input.

c© 2003, 2007, T. Verhoeff Numerical Computing–8

Quadratic Equation

Consider the equation

ax2 + bx + c = 0 (1)

where parameters a, b, and c are given real constants and x is a real

variable, whose value(s) satisfying (1) must be determined.

What conditions to impose on the parameters to make this into a

reasonable programming assignment?

Solve your assignment.

How to determine the quality of solver programs?

c© 2003, 2007, T. Verhoeff Numerical Computing–9

Floating-Point Numbers

R = the set of real numbers

Consider integers β ≥ 2, t ≥ 1, emin ≤ emax

F(β, t, emin, emax) = the set of floating-point numbers x of the form

x = ± f × βe

where fraction f and exponent e satisfy:

• f × βt is an integer with f = 0 or 1 ≤ |f | < β, and

• e is an integer with emin ≤ e ≤ emax

c© 2003, 2007, T. Verhoeff Numerical Computing–10

Floating-Point Parameters

β is called the base of F; typically β = 2

p = t + 1 = the number of bits in the binary representation of f ;

p is called the precision of F

The smallest F-number larger than 1 is 1 + ε with ε = β−t ;

ε is called the machine epsilon of F.

The interval from the smallest positive F-number Nmin = βemin to

the largest one Nmax = (β − ε)βemax is called the range of F.

c© 2003, 2007, T. Verhoeff Numerical Computing–11

IEEE Standard: Normalized Binary Floating-Point Numbers

Parameter values

Type β t emin emax ε Range

Single 2 23 −126 127 2−23 ≈ 1.2× 10−7 ≈ 10±38

Double 2 52 −1022 1023 2−52 ≈ 2.2× 10−16 ≈ 10±308

Sizes in bits

Type ± f e Total

Single 1 23 8 32

Double 1 52 11 64

c© 2003, 2007, T. Verhoeff Numerical Computing–12

Floating-Point Operations

Most operations on R are not closed in F.

When such operations are simulated on a computer, the result is

forced into F, yielding an approximation of the exact result.

This introduces a (small) rounding error into floating-point calcu-

lations. Subsequent operations on inexact results can magnify, or

reduce, the error in non-intuitive ways.

The aim of error analysis is to understand the propagation of errors

in numerical algorithms, in particular to prove bounds on the error in

the final result.

c© 2003, 2007, T. Verhoeff Numerical Computing–13

Floating-Point Arithmetic

Approximation function fl : R → F

fl(x) is the floating-point number nearest to real number x

For operation � on R, let �̂ be its implementation on F

IEEE Standard requires ‘best’ results:

x �̂ y = fl(x � y)

for all � ∈ {+,−,×, / } and x, y ∈ F

c© 2003, 2007, T. Verhoeff Numerical Computing–14

Floating-Point Arithmetic: Limitations

To what extent is F an adequate model of R?

Which mathematical laws hold when translated from R to F?

Rn fln

−−→ Fn

↓A ↓Â
R fl−→ F

For all � ∈ {+,−,×, / } and x, y ∈ R

fl(x � y) = fl(x) �̂ fl(y)

c© 2003, 2007, T. Verhoeff Numerical Computing–15

Floating-Point Arithmetic: Examples

Consider a machine working with two decimal digits (β, t = 10,1)

fl(1.06 + 3.06) = fl(4.12) = 4.1

fl(1.06) +̂ fl(3.06) = 1.1 +̂ 3.1 = 4.2

How do the following expressions compare:

5.3× 0.2 + 5.1× 0.6 ? 1.1× 1.9 + 5.1× 0.4

Exact evaluation yields:

1.06 + 3.06 < 2.09 + 2.04

Machine approximation yields:

1.1 + 3.1 > 2.1 + 2.0

c© 2003, 2007, T. Verhoeff Numerical Computing–16

Count Down: Analysis

D = 0.1 has infinite repeating binary representation:

(0.0001100110011001100110011001100 . . .)2 =
∞∑

k=1

3/24k+1

Cannot be represented exactly as a binary floating-point number

In the program D = fl(0.1) 6= 0.1

Double versus Single

0.1 versus 0.01

c© 2003, 2007, T. Verhoeff Numerical Computing–17

Euclidean Paths: Analysis

Pythagoras’ Theorem yields:

AOB =
√

990 +
√

86 ≈ 40.73788394060 . . .

