
Nat.Lab. Unclassified Report NL-UR 2000/828

Date of issue: 12/01

The Puzzle Processor Project
Towards an Implementation

Erik van der Tol and Tom Verhoeff

Unclassified Report
c©Koninklijke Philips Electronics N.V. 2001

NL-UR 2000/828 Unclassified Report

Authors’ address data: E. B. van der Tol;erik.van.der.tol@philips.com
T. Verhoeff;T.Verhoeff@tue.nl

c©Koninklijke Philips Electronics N.V. 2001
All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

ii c©Koninklijke Philips Electronics N.V. 2001

mailto:Erik.van.der.Tol@philips.com
mailto:T.Verhoeff@tue.nl

Unclassified Report NL-UR 2000/828

Unclassified Report: NL-UR 2000/828

Title: The Puzzle Processor Project
Towards an Implementation

Author(s): Erik van der Tol and Tom Verhoeff

Part of project: Puzzle Processor Project

Customer: Not applicable

Keywords: Packing Puzzles; Set Partitioning; Backtracking; Processor Design; VLSI
Programming

Abstract: The Puzzle Processor Project seeks to develop a special-purpose pro-
cessor for efficiently solving a certain kind of puzzles. The puzzles are
packing problems where a collection of pieces and a box are given
with the goal to fit the pieces into the box. Packing problems appear
both in recreational and in more serious settings, such as scheduling.

First, we reformulate these packing problems in terms ofset parti-
tioning. Next, we derive aninstruction set for the puzzle processor
by transforming a backtrack program for set partitioning. Finally, we
present and analyze adesign for the puzzle processorexpressed in
Tangram, a VLSI-programming language developed at Philips Research
Laboratories.

Conclusions: We have shown how ageneral-purpose backtrack programfor solv-
ing packing puzzles can be transformed systematically into apuzzle-
specific program involving just a few computational primitives. This
transformation can even be automated.

Next we have specified and designed apuzzle processorto execute
these computational primititves efficiently. It has only five instructions
acting on four registers. A packing puzzle can now be compiled into
a dedicated program for this processor. When executed, the program
determines solutions to the puzzle.

The programs are puzzle-specific, and the processor is domain-specific.
This can be exploited to arrive at very efficient puzzle solvers. We have
compared three simple implementations.

The high branching density of typical programs for the puzzle pro-
cessor, together withlow branching predictability , pose a challenge
for efficient pipelining, which we have not attempted to tackle in this
report.

Future research will also look into the possibility of operating many
puzzle processors in parallel to improve performance further.

c©Koninklijke Philips Electronics N.V. 2001 iii

NL-UR 2000/828 Unclassified Report

iv c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

Contents

1 Introduction 1

2 Puzzle descriptions 2

2.1 Cells and pieces. 2

2.2 Generalization to aspects. 3

2.3 Abstract puzzles. 5

3 Solving abstract puzzles 7

4 Transforming the basic procedure 8

4.1 Introducing an extra parameter for the set of free aspects. 8

4.2 Converting parameters into global variables. 9

4.3 Refining the choice of free aspect by introducing a parameter. 10

4.4 Eliminating a parameter by instantiation for all relevant values. 11

4.5 Simplifying the iteration by partitioning its domain. 11

4.6 Unrolling the for-loops . 13

4.7 Eliminating a global variable. 13

4.8 Expanding the embeddings. 14

4.9 Exploiting overlap among embeddings. 14

4.10 Representing a set by a boolean array. 15

4.11 Example. 15

5 Refinement toward hardware 18

5.1 Instruction set. 19

5.2 Encoding instructions. 20

5.3 Encoding sets of aspects. 21

5.4 VLSI Programming. 22

6 Tangram Designs 23

6.1 Straightforward implementation. 23

6.2 Procedures and precomputed values. 24

6.3 Prefetching . 24

7 Conclusion 25

References 26

c©Koninklijke Philips Electronics N.V. 2001 v

NL-UR 2000/828 Unclassified Report

A Program in C for Simple Puzzle 27

B Puzzle-Processor ‘Assembly Listing’ for Simple Puzzle 29

C Puzzle-Processor ‘Machine Code’ for Simple Puzzle 31

D Puzzle-Processor Interpeter in C 31

E Straigthforward design with minimal parallelism 33

F Design with procedures and precomputed values 34

G Design with prefetching 35

Distribution

vi c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

1 Introduction

We are interested in solving puzzles consisting of a collection of pieces that have to be placed in
a box. Such puzzles are also known as packing problems. A well-known example is the 6×10
pentomino puzzle [7], shown in Figure1. The pentomino puzzle consists of a box of 6 by 10 unit

U X F W

V Z T P I

L Y N

Figure 1:The6×10 pentomino puzzle: box (left) and 12 pieces (right)

squares (cells), in which the 12 pentominoes have to be placed. Each pentomino consists of a
unique combination of 5 unit squares. There are exactly 12 such combinations. The pentominoes
may be freely translated, rotated, and reflected when placed in the box. Thus, there are many ways
to place each piece in the box. Note that the unit squares of the pieces are indistinguishable. For
example, pieceI can be placed in the box in 56 ways: 6∗ 6 horizontally and 2∗ 10 vertically.
Figure2 shows one of the 9356 solutions1 for the 6×10 pentomino puzzle.2

Figure 2:An elegant solution for the6×10 pentomino puzzle

Algorithms for solving this kind of puzzles are usually based on backtracking [8]. Instead of a
general-purpose backtrack program that takes a puzzle description as input, we develop puzzle-
specific backtrack programs. The resulting programs involve just a few data structures and oper-
ations, which serve as the basis for the specification of a special-purpose puzzle processor. The
puzzle processor is optimized for dealing with the data structures and operations occurring in the
puzzle-specific backtrack programs. To solve a puzzle, we generate a dedicated program from the
puzzle’s description in terms of puzzle-processor instructions and then execute it on the puzzle
processor.

12339 modulo rotation and reflection.
2A solution to the 5×12 pentomino puzzle can be found on the 4th floor of building WAY at the Philips Research

Lab on a tapestry called “Maartens pentomino” by Maarten Vliegenthart.

c©Koninklijke Philips Electronics N.V. 2001 1

NL-UR 2000/828 Unclassified Report

2 Puzzle descriptions

Let us look at a concrete example of a very simple puzzle. Figure3 shows a 2×3 rectangular box
and three pieces, namedA, B, andC, to be fit into the box. For ease of reference, the cells in the
box have been labeled from 0 to 5. We use this puzzle to illustrate our ideas.

5

0 1 2

3 4 B CA

Figure 3:A simple puzzle:2×3 box (left) and 3 pieces (right)

No doubt you have already found the twelve solutions of the puzzle in Figure3. How did you do
it? We want to develop a computer program that determines all solutions for such puzzles. Several
approaches are possible, most of which distinghuish between the role of the cells in the box and
the role of the pieces (see e.g. [3]). This is discussed further in the next section. We take a more
general approach, which we present in §2.2.

2.1 Cells and pieces

A systematic approach is required for determiningevery solution of a puzzle justonce. When
treating the cells in the box and the pieces as clearly distinct entitities, one can consider two
backtrack strategies:

1. Concentrate on the cells. Every cell has to be covered to obtain a solution. Consider the
cells in some order, for instance in ‘reading order’. Separately investigate each possible way
to cover the ‘next’ empty cell by an unused piece. Note that a piece may be put in the box
in various orientations. Each such covering results in a partial solution, leaving a similar
puzzle with a smaller box3 and fewer pieces. When all cells have been covered, a solution
has been obtained. For example, the top-left cell of the simple example puzzle (cell 0 in
Fig. 3) can initially be covered in six ways: once by pieceA, twice byB, and in three ways
by C.

2. Concentrate on the pieces. Every piece has to be used to obtain a solution. Consider the
pieces in some order, for instance in alphabetic order. Separately investigate each possible
way to place the ‘next’ unused piece in an empty part of the box. Each such placement
results in a partial solution, leaving a similar puzzle with a smaller box and fewer pieces.
When all pieces have been used, a solution has been obtained. For example, pieceB of the
simple example puzzle (Fig.3) can initially be used in seven ways: three vertical and four
horizontal.

In the ‘cells’ strategy, the order in which the cells are attempted affects the running time of the
program, while in the ‘pieces’ strategy, the order of the pieces is crucial. Tonneijk has compared
several backtrack strategies for solving puzzles in [14]. Tonneijk observes that, in general, the
‘cells’ strategy is faster than the ‘pieces’ strategy, because the former gives rise to ‘better-related’
subproblems, which all behave decently under the same cell order.

3That is, a box with less empty space.

2 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

2.2 Generalization to aspects

Until now we have regarded the cells in the box and the pieces as two distinct entities. There is,
however, a clear resemblance between them. A partial solution of a puzzle is captured by recording
which cells have been covered and which pieces have been used. In our kind of puzzles, a cell can
be covered at most once, and a piece may be used also at most once. This can easily be tracked by
a boolean variable for each cell and for each piece.

