
Oskar’s Coin Game

Tom Verhoeff

August 31, 1990

1 Description and First Problem

On a table lieN coins (N ≥ 1). The coins are numbered 1
through N. Suppose the total number of heads facing upwards
is k. Now the coin with numberk is turned upside down. What
happens if the procedure is repeated, that is, counting heads and
turning the corresponding coin?

This is the first question Oskar van Deventer asked me about his coin game back
in 1986. In this article, I will present a solution and also deal with some other
questions. There is not enough space to include complete proofs, but I suspect that
the interested reader is capable of filling in the details.

Before presenting a solution to the first problem, let us take a closer look at
the problem statement. The above description is not complete. It is unclear what
to do when all coins show their tail side (k = 0), because there is no coin num-
bered 0. Let us agree that fork = 0 the configuration is left unchanged. Also, it
may be unclear what should be considered a solution to the first problem. Each
configuration has exactly one successor configuration and, hence, the game simply
continues forever. Obviously, that is not a very satisfactory answer. Since the num-
ber of configurations is finite (in fact, 2N), the game must eventually enter some
configuration a second time and thereafter repeat the same cycle of configurations
forever. The first problem now is to find out which cycles are possible.

If you want to try and find a solution yourself, then this is the right moment to
stop reading and to take some numbered coins from your pocket.

2 Formalization

Before spoiling (part of) the fun, we introduce some notation to formalize Oskar’s
coin game.

A configurationin the game may be modeled by a mapping from the set of
numbers 1 throughN to {0,1}, where the image 0 stands for tail and 1 for head.
We denote function application by an infix dot. Thus, for configurationc, we have
c.i = 0 precisely when coini shows tail andc.i = 1 when it shows head.

1

http://www.win.tue.nl/~wstomv/

Theweightof a configuration is the number of heads in it. More formally, we
define mappingw from configurations to natural numbers by

w.c = (N i : 1≤ i ≤ N : c.i = 1) for all c,

where(N i : D : P) is the number ofi ’s in domainD with property P. In the
sequel, variablei will always range over (a subset of){1 . . . N} and we omit the
condition 1≤ i ≤ N from the domain expressions. Notice that we have 0≤ w.c ≤
N.

Thesuccessorof configurationc is obtained by turning coinw.c upside down
if w.c 6= 0, and doing nothing otherwise. Formally, mappings from configurations
to configurations is defined by

s.c.i =
{

c.i if i 6= w.c
1− c.i if i = w.c for all c andi ,

where function application is left associative, that is,s.c.i stands for(s.c).i . Ap-
plication ofs constitutes amovein the game. Observe thats.c = c if and only if
w.c= 0.

Let us now consider a small example withN = 7. In Table 1, are shown a
configuration and some successors obtained by repeated application ofs (sm stands
for m applications ofs). The weight of each configuration is shown in the rightmost
column. From this example it is not immediately clear what eventually happens.
The changes in configuration seem quite erratic. Playing around with some more
examples, however, will quickly convince you that the game always converges to
the no-heads (zero-weight) configuration.

x x.1 x.2 x.3 x.4 x.5 x.6 x.7 w.x
c 1 0 0 1 1 0 1 4

s.c 1 0 0 0 1 0 1 3
s2.c 1 0 1 0 1 0 1 4
s3.c 1 0 1 1 1 0 1 5
s4.c 1 0 1 1 0 0 1 4
s5.c 1 0 1 0 0 0 1 3

Table 1: A sequence of configurations

3 Solution to the First Problem

We will prove that the no-heads configuration is the only cycle in the game. In
fact, we can even give an explicit expression for the number ofs-moves required
for configurationc to reach the zero-weight configuration. We will do so by defin-
ing a mappingn from configurations to integers and proving the following three

2

properties.

P1: n.c ≥ 0
P2: n.c= 0 if w.c= 0
P3: n.(s.c) = n.c− 1 if w.c 6= 0

First, we analyze the game a little further and we construct an expression forn.c
that is easy to justify informally, but not so easy to manipulate formally. Neverthe-
less, the two propertiesP1 and P2 are easy to prove. Then we rewrite it twice to
improve manipulation and we show propertyP3.