COD =
√

778 +
√

165 ≈ 40.73788394062 . . .

The two lengths coincide on the 12 most significant decimal digits,

with a difference on the order of 10−11.

For the second pair we find

AOB =
√

944 +
√

236 ≈ 46.086874487211645 . . .

COD =
√

531 +
√

531 ≈ 46.086874487211652 . . .

where the difference is less than 10−14.

Are the lengths really different?

c© 2003, 2007, T. Verhoeff Numerical Computing–18

Euclidean Paths: Analysis

For the second pair, factorization leads to a confirmation :
√

944 +
√

236 =
√

16 · 59 +
√

4 · 59 = 6
√

59√
531 +

√
531 =

√
9 · 59 +

√
9 · 59 = 6

√
59

For the first pair, three squarings lead to a contradiction :
√

990 +
√

86 =
√

778 +
√

165

990 + 2
√

990 · 86 + 86 = 778 + 2
√

778 · 165 + 165

133 = 2 ·
(√

778 · 165−
√

990 · 86
)

1332 = 4 ·
(
778 · 165− 2

√
778 · 165 · 990 · 86 + 990 · 86

)
8
√

778 · 165 · 990 · 86 = 4 · (778 · 165 + 990 · 86)− 1332

64 · 778 · 165 · 990 · 86 = 8363512

699482995200 = 699482995201

c© 2003, 2007, T. Verhoeff Numerical Computing–19

Parallel Resistors: Analysis

Replacement resistance R for two parallel resistors R1 and R2:

R =
1

1
R1

+ 1
R2

=
R1 ·R2

R1 + R2

What if R1 = 0 and/or R2 = 0?

IEEE Standard supports well-behaved infinities :

1/0 = ∞ ∞+ x = ∞ 1/∞ = 0

However, 0/0 is undefined, yielding a NaN (not-a-number)

c© 2003, 2007, T. Verhoeff Numerical Computing–20

Quadratic Equation: Analysis

The well-knownn a, b, c-formula for solving quadratic equations:

x1,2 =
−b±

√
b2 − 4ac

2a
(2)

Applying it to

10−8 × x2 + x− 1 = 0 (3)

and evaluating it in IEEE single precision, yields

x1,2 = 0.000000000, −1.000000000× 108

Should have been

x1,2 = 1 .000000000, −1.000000000× 108

c© 2003, 2007, T. Verhoeff Numerical Computing–21

Quadratic Equation: Analysis

For our positive root, −b and +
√

b2 − 4ac have opposite signs and

are of almost equal magnitude , because |4ac| � b2.

When adding them, the (roundoff) error present in the computed

value for b2 − 4ac is suddenly magnified enormously in relative size.

This phenomena is known as cancellation .

Cancellation is avoided in the less-known alternative formula:

x1,2 =
2c

−b∓
√

b2 − 4ac
(4)

c© 2003, 2007, T. Verhoeff Numerical Computing–22

Measures for Accuracy

Suppose the exact value x ∈ R is approximated by x̂ ∈ F.

The absolute error (in x̂ for x) is defined as

|x− x̂|

The relative error is defined as

|x− x̂|
|x|

Scientific and engineering applications often involve scaling, e.g. when

converting values to other units.

The relative error is preferred because it is invariant under scaling.

c© 2003, 2007, T. Verhoeff Numerical Computing–23

Stability of Numerical Algorithm

A numerical algorithm is called stable , when it produces answers

whose accuracy is on the order of what can ‘reasonably’ be expected

for the problem at hand.

Challenges in numerical mathematics are

• to determine what can ‘reasonably’ be expected and

• to construct appropriate stable algorithms.

For the positive root of (3), the a, b, c-formula (2) is unstable, whereas

the alternative formula (4) is stable.

c© 2003, 2007, T. Verhoeff Numerical Computing–24

Quadratic Equation: Further Analysis

Cancellation is also possible in the subtraction b2−4ac when b2 ≈ 4ac.

In this case it is harder to circumvent, because it is inherent in the

problem itself and not a consequence of a badly chosen algorithm.

Determining the roots when they are nearly equal is said to be an

ill-conditioned problem .

The squaring b2, the multiplication 4ac, and the final division by 2a

can produce (intermediate) results that fall outside the representable

range. This is referred to as underflow or overflow .