We now take a more formal approach to describing puzzles. Let0 be the set of cells and5 be the
set of pieces. For the simple puzzle of Figure3, we have

0 = { 0,1,2,3,4,5}
5 = {A,B,C }

The placement of a single piece in the box is completely described by indicating which cellsγ

have been covered and which pieceπ has been used. Thus, apiece placementcan be formalized
as a pair(γ, π), with γ ⊆ 0 andπ ∈ 5. A solution to the puzzle consists of a set of such
placements with the property that every cell is covered exactly once and every piece has been used
exactly once.

It is, however, unnecessary to distinguish the role of the cells and the role of the pieces. By suitable
renaming we can ensure0 ∩5 = ∅. Define setA by

A = 0 ∪5 (1)

It unifies the notions of a cell and a piece into a single generalized notion, which we call anaspect
of the puzzle. A piece placement now corresponds to a sete of aspects, that is,e ⊆ A. We call
such a set of aspects anembedding. In terms of the piece placement modeled as a pair(γ, π) we
have the correspondence:

e = γ ∪ {π } (2)

γ = e ∩ 0 (3)

{π } = e ∩5 (4)

A solution is a set of embeddings that partitions the set of aspects.

The shape of the pieces determines which subsets of the aspects can be covered. This set of
embeddings is obtained by considering all possible placements of the pieces in the box, taking into
account translations, rotations, and reflections. The simple puzzle from Figure3 has 6+ 3 = 9
aspects. Figure4 depicts all its 21 embeddings, 6 for pieceA, 7 for B, and 8 forC.

The 6×10 pentomino puzzle has 60+ 12 = 72 aspects and, as it turns out, a total of 2056
embeddings. Table1 lists the number of embeddings for each piece.

The set of all embeddings need not be determined explicitly. It can be constructed on the fly by
translating, rotating, and reflecting the basic shapes of the pieces during backtracking. Often, the
rotations and reflections of the piece shapes are precomputed and the translations are done on the
fly (as in [3]). Even doing only the translations on the fly incurs a time penalty. When there
is enough memory, all embeddings can be precomputed to speed up the backtracking. This is a
matter of time-memory trade-off.

The generalization to aspects has several advantages:

1. It simplifies the data structure needed to store a puzzle.

c©Koninklijke Philips Electronics N.V. 2001 3

NL-UR 2000/828 Unclassified Report

7

14

1 2 3 4 5

8

15

0

9

C

16

10

17

11

18

12

19

6

13

20

1 2

3 4 5

B C

0 2

3 4 5

B C

0 1

543

B C

0 1 2

54

B C

0 1 2

53

B C

0 1 2

43

B C

2

543

A C

2

54

A B

210

3

CA

210

5

CA

10

3 4

CACA

3 5

200

3 4 5

CACA

4 5

21

2

53

A B A B

5

1 2 0

53

A B A B

43

0 0 2

5

A B A B

3

0 2 0 1

3

A B

0

0

3

B

1

A A

1 2

2

A

3

A A

4 5

A

B B

4

1 2

5

B B

43 4 5

B

0 1

B

0 1

3

C

2

54

CC

54

1

C

4

1

3

C

5

2121

4

CC

43

0

4

10

Figure 4:The 21 embeddings for the simple puzzle in Fig.3

Piece Embeddings Piece Embeddings
F 256 U 152
I 56 V 128
L 248 W 128
N 248 X 32
P 304 Y 248
T 128 Z 128

Table 1:Number of embeddings for each piece in the6×10 pentomino puzzle

2. It allowsmixed backtrack strategies based on a combined order of cells and pieces.

3. It helps in solvingvariations on puzzels with additional constraints on the allowed embed-
dings. As an example, consider the 6×10 pentomino puzzle with the additional constraint
that all pieces touch the boundary.

4. It can be used to avoid findingequivalent solutions more than once, by forbidding appro-
priate embeddings. For example, observe that the box of the simple puzzle in Figure3 has
four symmetries generated by vertical and horizontal reflection, whereas pieceC has only
one of these symmetries (viz. the identity). Therefore, solutions come in groups of four. By
forbidding three of the four rotations of pieceC, only one solution in each group of four is
allowed.

The proposed generalization still has some limitations. One can imagine puzzles where cells or
pieces may be covered or usedmore than once. In this more general case, the usage of both
commodities can be tracked by a counter (natural number). It is straightforward to adapt our
treatment for such more general puzzles by usingbags instead of sets (also see §4.10). It is also
possible to imagine puzzles where not all cells have to be covered or not all pieces have to be used
in a solution. We do not deal with these more general situations in this report, but the framework
can be adapted appropriately.

4 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

2.3 Abstract puzzles

We now formally define the notion of an abstract puzzle, which avoids the distinction between
cells to cover and pieces to use. We also formally define what a solution and a partial solution of
an abstract puzzle are. Finally, we give some useful properties for solving abstract puzzles.

An abstract puzzleis a pair(A, E) of sets such that

E ⊆ P(A) ∧ E 6= ∅ ∧ ∅ 6∈ E (5)

A member ofA is called anaspectof the puzzle, and a member ofE is called anembedding.
An embedding is a nonempty set of aspects. Condition (5) helps to exclude certain pathological
cases, in particular it impliesA 6= ∅.
The puzzle from Figure3 is expressed as an abstract puzzle by the pair

({ 0,1,2,3,4,5,A,B,C }
, { { 0,A } , { 1,A } , { 2,A }
, { 3,A } , { 4,A } , { 5,A }
, { 0,1,B } , { 0,3,B } , { 1,2,B }
, { 1,4,B } , { 2,5,B } , { 3,4,B }
, { 4,5,B } , { 0,1,3,C } , { 0,1,4,C }
, { 0,3,4,C } , { 1,2,4,C } , { 1,2,5,C }
, { 1,3,4,C } , { 1,4,5,C } , { 2,4,5,C }
}

)

(6)

with 9 aspects and 21 embeddings (6 involve pieceA, 7 involve B, and 8 involveC, also see
Figure4). The aspects aredummies, in the sense that systematic renaming of the aspects yields an
isomorphic puzzle. If we restrict pieceC to one of its four rotations, e.g. to embeddings 18 and 20
in Figure4, then the resulting abstract puzzle has only 15 embeddings:

({ 0,1,2,3,4,5,A,B,C }
, { { 0,A } , { 1,A } , { 2,A }
, { 3,A } , { 4,A } , { 5,A }
, { 0,1,B } , { 0,3,B } , { 1,2,B }
, { 1,4,B } , { 2,5,B } , { 3,4,B }
, { 4,5,B } , { 1,3,4,C } , { 2,4,5,C }
}

)

(7)

For sets of embeddings (s ⊆ E), we define the set
⋃

s of aspects covered bys by⋃
s = (

⋃
e : e ∈ s : e) (8)

A solution for puzzle(A, E) is a subsets of E that partitionsA:

s ⊆ E (9)

(∀ e, e′ : e ∈ s ∧ e′ ∈ s ∧ e 6= e′ : e ∩ e′ = ∅) (10)⋃
s = A (11)

c©Koninklijke Philips Electronics N.V. 2001 5

NL-UR 2000/828 Unclassified Report

Condition (10) expresses that embeddings in a solution are pairwise disjoint (do not overlap), and
condition (11) that every aspect is covered. For example,

{ { 1,A }, { 2,5,B }, { 0,3,4,C } } (12)

is a solution of the abstract puzzle (6) corresponding to Figures3 and4. It is depicted in Figure5.
Set (12) is not a solution of the abstract puzzle (7), which is a restricted version of (6).

0 2

C

3 4 5

B C

4

0

3 4

1

C

3

A

2

5

1

A B

02

5

1

A B C B

A
10 151

Figure 5:Solution of simple puzzle

Let S(A, E) be the set of all solutions of(A, E), that is,

S(A, E) = { s | s ⊆ E ∧ s partitionsA } (13)

The notion of a solution can be generalized to that of a partial solution by dropping the third
condition thatA is completely covered. Apartial solution for puzzle(A, E) is a subsetp of E
that partitions asubset of A:

p ⊆ E (14)

(∀ e, e′ : e ∈ p ∧ e′ ∈ p ∧ e 6= e′ : e ∩ e′ = ∅) (15)

Let PS(A, E) be the set of all partial solutions of(A, E), that is,

PS(A, E) = { p | p ⊆ E ∧ p is free of overlap} (16)

The set of partial solutions for puzzle(A, E) has some useful properties: First of all,PS indeed
generalizesS (every solution is a partial solution):

PS(A, E) ⊇ S(A, E) (17)

The empty set is a partial solution (useful toinitialize the search for a solution):

∅ ∈ PS(A, E) (18)

A partial solutionp can be extended by an embeddinge ∈ E that does not overlap
⋃

p (useful to
step toward a solution):

p ∈ PS(A, E) ∧ e ∩⋃ p = ∅ ≡ e 6∈ p ∧ p ∪ { e } ∈ PS(A, E) (19)

Note that this property relies on∅ 6∈ E (cf. (5)), which impliese 6= ∅. A partial solution that
coversall of A is a solution (useful toterminate the search for a solution):

p ∈ PS(A, E) ∧ ⋃
p = A ≡ p ∈ S(A, E) (20)

6 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

3 Solving abstract puzzles

Let (A, E) be an abstract puzzle. We are interested in procedureSolve that processes each solution
once. It should satisfy

{ true } Solve { (∀ s : s ∈ S(A, E) : Solution(s) called once) } (21)

whereSolution is a procedure that processes a solution, for example, printing it or just counting
it. Note that deciding whether an abstract puzzle has a solution is an NP-complete problem [6].
Furthermore, puzzles exist whose number of solutions is superexponential in the size of the puzzle.
Consider for instance the abstract puzzle(An, En) with

An = { a ∈ N | 0≤ a < 2n }
En = { { γ, π } | 0≤ γ < n ≤ π < 2n }

which has 2n aspects,n2 embeddings, andn! solutions.