If Table 1 is extended and marked appropriately, viz. by highlightingc.(w.c),
then a pattern appears. Table 2 shows this for the same initial configuration as
above (it is turned ninety degrees counterclockwise to save space). In this table
some features are very prominent. For instance, application ofs changes the weight
by one (if it was non-zero to begin with):

w.(s.c) =

w.c if w.c= 0
w.c+ 1 if w.c 6= 0 and c.(w.c) = 0
w.c− 1 if w.c 6= 0 and c.(w.c) = 1

Furthermore, the box resembles an elevator: it travels up and down between the
zeroes below it and the ones above it (these are underlined in Table 2), “picking”
them up when they are reached (imagine a zero at “level” 0).

1 1 1 1 1 1 1 1 1
m 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

sm.c.7 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
sm.c.6 0 0 0 0 0 0 0 0 0 00 1 1 0 0 0 0 0 0
sm.c.5 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
sm.c.4 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
sm.c.3 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0
sm.c.2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 11 0 0
sm.c.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0
w.(sm.c) 4 3 4 5 4 3 2 3 4 5 6 7 6 5 4 3 2 10

Table 2: A sequence of marked configurations

We can break up the trajectory of the elevator by considering the moments
when the elevator returns to the level at which it started. In the above example,
the elevator starts at level 4 and returns there four times: twice after “picking up”
a zero and twice after a one. It takes 2 moves to pick up the first zero (at level 3)
and return to level 4, then 2 more moves for picking up the first one (at level 5) and
returning, 4 more for the next zero (at level 2), and another 6 for the last one (at
level 7). Notice that the number of moves to pick up something at leveli and return
to levelk is 2∗ |k− i |. After the last return to level 4, it takes 4 more moves to go

3

down all the way. The number of moves in the final rush down is simply the weight
of the initial configuration, because that is the level where the elevator starts.

Thus we arrive at the following expression forn.c:

n.c = 2∗ u.c+ w.c with

u.c = (Si : (i < w.c ∧ c.i = 0) ∨ (i > w.c ∧ c.i = 1) : |w.c− i |),
where(Si : D : E) equals the sum of expressionsE taken over alli in the do-
main D. For the above example, we haveu.c = 1+ 2+ 1+ 3 = 7 and, hence,
n.c= 2 ∗ 7+ 4= 18.

Of course, the way we constructed the expression forn.c does not prove its
correctness as expressed byP1 through P3 (for instance, why does it not matter
whether the elevator starts on a zero or a one?). But it looks promising. Note that
from the definitions ofu andn it is immediately clear thatu.c ≥ 0 andn.c ≥ 0,
proving P1. On account ofw.c ≥ 0, we now also haven.c = 0 if and only if
w.c = 0, proving P2. All that remains to be proven isP3: n.(s.c) = n.c− 1 if
w.c 6= 0. In order to do so we first simplify the expression forn.c.

The weight of a configuration enjoys the following fundamental property:

(N i : i ≤ w.c : c.i = 0) = (N i : w.c< i : c.i = 1).

Phrased in elevator terminology, the number of zeroes at or below the level of the
elevator equals the number of ones above it. Using this property, one can simplify
the expression foru.c to

u.c = (Si : w.c< i ∧ c.i = 1 : i)− (Si : i ≤ w.c ∧ c.i = 0 : i).

For the above example, we would now computeu.c = 5+7−2−3= 7. Note that
from this new expression foru.c it is no longer immediately obvious thatu.c ≥ 0.

On the basis of the equality(Si : 1 ≤ i ≤ k : i) = k ∗ (k + 1)/2, a further
simplification yields

u.c = v.c−w.c ∗ (w.c+ 1)/2 with

v.c = (Si : c.i = 1 : i).