For b2 and 4ac this can happen even if the final results are represen-

table within the range of floating-point numbers.

c© 2003, 2007, T. Verhoeff Numerical Computing–25

Quadratic Equation: Complications

1. Restrictions on the input coefficients a, b, c

2. Roots that are not representable within the floating-point range

3. Complex roots

4. Desired accuracy of the output roots

5. Evaluation of a quadratic-solving program

c© 2003, 2007, T. Verhoeff Numerical Computing–26

Error Analysis

Estimate quantitatively the error in a computation: e.g. give bounds

Given floating-point numbers A, B, X, compute Y = AX + B.

What can be said about the error in Ŷ = A ×̂X +̂ B?

F (A, B, X) = AX + B

F̂ (A, B, X) = A ×̂X +̂ B

= AX(1 + δ) +̂ B

= (AX(1 + δ) + B) (1 + η)

with |δ|, |η| ≤ ε/2

c© 2003, 2007, T. Verhoeff Numerical Computing–27

Forward Error Analysis

F̂ (A, B, X) = (AX + B)(1 + η) + AXδ(1 + η)

= F (A, B, X) + (AX + B)η + AXδ(1 + η)

F̂ computes exact value plus a perturbation (forward error):

(AX + B)η + AXδ(1 + η)

• Absolute error ≈ AX(δ + η) + Bη: no reasonable bound

• Relative error ≈ AX
AX+Bδ + η: no reasonable bound

• Error always small compared to B: false

• Error always small compared to AX: false

c© 2003, 2007, T. Verhoeff Numerical Computing–28

Error Analysis Is Not Easy

• Error propagation is a complex process

• Statistical analysis is not applicable if there are just a few steps

It is not reliable (if there are many steps: law of large numbers),

because errors need not be independent but can be correlated; in

that case, statistical analysis is too optimistic

• Interval arithmetic often is (far) too pessimistic ; errors can and

often do (partially) cancel each other

c© 2003, 2007, T. Verhoeff Numerical Computing–29

Backward Error Analysis

F̂ (A, B, X) = (AX(1 + δ) + B) (1 + η)

= A(1 + η)X(1 + δ) + B(1 + η)

= F (A(1 + η), B(1 + η), X(1 + δ))

= F (Â, B̂, X̂)

where

Â = A(1 + η)

B̂ = B(1 + η)

X̂ = X(1 + δ)

F̂ computes exact solution for slightly perturbed input.

Compare this error to the error already present in A, B, X.

c© 2003, 2007, T. Verhoeff Numerical Computing–30

Other Areas in Numerical Mathematics

Two additional sources of error:

Data Uncertainty: the error already present in the input values

E.g. by physical measurement

Truncation Error: the error introduced by an inexact algorithm, which

is known to produce incorrect answers when run on an ideal ma-

chine, with the purpose of obtaining accurate answers in less time

E.g. by chopping off an infinite series or approximating a function

by a polynomial.

c© 2003, 2007, T. Verhoeff Numerical Computing–31

Recommendation 1

Avoid floating-point numbers in computing whenever possible.

To teachers: When designing programming problems, there are plen-

ty of possibilities without floating-point numbers.

In fact, it is a good attitude to forbid your students to use

floating-point numbers in their programs, because it is so hard to

reason about floating-point programs.

To students: Resist the temptation to use floating-point numbers

when solving programming problems whose specification does not

involve them.

c© 2003, 2007, T. Verhoeff Numerical Computing–32

Recommendation 2

If you do want to use floating-point numbers, study the literature.

To teachers: When setting a programming problem involving floating-
point numbers, the constraints must be expressed carefully and
the problem must be solvable for all allowed inputs. Avoid ill-
conditioned problems.

To students: Before resorting to floating-point numbers, convince
yourself that this is really necessary.

Then, convince yourself that your program satisfies all constraints.
In particular, check that you have not fallen into one of the
‘standard’ traps giving rise to an unstable algorithm.

In both cases, some form of error analysis is needed.
c© 2003, 2007, T. Verhoeff Numerical Computing–33

Quote from Donald E. Knuth (continued)

“Many serious mathematicians have attempted to analyze

a sequence of floating point operations rigorously, but have

found the task so formidable that they have tried to be con-

tent with plausibility arguments instead.”

c© 2003, 2007, T. Verhoeff Numerical Computing–34