Specification (21) can be generalized by introducing parameterp, being a partial solution, and
requiring thatSolve(p) processes once every solution that extendsp:

{ p ∈ PS(A, E) } Solve (p) { (∀ s : s ∈ Sp(A, E) : Solution(s) called once) } (22)

whereSp(A, E) denotes the set of solutions that extend partial solutionp:

Sp(A, E) = { s | s ∈ S(A, E) ∧ p ⊆ s } (23)

Taking p := ∅ (cf. (18)) yields the original specification (21), because∅ ⊆ s holds vacuously:

Sp(A, E) = S(A, E) if p = ∅ (24)

Thus, specification (22) indeed generalizes specification (21), andSolve(∅) satisfies the latter.

If
⋃

p = A, thenp is actually a solution, and it is the only one that extendsp (cf. (20)):

Sp(A, E) = { p } if
⋃

p = A (25)

If
⋃

p 6= A, then all possible ways of extendingp to cover a particular aspecta ∈ A −⋃ p can
be considered (cf. (19)):

Sp(A, E) = (⋃
e : e ∈ E ∧ a ∈ e ∧ e ∩⋃ p = ∅ : Sp∪{ e }(A, E)

)
(26)

if a ∈ A −⋃ p

c©Koninklijke Philips Electronics N.V. 2001 7

NL-UR 2000/828 Unclassified Report

Here is a recursive implementation forSolve based on properties (24) through (26):

proc Solve (p: P(E))
{ pre: p ∈ PS(A, E)

post: (∀ s : s ∈ Sp(A, E) : Solution(s) called once)
vf: #(A −⋃ p)
}
|[if

⋃
p = A→ { cf. (25), p ∈ S(A, E) } Solution(p)

[]
⋃

p 6= A→ { cf. (26), A −⋃ p 6= ∅ }
|[var a: A ; e: E
; a :∈ A −⋃ p { a must be covered in each solution, try all possibilities}
; for e ∈ E with a ∈ e ∧ e ∩⋃ p = ∅ do
{ p ∪ { e } ∈ PS(A, E) }
Solve (p ∪ { e })

od
]|

fi
]|

Each solution of puzzle(A, E) is processed exactly once by calling

Solve (∅)

Note that there still is a large degree of freedom (nondeterminism) in the choice of aspecta to be
covered next (a :∈ A−⋃ p). We reduce that freedom in §4.3. This can be done because the order
in which partial solutions are extended does not affect the final result (though it does affect the
order in which solutions are processed, and hence also the time it takes to find the first solution).

4 Transforming the basic procedure

ProcedureSolve can be used in a general-purpose puzzle-solving program. The input to such a pro-
gram is a puzzle description, which is somehow stored in data structures forA andE . Procedure
Solve accesses these data structures to solve the puzzle. We do not take this approach. Instead,
we transform the basic procedure, in a number of steps, to eliminate the data structures and to in-
corporate them into the topology of the program. What results is a puzzle-specific program using
only a few puzzle-independent data structures and operations.

4.1 Introducing an extra parameter for the set of free aspects

Observe that expressionA −⋃ p occurs a number of times in procedureSolve. It yields the set
of remaining aspects to be covered. To avoid recomputation, we eliminate this expression, by
introducing an extra parameterq with value A −⋃ p:

proc Solve1 (p: P(E); q: P(A))

{ pre: p ∈ PS(A, E) ∧ q = A −⋃ p

post: (∀ s : s ∈ Sp(A, E) : Solution(s) called once)

8 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

vf: #q
}
|[if q = ∅ → { p ∈ S(A, E) } Solution(p)

[] q 6= ∅ →
|[var a: A ; e: E
; a :∈ q { a must be covered in each solution, try all ways}
; for e ∈ E with a ∈ e ∧ e ⊆ q do { p ∪ { e } ∈ PS(A, E) }

Solve1 (p ∪ { e }, q − e)
od

]|
fi

]|

Each solution of puzzle(A, E) is processed exactly once by calling

Solve1 (∅, A)

4.2 Converting parameters into global variables

As the next step in this sequence of transformations, we get rid of the explicit parameter passing
for each call of procedureSolve1. This is done by converting parametersp and q into global
variables. The pre- and postcondition of the new procedureSolve2 are strengthened to ensure that
the values ofp andq are invariant. BeforeSolve2 is recursively called, the values ofp andq are
adjusted, and directly after the recursive call returns, these changes are undone. In the annotation
of a procedure, we writẽv for the initial value ofv when the procedure is invoked.

var p: P(E); q: P(A); { inv: p ∈ PS(A, E) ∧ q = A −⋃ p }

proc Solve2 { glob: p, q }
{ pre: true

post: (∀ s : s ∈ Sp(A, E) : Solution(s) called once)
p = p̃ ∧ q = q̃ (p, q unchanged)

vf: #q
}
|[if q = ∅→ { p ∈ S(A, E) } Solution(p)

[] q 6= ∅ →
|[var a: A ; e: E
; a :∈ q { a must be covered in each solution, try all ways}
; for e ∈ E with a ∈ e ∧ e ⊆ q do { p ∪ { e } ∈ PS(A, E) }

p, q := p ∪ { e }, q − e
; Solve2 { acts onp, q }
; p, q := p − { e }, q ∪ e
od

]|
fi

]|

c©Koninklijke Philips Electronics N.V. 2001 9

NL-UR 2000/828 Unclassified Report

Each solution of puzzle(A, E) is processed exactly once by

p, q := ∅, A ; Solve2

4.3 Refining the choice of free aspect by introducing a parameter

Various ways to refinea :∈ q, which chooses the next free aspect to be covered, are considered
in [14]. We restrict ourselves here to a simple choice, even if that is not always optimal for per-
formance. The choice is based on a total order< for A. This order is fixed in advance (statically),
i.e., it does not vary during the operation of the program (dynamically). The total order< induces
a successor operatorsucc and a minimum operator min onA. The choicea :∈ q is now refined by
picking the<-least uncovered aspect, i.e.a := minq.

Note that there still is freedom in choosing the total order. How to make a good choice for the
order does not concern us in this report. See [1] for some considerations and heuristics to choose
such an order.

It is not so easy to speed up the calculation of minq by maintaininga = minq for a fresh vari-
ablea. In particular, the operationq := q − e complicates this. On the other hand, we do know
min(q − e) > minq. Therefore, we introduce a parametera with the somewhat weaker precon-
dition a ≤ minq. If a ∈ q thenq 6= ∅ ∧ a = minq. Otherwise, ifa 6∈ q, thena < minq
and, hence,succ(a) ≤ minq. Furthermore, ifa > maxA then q = ∅. Let A+ = A ∪ {∞}
where∞ = succ(maxA), that is, we add an imaginary ‘infinite’ aspect as sentinel. We now have
constructed:

var p: P(E); q: P(A); { inv: p ∈ PS(A, E) ∧ q = A−⋃ p }

proc Solve3 (a: A+) { glob: p, q }
{ pre: a ≤ minq

post: (∀ s : s ∈ Sp(A, E) : Solution(s) called once)
p = p̃ ∧ q = q̃

vf: #q
}
|[if a = ∞ → { q = ∅, hencep ∈ S(A, E) } Solution(p)

[] a 6= ∞ ∧ a 6∈ q → { succ(a) ≤ minq } Solve3 (succ(a))
[] a ∈ q → { a = minq must be covered in each solution, try all ways}
|[var e: E
; for e ∈ E with a ∈ e ∧ e ⊆ q do { p ∪ { e } ∈ PS(A, E) }

p, q := p ∪ { e }, q − e
; Solve3 (succ(a))
; p, q := p − { e }, q ∪ e
od

]|
fi

]|

Each solution of puzzle(A, E) is processed exactly once by

p, q := ∅, A ; Solve3 (min A)

10 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

Note that in casea ∈ q, it may be possible, depending one, to increase thea-parameter of the
recursive call toSolve3 even more. In fact, the recursive callSolve3(succ(a)) can in general be
optimized to

Solve3 (min{ x ∈ A | a < x ∧ x 6∈ e })

but we ignore that in this report.