Substituting this expression foru.c in the definition ofn.c results in

n.c = 2 ∗ v.c− (w.c)2.
For the above example, we getv.c = 2+3+5+7= 17 andn.c= 2∗17−42 = 18.
From this expression forn.c it certainly is not trivial to deduceP1 andP2. However,
it is straightforward to deduce

v.(s.c) =

v.c if w.c= 0
v.c+w.c if w.c 6= 0 and c.(w.c) = 0
v.c−w.c if w.c 6= 0 and c.(w.c) = 1

4

Assumingw.c 6= 0 we can now derive

n.(s.c) = 2∗ v.(s.c)−w.(s.c)
= 2∗ (v.c±w.c)− (w.c± 1)2

= 2∗ v.c± 2 ∗ w.c− (w.c)2∓ 2 ∗w.c− 1

= n.c− 1,

which provesP3. This completes the proof thatn.c is the number ofs-moves
needed forc to reach the zero-weight configuration. Notice thatn.c can also be
expressed concisely as

n.c = 2 ∗ (Si :: i ∗ c.i)− (Si :: c.i)2.

4 Second Problem

We now know that every configuration eventually decays to the zero-weight con-
figuration. Naturally, the second question Oskar asked me about his coin game
was:

Which configurations take longest to decay, that is, are furthest
from the zero-weight cycle?

More formally, this can be phrased as: For whichc is n.c maximal?
First we show that any configurationc with c.i = 1 andc. j = 0 for somei < j

(that is, with a one “left of” a zero) does not have maximaln.c. The argument is
as follows. Consider configurationb obtained fromc by swapping the images fori
and j . Then we havew.b= w.c andv.b= v.c− i + j . Thus we can derive

n.b = 2 ∗ v.b− (w.b)2
= 2 ∗ v.c− 2∗ i + 2∗ j − (w.c)2
= n.c+ 2 ∗ (j − i)

> n.c,

which shows thatn.c is not maximal. Therefore, the only candidates for maximal
n.c are configurations of the formck defined by

ck.i =
{

0 if i ≤ N − k
1 if N − k < i

for all i ,

that is, withN − k zeroes “left of” (or “under”)k ones. We have

w.ck = k,

v.ck = k ∗ (N − k+ 1+ N)/2,

n.ck = k ∗ (2∗ N + 1− 2 ∗ k).

Hence,n.ck is maximal fork = (N + 1)div 2 and the value of this maximum is
N ∗ (N + 1)/2. Apparently the configuration attaining maximaln.c is unique.

5

5 Third Problem

Oskar had even a third question:

What can you say about the distribution ofn.c for fixed N?

In Table 3, some statistics are collected. The entry at rowN, columnm shows the
number of configurations in theN-coin game that reach the zero-weight configu-
ration in exactlym moves, that is, the number ofc with n.c = m. The remarkable
thing about this distribution is the left-right symmetry of each row. Can you prove
this symmetry? The proof that I know is quite involved. Can you come up with a
closed expression for the distribution?

N,m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15total
1 1 1 2
2 1 1 1 1 4
3 1 1 1 2 1 1 1 8
4 1 1 1 2 2 2 2 2 1 1 1 16
5 1 1 1 2 2 3 3 3 3 3 3 2 2 1 1 1 32

Table 3: Distribution statistics (open entries are 0)

6 Conclusion

Although Oskar’s coin game is quite simple, there are some subtle sides to it. In
this article, I have analyzed a few of these subtleties. Anyone able to shed more
light on them is welcome to write me. I am particulary interested in the third
problem.

As you probably have found out, Oskar’s coin game is not a very interesting
game to play, because each configuration allows only one move. However, playing
the game backwards makes it more interesting, that is, by allowing a move fromc
to b if and only if s.b = c. In the backwards game, configurations allow either
zero, one, or two moves. This could, for instance, be played as a two-person game:
players take alternate moves and the player that cannot move looses. I have not
analyzed the backwards game in detail, but it made its appearance when I looked
into the third question about symmetry.

I wish to acknowledge Gerard Wiltink for his help in simplifying the solution
to the first problem.

6

	Description and First Problem
	Formalization
	Solution to the First Problem
	Second Problem
	Third Problem
	Conclusion