4.4 Eliminating a parameter by instantiation for all relevant values

We eliminate parametera by instantiatingSolve3(a) for eacha ∈ A+. The resulting procedures
are namedSolve4a.

var p: P(E); q: P(A); { inv: p ∈ PS(A, E) ∧ q = A−⋃ p }

proc Solve4 a { glob: p, q } foreach a ∈ A { hencea 6= ∞ }
{ pre: a ≤ minq

post: (∀ s : s ∈ Sp(A, E) : Solution(s) called once)
p = p̃ ∧ q = q̃

vf: #q
}
|[if a 6∈ q→ { succ(a) ≤ minq } Solve4 succ(a)

[] a ∈ q→ { a = minq, a must be covered in each solution, try all ways}
|[var e: E
; for e ∈ E with a ∈ e ∧ e ⊆ q do { p ∪ { e } ∈ PS(A, E) }

p, q := p ∪ { e }, q − e
; Solve4 succ(a)

; p, q := p − { e }, q ∪ e
od

]|
fi

]|

proc Solve4 ∞ { glob: p, q }
{ pre: ∞ ≤ minq , henceq = ∅ and p ∈ S(A, E)

post: (∀ s : s ∈ Sp(A, E) : Solution(s) called once)
p = p̃ ∧ q = q̃

}
|[Solution(p)]|

Each solution of puzzle(A, E) is processed exactly once by

p, q := ∅, A ; Solve4 min A

4.5 Simplifying the iteration by partitioning its domain

We have now obtained a much larger program, because for each aspecta, a separate procedure
Solve4a has been introduced. The advantage is that the for-loops in the proceduresSolve4a with

c©Koninklijke Philips Electronics N.V. 2001 11

NL-UR 2000/828 Unclassified Report

a ∈ A involve disjoint subsets ofE , because

a = minq ∧ a ∈ e ∧ e ⊆ q ⇒ a = mine (27)

Hence, everye ∈ E selected in the for-loop ofSolve4a satisfies mine = a. The domain of the
for-loop in Solve4a can, thus, be restricted to

Ea = { e | e ∈ E ∧ mine = a } (28)

The setsEa are pairwise disjoint, because

e ∈ Ea ∩ Ea′

≡ { definition of Ea }
e ∈ E ∧ mine = a ∧ mine = a′

⇒ { property of= }
a = a′

Consequently, the data structure storingE can be distributed over the procedure instances. Simply
replace

for e ∈ E with a ∈ e ∧ e ⊆ q do

by

for e ∈ Ea with e ⊆ q do { e ∈ Ea, hencea ∈ e }
The resulting procedures are namedSolve5a.

For example, in abstract puzzle (6), the order

0,1,2,3,4,5,A,B,C (29)

induces the following partition ofE :

a members ofEa

0 { 0,A }, { 0,1,B }, { 0,3,B }, { 0,1,3,C }, { 0,1,4,C }, { 0,3,4,C }
1 { 1,A }, { 1,2,B }, { 1,4,B }, { 1,2,4,C }, { 1,2,5,C }, { 1,3,4,C }, { 1,4,5,C }
2 { 2,A }, { 2,5,B }, { 2,4,5,C }
3 { 3,A }, { 3,4,B }
4 { 4,A }, { 4,5,B }
5 { 5,A }

(30)

Note thatEA, EB, andEC are empty. Alternatively, the order

0,3,1,4,2,5,A,B,C (31)

induces this partition ofE :

a members ofEa

0 { 0,A }, { 0,1,B }, { 0,3,B }, { 0,1,3,C }, { 0,1,4,C }, { 0,3,4,C }
3 { 3,A }, { 3,4,B }, { 1,3,4,C }
1 { 1,A }, { 1,2,B }, { 1,4,B }, { 1,2,4,C }, { 1,2,5,C }, { 1,4,5,C }
4 { 4,A }, { 4,5,B }, { 2,4,5,C }
2 { 2,A }, { 2,5,B }
5 { 5,A }

(32)

Again, EA, EB, andEC are empty.

12 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

4.6 Unrolling the for-loops

The data structure for storingEa can be incorporated into the topology of the program by com-
pletely unrolling the for-loops. Assuming

Ea = { e0, e1, . . . , en−1 } (33)

replace

for e ∈ Ea with e ⊆ q do
p, q := p ∪ { e }, q − e

; Solve5succ(a)

; p, q := p − { e }, q ∪ e
od

by

if e0 ⊆ q then
p, q := p ∪ { e0 }, q − e0

; Solve6succ(a)

; p, q := p − { e0 }, q ∪ e0

fi
...

; if en−1 ⊆ q then
p, q := p ∪ { en−1 }, q − en−1

; Solve6succ(a)

; p, q := p − { en−1 }, q ∪ en−1

fi

to obtainSolve6a. Note that embeddingse0, . . . , en−1 actually depend ona. The order in which
the embeddings occur in the unrolled loop can be chosen freely.

The program has grown further, but its data structures have been reduced in size. The length of
the program now is on the order of the number of embeddings, that is,O(#E).

4.7 Eliminating a global variable

Each embeddinge ∈ E now occurs in a unique if-statement in the program. Global variablep
is no longer needed, since its value can be reconstructed from the stacked return addresses of the
calls toSolve6a. Thus, the if-statement involvinge ∈ E in the unrolled loops can be reduced to

if e ⊆ q then
q := q − e { p := p ∪ { e } }

; Solve7succ(a)

; q := q ∪ e { p := p − { e } }
fi

obtaining Solve7a. Note that p is still needed as a ghost variable in the annotation and that
Solve7succ(maxA) needs to process the solution encoded on the stack. Also note thatq is invari-
ant over the body of the if-statement.

c©Koninklijke Philips Electronics N.V. 2001 13

NL-UR 2000/828 Unclassified Report

4.8 Expanding the embeddings

To simplify the operations further, we expand each embeddinge into its elements, say

e = { a0, a1, . . . , ak−1 } (34)

where allai are distinct. Note that the aspectsa0, . . . , ak−1 actually depend on the choice ofe ∈ E .
The guarde ⊆ q can now be replaced by

a0 ∈ q ∧ . . . ∧ ak−1 ∈ q (35)

and the assignmentsq := q − e andq := q ∪ e respectively by

q := q − { a0 } ; . . . ; q := q − { ak−1 }

and

q := q ∪ { a0 } ; . . . ; q := q ∪ { ak−1 }

Because allai are distinct, the resulting code for the if-statement involving embeddinge can be
reordered as

if a0 ∈ q then
q := q − { a0 }

; if a1 ∈ q then
q := q − { a1 }

; . . .
; if ak−1 ∈ q then

q := q − { ak−1 }
; Solve8succ(a)

; q := q ∪ { ak−1 }
fi

. . .
; q := q ∪ { a1 }
fi

; q := q ∪ { a0 }
fi

to obtain proceduresSolve8a. The order of the aspects in each embedding can still be chosen
freely.

4.9 Exploiting overlap among embeddings

Consider two embeddingse0 ande1 occurring in the same for-loop, and assume that these have
aspecta in common:a ∈ e0 ∩ e1. The order of the statements after unrolling the loop (§4.6) and
expanding the embeddings (§4.8) can be chosen such that the following structure emerges:

if a ∈ q then S0 fi
; if a ∈ q then S1 fi

14 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

Because statementsS0 andS1 leaveq invariant, the common guard can be distributed outward:

if a ∈ q then
S0

{ a ∈ q }
; S1

fi

This distribution reduces the code size and improves the execution speed. The technique can be
applied recursively to common-guarded if-statements that have become adjacent inS0; S1. Ex-
ploiting the freedom to order statements after unrolling the loop and expanding the embeddings,
typically yields a 50% improvement according to [1]. In §4.11we illustrate this with an example.

4.10 Representing a set by a boolean array

By representingq as an array of booleans, the code can be further refined to

var q: array [A] of Boolean ;
. . .
if q[a0] then

q[a0] := false
; . . .
; q[a0] := true
fi

Each solution of puzzle(A, E) is processed exactly once by

for a ∈ A do
q[a] := true

od
; Solve9min A

For a more general class of puzzles (see end of §2.2), involving bags instead of sets, an array of
natural numbers would be used to implementq.

4.11 Example

Applying all transformations of the preceding sections yields a simple program, consisting of
proceduresSolvea that operate on one global arrayq of #A booleans. The structure of the puzzle
is captured in the the program’s control flow, not in its data.

There are only two kinds of freedom in these transformations:

1. The order in which the program attempts to cover the aspects, i.e., the chosen total order<

for A.

2. How the overlap in embeddings is exploited.

c©Koninklijke Philips Electronics N.V. 2001 15

NL-UR 2000/828 Unclassified Report

The first choice —ordering the aspects— does not affect the overall size of the program, but it
may have a large impact on the execution time. This order of aspects determines the partitioning
of embeddings into theSolvea procedures and, hence, the size of the (induced) search tree. This is a
difficult global optimization issue. A heuristic approach, called thefootprint method, is presented
in [1].

The second choice —exploiting overlap— is carried out within each procedure separately. It
affects the code size and, to a smaller extent, the execution time. This is alocal optimization
isssue. A reasonably good greedy approach is presented in [1].

We illustrate the method by considering a program for arestricted version of the simple puzzle of
Figure3 (see Eqn. (7)), where pieceC is restricted to one of its four rotations, viz. embeddings 18
and 20 in Figure4. The order in which we attempt to cover the 9 aspects of the puzzle is

0,3,1,4,2,5,A,B,C. (36)

When aspects 0 through 5 have been covered, it is also known that aspectsA, B, andC have been
covered. Consequently, the proceduresSolvea corresponding toA, B, andC can be omitted and
the program consists of the following sevenSolvea procedures:

Procedure Deals with
Solve_0 Embeddings 0, 6, 7
Solve_3 Embeddings 3, 11, 18
Solve_1 Embeddings 1, 8, 9
Solve_4 Embeddings 4, 12, 20
Solve_2 Embeddings 2, 10
Solve_5 Embedding 5
Solve_ZZ A solution (a = ∞)

Within these procedures, overlap among embeddings has been exploited. For example, the pre-
condition of procedureSolve1 is that aspects 0 and 3 have already been covered. If aspect 1 is still
free, it might be covered by each of the embeddings 1, 8, and 9. These have aspect 1 in common
(of course), and embeddings 8 and 9 have aspectB in common. This is reflected by the following
body ofSolve1 (expressed in the C programming language):

if (q[1]) { q[1] = 0;
if (q[A]) { q[A] = 0; /* embedding 1 placed */

Solve_4 ();
q[A] = 1; }

if (q[B]) { q[B] = 0;
if (q[2]) { q[2] = 0; /* embedding 8 placed */

Solve_4 ();
q[2] = 1; }

if (q[4]) { q[4] = 0; /* embedding 9 placed */
Solve_4 (); /* could be optimized to Solve_2 (); */
q[4] = 1; }

q[B] = 1; }
q[1] = 1; }

else Solve_4 ();

When introducing appropriate abbreviationsIF (If Free), SOLVE, andMF(Make Free) to reduce
clutter, this can be written concisely as:

16 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

#define IF(a) if (q[a]) { q[a] = 0;
#define SOLVE(e,a) /* embedding e placed */ Solve_##a ();
#define MF(a) q[a] = 1; }

IF (1)
IF (A) /* embedding 1 placed */

SOLVE (1, 4)
MF (A)

IF (B)
IF (2) /* embedding 8 placed */

SOLVE (8, 4)
MF (2)

IF (4) /* embedding 9 placed */
SOLVE (9, 4)
MF (4)

MF (B)
MF (1)

else Solve_4 ();

A complete program is shown in AppendixA. This program produces the following output (also
see Fig.6):

Solving simple puzzle (modulo symmetry)
Solution 1: 0 18 10
Solution 2: 6 3 20
Solution 3: 7 1 20
Number of solutions = 3

In view of the four-fold symmetry of the box, there are 12 solutions altogether.

0

18 10 3

6

20 7

1

20

Figure 6:The three solutions (modulo symmetry) for the simple puzzle of Fig.3

One can also consider the program that does not exploit overlap, and the programs based on a
different order, viz.A, B, C (programs not shown). For each of these four programs, Table2 shows
how often each of the instructionsIF , MF, andSOLVEoccurs in the program text. Obviously, the
counts forIF andMFare equal, and the count forSOLVEequals the number of embeddings in
the puzzle (ignoring the ‘startup’ call). Furthermore, when not exploiting overlap, the order does
not matter for the number ofIF instructions, because each aspect of each embedding is tested
separately (41= 6 ∗ 2+ 7 ∗ 3+ 2 ∗ 4).

For each of the four programs, Table3 shows how many if statements were executed (IF), how
many times each if condition occurred, and how many embeddings were placed (calls toSOLVE).
Obviously, the number ofMFexecutions equals the number of trueIF -conditions. Concerning
theSOLVEcount (number of embeddings placed), observe that this is at least 9, because there are
3 solutions, each involving 3 embeddings without any common embeddings. Thus, theSOLVE
count of 10 in the first two columns, indicates that only one embedding was placed in vain (without

c©Koninklijke Philips Electronics N.V. 2001 17

NL-UR 2000/828 Unclassified Report

order 0, 3, 1, 4, 2, 5, . . . order A, B, C,. . .
overlap overlap overlap overlap

Instruction exploited not exploited exploited not exploited
IF 28 41 24 41
MF 28 41 24 41
SOLVE 15 15 15 15

Table 2:Instruction counts (static) for four program versions

order 0, 3, 1, 4, 2, 5, . . . order A, B, C,. . .
overlap overlap overlap overlap

Instruction exploited not exploited exploited not exploited
IF 47 79 154 275

IF true 27 47 107 208
IF false 20 32 47 67

MF 27 47 107 208
SOLVE 10 10 37 37

Table 3:Execution counts (dynamic) for four program versions

leading to a solution), viz. embedding 11 when 0 had already been placed (also see branch 0,11
in Fig. 7).

Note that, when exploiting overlap, the static counts for the orderA,B,C are somewhat smaller
than the counts for the order 0,3,1,4,2,5, but that their dynamic counts are considerably larger.
See Figures7 and8 for the (dynamic) search trees induced by the two orders we have considered.
Note the very different shapes and sizes. In these figures, the tree nodes showq. The bold-
framed aspect is selected to be covered in all possible ways. Each possibility corresponds to a
branch, which is labeled by the number of the embedding. The light-shaded aspects represent the
embedding placed on the incoming branch. The dark-shaded aspects were already covered earlier.
A cross marks a conflict which prohibits placement. A smiley indicates a solution.

5 Refinement toward hardware

We now have a program that works on one global boolean array variableq, and incorporates
the puzzle’s set of embeddings as constants. The entire program for solving the puzzle can be
decomposed into just five simple operations:

1. if q[a] then q[a] := false ; . . . fi , abbreviatedIF (a)

2. call Solvea , abbreviatedSOLVE(. . . , a)

3. q[a] := true , abbreviatedMF(a)

4. return

5. Solution

Instead of solving puzzles by a general-purpose processor with a large instruction set, we aim at
using a special-purposepuzzle processorwith a minimal instruction set. We hope that this is more

18 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

3

2

CA

5

2

C

2

3 4 5

1

B C

2

5

1

C

2

5

B

2

A

4 5 5

C

2

4 5

1

A C

2

4 5

C

4

A

5

2

CA

5

2

CB

1

54

2

CB

0

A

1

543

2

CA

54

A

3

B

43 43

CC

1

434

B

3

0 1

BA

A

1

3

1

3

2

0

3

B

4

1

0

0

A A

0

A

0 0 1

B

0 1

B

0

B

1 0

3

B

0

3

B

0

2 1098

9818111811

6 70

20124 412 201

133

Figure 7:Search tree for restricted simple puzzle, induced by the order0,3,1,4,2,5, . . .

effective, because such dedicated processors can be much smaller and faster. Moreover, many such
processors can operate in parallel, each processor exploring a separate part of the search space.

5.1 Instruction set

The envisioned puzzle processor has aq-register, a program counterpc, a small stack, a stack
pointersp, and possibly some resources for processing solutions (such as a counter). The instruc-
tion set is shown in Table4.

Instruction Operands and operation
IF aspect to test-and-cover,

relative address to jump to if aspect not free
SOLVE relative address of routine to call,

push current address on stack
MF aspect to make free
RETURN pop address from stack and make current
SOLUTION process solution encoded on stack

Table 4:The five instructions with their operands and operation

In AppendixB, we have listed an ‘assembly’ version of the program for the simple puzzle from
AppendixA. It clearly shows that only five instructions are needed to express the entire program.
Execution starts with the first instruction listed, an empty stack, and theq-register initialized to
all-1, and ends whenRETURNis executed on an empty stack.

AppendixC shows a ‘dump’ of the puzzle-processor machine-code translation of the programs in
the preceding appendices. To improve human readability,

c©Koninklijke Philips Electronics N.V. 2001 19

NL-UR 2000/828 Unclassified Report

1 20

C

1

5

2

3 4 5

1

B C

0 2

3 4

1

B C

2

0 2

3 4 5

B C

0

3 4 5

1

B C

0 2

4 5

1

B C

0 2

3 5

1

B C

0

C

1

5

2

3 4 5

1

A

0

B C

0

4 5

C

2

4 5

C

0 2

5

C

4

10

C

4

CA

0

A A

1

A

2

3

A A

4

A

5

0 1

B

0 2

3

B

1 2

B

1

4

B B

5

2

4

B B

4 53

A A

3 3

A A

3 3

A A

3

4321

18

50

11 1210986 7

20 18 20 18 20 18 20 18 20

Figure 8:Part of the search tree induced by the orderA,B,C, . . .

• opcodes are represented by a single character and operands by decimal integers,

• instructions are indented corresponding to the abstract program,

• the listing is printed in multiple columns, and

• each instruction is numbered (you can view this as the address).

In AppendixD we have listed an interpreter —written in C— for the puzzle-processor instruction
set. It can be thought of as defining the semantics of the instruction set. This interpreter reads in
a machine-code file in the format of appendixC, that is, a text file with one instruction per line
encoded as a single-character opcode followed by its operands in decimal. The program is loaded
into memory and executed. This version of the interpreter only counts solutions; it does not print
them.

5.2 Encoding instructions

Let us consider some hardware-related issues, such as how to encode the instructions listed in
Table4.

Operation code: 3 bits At least three bits are needed for encoding the five operations. We pro-
pose the following systematic encoding (opcodes):

20 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

IF 111
CALL 101
MF 110
RETURN 001
SOLUTION 000

The first bit indicates whether or not the operation has any operands. The second bit in-
dicates whether there is an aspect as operand. The third bit indicates whether there is an
address as operand, except when there are no operands, then the third bit distinguishes be-
tweenRETURNandSOLUTION. Another encoding may be chosen if that would simplify
the decoding hardware.

Aspect operand: 7 bits The Pentomino puzzle has 72 aspects (60 cells and 12 pieces). Thus, its
aspects can be encoded in seven bits. Several other challenging puzzles (25 Y-Pentomino,
25 N-Pentomino, Hollow Pyramid [15]) have no more than 128 aspects.

Address operand: 14 bits The range of addresses needed for a program can be quite large. For
instance, the program of AppendixA for the simple puzzle of Figure3 —when translated
into puzzle-processor code— consists already of 79 instructions. It is listed in AppendixC.
For the Pentomino puzzle, the number of instructions exceeds 214 = 16,384. However,
when relative addresses are used, the Pentomino puzzle and others can easily be coded with
14-bit addresses.

opcode aspect relative address
3 bit 7 bit 14 bit

Table 5:Instruction layout

This instruction encoding for the puzzle-processor requires 3+7+14= 24 bits, which looks like
a fair number. Also see Table5. There are many other possibilities for designing the instruction
set. We have just chosen one and used it for further evaluation.

5.3 Encoding sets of aspects

A subsetv of the set of aspectsA can be encoded in several ways. One way is a bit vector (boolean
array, characteristic function), using one bit per aspect. Assuming #A = 2n, this requires 2n bits.
Another way is to enumerate the aspects in subsetv. Assuming #v = k, this requiresk ∗ n bits,
plus possibly some overhead for ‘gluing’ the aspects together. The enumeration is more memory
efficient whenk ∗ n < 2n. In case ofn = 7, as we have chosen, this means that subsets with
fewer than 27/7 ≈ 18 aspects are more efficiently enumerated, whereas bigger subsets are best
represented as bit vectors.

The embeddings are subsets ofA that are usually rather sparse, that is with small #v = k. For
the simple puzzle (Fig.3), k ranges from 2 to 4, and for the Pentomino puzzlek = 6. Thus,
embeddings are indeed best represented by enumeration.

Global variableq is also a subset ofA (viz. of uncovered aspects). In contrast to embeddings, the
size ofq varies from full (initially) to empty (solution). Thus,q is indeed best represented by a bit
vector.

c©Koninklijke Philips Electronics N.V. 2001 21

NL-UR 2000/828 Unclassified Report

5.4 VLSI Programming

In the next section, we present several hardware designs for a puzzle processor using the instruc-
tion set of the preceding subsection. These designs are derived from the interpreter of AppendixD.

The hardware designs are expressed in theTangram formalism [2]. Tangram is a VLSI-programming
language developed at the Philips Research Laboratories in Eindhoven.Tangram programs are ex-
pressed in a language based on Hoare’sCSP [9] and Dijkstra’sGuarded Command Language [4].
The mainTangram tools [10] are a compiler, an analyzer, a simulator, and a viewer for the output
of the simulator. The compiler translates aTangram program via a so-called handshake circuit
into an asynchronous VLSI circuit. See [5] for the application of Tangram to processor design.

The designs were first run on the simple test program in Table6. This program executes each type
of instruction at least once, including both directions of the conditional branch instruction (see
Table7).

0: I 1 5 ; should NOT take branch
1: I 1 1 ; should take branch to 3
2: R ; should NOT be executed
3: M 1 ; should execute
4: I 1 1 ; should NOT take branch
5: C 1 ; should call 7
6: R ; should terminate program
7: S ; should increment nos
8: R ; should return to 6

Table 6: Listing of simple test program

Values Time Slot→
Register↓ 0 1 2 3 4 5 6 7
pc 0 1 3 4 5 7 8 6
sp 1 = = = = 2 = 1
nos 0 = = = = = 1 =
oc 7 7 6 7 5 0 1 1
asp 1 1 1 1 0 0 0 0
adr 5 1 0 1 1 0 0 0
Instruction I I M I C S R R

Table 7: Execution trace for test program, showing register values (= indicates no access)

The designs presented in the next section were also benchmarked on some small puzzles to com-
pare various characteristics of the designs. Our primary aim has been to optimize for speed,
whereas area and power consumption only receive secondary attention. For the benchmarks we
have used two small puzzles:

3×4 domino puzzle A rectangular box of 3×4 cells has to be filled with 6 dominoes. A domino
covers 2 adjacent cells. See Figure9. Since there is only one kind of piece, it need not
be included as an aspect of the puzzle. Therefore, this puzzle has 3∗ 4 = 12 aspects and

22 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

17 embeddings (3∗ 3 horizontal, 2∗ 4 vertical). The puzzle has 11 solutions (5 modulo
rotation and reflection; these are easy to find by hand).

Figure 9:A solution for the3×4 domino puzzle

dodecahedron-domino puzzleA dodecahedron (platonic solid with 12 regular pentagons as faces)
has to be covered with 6 dominoes. A domino covers two adjacent faces. Since there is only
one kind of piece, there are 12 aspects. Each embedding corresponds to an edge. Hence,
there are 30 embeddings. The puzzle has 125 solutions (only 5 modulo rotation and reflec-
tion; these are quite hard to find by hand).

For the Pentomino puzzle (with 6×10 box), only one simulation was performed, because of the
large amount of simulation time needed for this puzzle.

6 Tangram Designs

The designs that we present in this section are all based on a common exo-architecture (everything
visible across the external processor interface, including the instruction set down to the bit level).
They not only execute exactly the same instruction set, but they also involve the same initialization
and finalization phases:

At startup, the processor reads initial values from channelStatesFile for variablesq, pc, nos
(number of solutions),sp, and the stack contents itself. This provides the means to start the
program in an arbitrary state, which can be useful both for testing manufactured processor
cores and for exploring part of a puzzle’s search tree.

Upon termination, the processor writes the value ofnos to channelSTACKout.

Solutions are only counted, but they (that is, the contents of the stack) could easily be output along
channelSTACKout, as the name already suggests.

The program, consisting of a sequence of puzzle-processor instructions, is assumed to be loaded
in a ROM namedInstrROM. In simulations, the ROM is initialized from a file calledin.rom .

The stack and program memory for the puzzle processor are chosen on-chip, because they are not
so big and this allows fastest operation.

6.1 Straightforward implementation

Appendix E shows a straightforward Tangram implementation of the puzzle processor. Some
trivial parallelism has been introduced: the updates to the various pieces of state are done in
parallel (q, pc, sp, andstack).

c©Koninklijke Philips Electronics N.V. 2001 23

NL-UR 2000/828 Unclassified Report

The size of this design is 1335 gate equivalents (excluding ROM).

6.2 Procedures and precomputed values

AppendixFshows an implementation where various possible new values of the program counterpc
and stack pointersp are precomputed during the instruction fetch. For that purpose, fresh variables
pc1, pc2, sp1, sp2, andsp3 have been introduced. The idea is

• that these values can be computed while fetching the next instruction, without time penalty,
and

• that these values can be used to update the state during execution in less time (e.g. fewer
sequential steps, i.e. semicolons).

Only some of the precomputed values will actually be used. Thus, there is a nonzero power cost.
The goal is to reduce area by sharing more hardware. Since new variables add overhead, one needs
to verify afterwards what the net gain is.

Another refinement is that computation of the new address when jumping (pc := pc + adr) is
carried out in the shared procedurepcadr.

Compared to the previous design,

• the size is reduced by 7%, to 1235 gate equivalents (excluding ROM),

• the speed is improved by over 20%, and

• power consumption goes up by more than 25%.

6.3 Prefetching

AppendixG shows an implementation with a simple form of prefetching. During the execution
phase, also the instruction at addresspc + 1 is fetched. Sometimes, but not always (roughly 50%
of the time), this is indeed the next instruction to be executed. Speed is improved if prefetching
during execution incurs no overhead and the normal fetch phase is not slowed down too much.
Note that the normal fetch phase now also needs to check whether or not to use the prefetched
instruction, and if so, copy it locally.

Compared to the previous design, the prefetching design

• is 33% larger (viz. 1644 gate equivalents),

• is 35% slower, and

• consumes 12% more energy.

Note that prefetching incurs an overhead, both in area and in speed. Whether there is a net gain
in speed depends on how often during execution the prefetched instruction can actually be used.
Note that the programs for solving puzzles derived in Section4 have a high density of branch
instructions (static characteristic). Furthermore, the conditions in the branch instructions are not
very skewed, but rather evenly divided between true and false (dynamic characteristic). Thus, little
gain was to be expected. Still we do not completely understand why the prefetching design is so
much slower.

24 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

7 Conclusion

We have presented a systematic transformation from general-purpose backtrack programs for solv-
ing packing puzzles to puzzle-specific programs for a special-purpose puzzle processor. This
puzzle-processor has five simple instructions operating on a single bit-vector register, a solution
counter, a program counter, a small stack, and a stack pointer. Three Tangram designs for such a
puzzle processor with 24-bit instructions have been compared. Our main aim has been to improve
the speed of the computations.

The transformation has been explained in small steps, such that each step can be formally veri-
fied. The transformation steps resemble those often encountered in the optimization of embedded
software. The final transformed program can be automatically generated from a description of the
puzzle.

There are many ways to define an instruction set for a puzzle processor. We have pursued only
one particular choice as a preliminary investigation.

We have compared three simple Tangram implementations of the puzzle processor. The high
branching density of typical programs for the puzzle processor, together with low branching pre-
dictability, pose a challenge for efficient pipelining, which we have not attempted to tackle in this
report.

Future research will also look into the possibility of operating many puzzle processors in parallel
to improve performance further.

Acknowledgments

We would like to acknowledge Marc Peters and Ad Peeters for their help with the Tangram designs
and for reviewing a preliminary version of this report.

c©Koninklijke Philips Electronics N.V. 2001 25

NL-UR 2000/828 Unclassified Report

References

[1] Bálint, Z.,Puzzle Processor Project, Master’s Thesis, Department of Computer Science,
Eötvös Lórand University, Budapest, 2000

[2] van Berkel, Kees,Handshake Circuits: An Asynchronous Architecture for VLSI Pro-
gramming, Cambridge Univ. Press, 1993

[3] de Bruijn, N. G.,Programmeren van de Pentomino Puzzle, Euclides,47:90–104, 1971

[4] Dijkstra, Edsger W.,A Discipline of Programming, Addison-Wesley, 1976

[5] van Gageldonk, Hans,An Asynchronous Low-Power 80C51 Microcontroller, Disserta-
tion, Eindhoven University of Technology, Department of Computing Science, 1998

[6] Garey, Michael and Johnson, David,Computers and Intractability, Freeman, 1979

[7] Golomb, Solomon W.,Polyominoes, Charles Scribner’s Sons, 1965 (Revised Edition
1994)

[8] Golomb, Solomon W. and Baumert, Leonard D.,Backtrack Programming, Journal of the
ACM, 12(4):516–524, Oct. 1965

[9] Hoare, C. A. R,Communicating Sequental Processes, Prentice Hall, 1985

[10] Kessels, Joep and Peeters, Ad, “The Tangram Framework: Asynchronous Circuits
for Low Power”, In Proc. of Asia and South Pacific Design Automation Conference,
pp. 255–260, Feb. 2001

[11] Kreher, Donald L. and Stinson, Douglas R.,Combinatorial Algorithms: Generation,
Enumeration, and Search, CRC Press, 1999

[12] Martin, George E.,Polyominoes: A Guide to Puzzles and Problems in Tiling, Mathe-
matical Association of America, 1991

[13] Skiena, Steven S.,The Algortihm Design Manual, Springer, 1998

[14] Tonneijk, B. L. A.,Het Puzzel-Processor Project: Vergelijking van Puzzel-Algoritmen,
Master’s Thesis, Eindhoven University of Technology, Fac. of Math. and CS, Aug. 1994

[15] Verhoeff, K. and Verhoeff, T., Hollow Pyramid Puzzle,CFF: Cubism For Fun, Newslet-
ter of NKC, the Dutch Cubists Club, Nr. 31, pp. 15–16, 1991

26 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

A Program in C for Simple Puzzle

/* Solve simple puzzle using order 0,3,1,4,2,5,... and exploiting overlap */

#include <stdio.h>

int q[9]; /* bag of free aspects */
int ns = 0; /* number of solutions */
int sp = 0; /* stack pointer */
int st[3]; /* stack */

#define A 6
#define B 7
#define C 8
#define IF(a) if (q[a]) { q[a] = 0;
#define SOLVE(e,a) st[sp++]=e; Solve_##a (); --sp;
#define MF(a) q[a] = 1; }

int Solve_0 (void) /* cover all, starting at aspect 0 */
/* not ‘void Solve_i (void)’ to avoid need for forward declarations */

{
IF (0)

IF (A) /* embedding 0 placed */
SOLVE (0, 3)
MF (A)

IF (B)
IF (1) /* embedding 6 placed */

SOLVE (6, 3)
MF (1)

IF (3) /* embedding 7 placed */
SOLVE (7, 3)
MF (3)

MF (B)
MF (0)

else Solve_3 ();
}

int Solve_3 (void) /* assuming 0 covered, cover rest starting at 3 */
{

IF (3)
IF (A) /* embedding 3 placed */

SOLVE (3, 1)
MF (A)

IF (4)
IF (B) /* embedding 11 placed */

SOLVE (11, 1)
MF (B)

IF (1)
IF (C) /* embedding 18 placed */

SOLVE (18, 1)
MF (C)

MF (1)
MF (4)

MF (3)
else Solve_1 ();

}

int Solve_1 (void) /* assuming 0,3 covered, cover rest starting at 1 */
{

c©Koninklijke Philips Electronics N.V. 2001 27

NL-UR 2000/828 Unclassified Report

IF (1)
IF (A) /* embedding 1 placed */

SOLVE (1, 4)
MF (A)

IF (B)
IF (2) /* embedding 8 placed */

SOLVE (8, 4)
MF (2)

IF (4) /* embedding 9 placed */
SOLVE (9, 4)
MF (4)

MF (B)
MF (1)

else Solve_4 ();
}

int Solve_4 (void) /* assuming 0,3,1 covered, cover rest starting at 4 */
{

IF (4)
IF (A) /* embedding 4 placed */

SOLVE (4, 2)
MF (A)

IF (5)
IF (B) /* embedding 12 placed */

SOLVE (12, 2)
MF (B)

IF (2)
IF (C) /* embedding 20 placed */

SOLVE (20, 2)
MF (C)

MF (2)
MF (5)

MF (4)
else Solve_2 ();

}

int Solve_2 (void) /* assuming 0,3,1,4 covered, cover rest starting at 2 */
{

IF (2)
IF (A) /* embedding 2 placed */

SOLVE (2, 5)
MF (A)

IF (B)
IF (5) /* embedding 10 placed */

SOLVE (10, 5)
MF (5)

MF (B)
MF (2)

else Solve_5 ();
}

int Solve_5 (void) /* assuming 0,3,1,4,2 covered, cover rest starting at 5 */
{

IF (5)
IF (A) /* embedding 5 placed */

SOLVE (5, ZZ)
MF (A)

MF (5)
else Solve_ZZ ();

28 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

}

int Solve_ZZ (void)
{

int i;
printf ("Solution %4d:", ++ns);
for (i=0; i!=3; ++i) { printf (" %2d", st[i]); }
printf ("\n"); fflush (stdout);

}

int main (void)
{

int i;
printf ("Solving simple puzzle (modulo symmetry)\n");
for (i=0; i!=9; ++i) { q[i] = 1; } /* all aspects are free once */
Solve_0 ();
printf ("Number of solutions = %d\n", ns);

}

B Puzzle-Processor ‘Assembly Listing’ for Simple Puzzle

Solve_0: /* cover all, starting at aspect 0 */
IF (0)

IF (A) /* embedding 0 placed */
CALL Solve_3
MF (A)

IF (B)
IF (1) /* embedding 6 placed */

CALL Solve_3
MF (1)

IF (3) /* embedding 7 placed */
CALL Solve_3
MF (3)

MF (B)
MF (0)
RETURN

/* else fall through ... */

Solve_3: /* assuming 0 covered, cover rest starting at 3 */
IF (3)

IF (A) /* embedding 3 placed */
CALL Solve_1
MF (A)

IF (4)
IF (B) /* embedding 11 placed */

CALL Solve_1
MF (B)

IF (1)
IF (C) /* embedding 18 placed */

CALL Solve_1
MF (C)

MF (1)
MF (4)

MF (3)
RETURN

/* else fall through ... */

c©Koninklijke Philips Electronics N.V. 2001 29

NL-UR 2000/828 Unclassified Report

Solve_1: /* assuming 0,3 covered, cover rest starting at 1 */
IF (1)

IF (A) /* embedding 1 placed */
CALL Solve_4
MF (A)

IF (B)
IF (2) /* embedding 8 placed */

CALL Solve_4
MF (2)

IF (4) /* embedding 9 placed */
CALL Solve_4
MF (4)

MF (B)
MF (1)
RETURN

/* else fall through ... */

Solve_4: /* assuming 0,3,1 covered, cover rest starting at 4 */
IF (4)

IF (A) /* embedding 4 placed */
CALL Solve_2
MF (A)

IF (5)
IF (B) /* embedding 12 placed */

CALL Solve_2
MF (B)

IF (2)
IF (C) /* embedding 20 placed */

CALL Solve_2
MF (C)

MF (2)
MF (5)

MF (4)
RETURN

/* else fall through ... */

Solve_2: /* assuming 0,3,1,4 covered, cover rest starting at 2 */
IF (2)

IF (A) /* embedding 2 placed */
CALL Solve_5
MF (A)

IF (B)
IF (5) /* embedding 10 placed */

CALL Solve_5
MF (5)

MF (B)
MF (2)
RETURN

/* else fall through ... */

Solve_5: /* assuming 0,3,1,4,2 covered, cover rest starting at 5 */
IF (5)

IF (A) /* embedding 5 placed */
CALL Solve_ZZ
MF (A)

MF (5)
RETURN

/* else fall through ... */

30 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

Solve_ZZ:
SOLUTION
RETURN

C Puzzle-Processor ‘Machine Code’ for Simple Puzzle

1: I 0 13 21: C 9 41: M 4 61: I 2 10
2: I 6 2 22: M 7 42: M 7 62: I 6 2
3: C 11 23: I 1 4 43: M 1 63: C 8
4: M 6 24: I 8 2 44: R 64: M 6
5: I 7 7 25: C 5 45: I 4 15 65: I 7 5
6: I 1 2 26: M 8 46: I 6 2 66: I 5 2
7: C 7 27: M 1 47: C 13 67: C 4
8: M 1 28: M 4 48: M 6 68: M 5
9: I 3 2 29: M 3 49: I 5 9 69: M 7

10: C 4 30: R 50: I 7 2 70: M 2
11: M 3 31: I 1 13 51: C 9 71: R
12: M 7 32: I 6 2 52: M 7 72: I 5 6
13: M 0 33: C 11 53: I 2 4 73: I 6 2
14: R 34: M 6 54: I 8 2 74: C 3
15: I 3 15 35: I 7 7 55: C 5 75: M 6
16: I 6 2 36: I 2 2 56: M 8 76: M 5
17: C 13 37: C 7 57: M 2 77: R
18: M 6 38: M 2 58: M 5 78: S
19: I 4 9 39: I 4 2 59: M 4 79: R
20: I 7 2 40: C 4 60: R

D Puzzle-Processor Interpeter in C

#include <stdio.h>

#define MAXASPECT 128
#define MAXADDRESS 16384
#define MAXSP 100

typedef char OpCode; /* I, M, C, R, S */
typedef int Aspect; /* 0 .. MAXASPECT-1, index for q[] */
typedef int Address; /* 0 .. MAXADDRESS-1, index for mem[] */
typedef struct {

OpCode oc; /* operation code */
Aspect asp; /* aspect operand */
Address adr; /* address operand */
} Instruction;

typedef int StackAdr; /* 0 .. MAXSP-1, index for stack[] */

Instruction mem [MAXADDRESS]; /* the instruction memory */
Address pc; /* the program counter */
Address stack [MAXSP]; /* the stack */
StackAdr sp; /* the stack pointer */
int q [MAXASPECT]; /* the free-aspects register */
int ns; /* the number of solutions found */

void load (void) /* load puzzle-processor code from stdin into memory */
{

Instruction inst; /* to capture instruction read from stdin */

c©Koninklijke Philips Electronics N.V. 2001 31

NL-UR 2000/828 Unclassified Report

Aspect a; /* to initialize q */

pc = 0; /* start loading at address 0 */

while (scanf (" %c", & inst . oc) != EOF) { /* read opcode from stdin */
switch (inst . oc) { /* collect operands from stdin */

case ’I’: scanf (" %d %d", & inst . asp, & inst . adr); break;
case ’M’: scanf (" %d", & inst . asp); break;
case ’C’: scanf (" %d", & inst . adr); break;
case ’R’: break;
case ’S’: break;
default : printf ("Illegal instruction ’%c’ @ %d\n", inst . oc, pc);

}
mem [pc ++] = inst; /* store instruction and increment pc */

}

printf ("# instructions loaded = %d\n", pc);
for (a = 0; a != MAXASPECT; ++ a) q [a] = 1;

}

void run (void) /* execute puzzle-processor code in memory */
{

Instruction inst; /* current instruction */

pc = 0; sp = 0; ns = 0;

while (sp >= 0) {
inst = mem [++ pc]; /* fetch instruction and increment pc */
switch (inst . oc) { /* decode and execute instruction */

case ’I’: /* IF */
if (q [inst . asp]) -- q [inst . asp];
else pc += inst . adr;
break;

case ’M’: /* MF */
++ q [inst . asp];
break;

case ’C’: /* CALL */
stack [sp ++] = pc;
pc += inst . adr;
break;

case ’R’: /* RETURN */
pc = stack [-- sp];
break;

case ’S’: /* SOLUTION */
++ ns;
break;

}
}

printf ("# solutions = %d\n", ns);
}

int main (int argc, char **argv)
{

load ();
run ();
exit (0);

}

32 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

E Straigthforward design with minimal parallelism

opcode = type [0..7]
& aspect = type [0..127]
& stackrange = type [0..127]
& address = type [0..16383]
& int = type [0..65535]
& instruction = type <<opcode,aspect,address>>

& PP : main proc (StatesFile? chan int & STACKout! chan int).

begin /* variables */
q : ram array aspect of bool

& done : var bool := false
& oc : var opcode
& asp : var aspect
& adr : var address
& pc : var address ff
& i : var aspect ff := 0
& nos, k : var int ff
& sp : var stackrange ff
& j : var stackrange ff := 1
& stack : ram array stackrange of address
& InstrROM : rom array [0..32767] of instruction := file("in.rom")

| /* initialize processor */
for 128 do

StatesFile?k; q[i]:=(k=1); i:=i+1
od

; StatesFile?k ; pc:=k fit address
; StatesFile?nos
; StatesFile?k ; sp:=k fit stackrange
; do -(j=sp) then

StatesFile?k ; stack[j]:=k fit address ; j:=j+1
od
/* main loop */

; do -done then
<<oc,asp,adr>> := InstrROM[pc] /* instruction fetch */

; case oc /* decode and execute */
is 7 then {IfFree}

if q[asp] then q[asp]:=false || pc:=pc+1
else pc:=pc+adr
fi

or 6 then {MakeFree}
q[asp]:=true || pc:=pc+1

or 5 then {Call}
stack[sp]:=pc+1

; sp:=sp+1 || pc:=pc+adr
or 1 then {Return}

sp:=sp-1
; pc:=stack[sp] || done:=(sp=0)

or 0 then {Solution}
nos:=nos+1 || pc:=pc+1

si
od
/* output result */

; STACKout!nos
end

c©Koninklijke Philips Electronics N.V. 2001 33

NL-UR 2000/828 Unclassified Report

F Design with procedures and precomputed values

opcode = type [0..7]
& aspect = type [0..127]
& stackrange = type [0..127]
& address = type [0..16383]
& int = type [0..65535]
& instruction = type <<opcode,aspect,address>>

& PP : main proc (StatesFile? chan int & STACKout! chan int).

begin
/* variables */

q : ram array aspect of bool
& done : var bool := false
& oc : var opcode
& asp : var aspect
& adr : var address
& pc,pc1,pc2 : var address
& i : var aspect ff := 0
& nos,k : var int ff
& sp,sp1,sp2,sp3 : var stackrange
& j : var stackrange ff := 1
& stack : ram array stackrange of address
& InstrROM : rom array [0..32767] of instruction := file("in.rom")

& pcadr: proc(). pc:=pc2+adr

| /* initialize processor */
for 128 do StatesFile?k ; q[i]:=(k=1) ; i:=i+1 od

; StatesFile?k ; pc:=k fit address
; StatesFile?nos
; StatesFile?k ; sp:=k fit stackrange
; do -(j=sp) then StatesFile?k ; stack[j]:=k fit address ; j:=j+1 od

/* main loop */
; do -done then

<<oc,asp,adr>>:=InstrROM[pc] ||
pc1:=pc+1 || pc2:=pc || sp1:=sp+1 || sp2:=sp-1 || sp3:=sp

; case oc
is 7 then {IfFree}

if q[asp] then q[asp]:=false || pc:=pc1
else pcadr()
fi

or 6 then {MakeFree}
q[asp]:=true || pc:=pc1

or 5 then {RecurseBegin}
stack[sp3]:=pc1 || sp:=sp1 || pcadr()

or 1 then {RecurseEnd}
sp:=sp2 || pc:=stack[sp2] || done:=(sp2=0)

or 0 then {Print}
nos:=nos+1 || pc:=pc1

si
od
/* output result */

; STACKout!nos
end

34 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

G Design with prefetching

opcode = type [0..7]
& aspect = type [0..127]
& stackrange = type [0..127]
& address = type [0..16383]
& int = type [0..65535]
& instruction = type <<opcode,aspect,address>>

& PP : main proc (StatesFile? chan int & STACKout! chan int).

begin
/* variables */

q : ram array aspect of bool
& done,ok : var bool := false
& oc,oc1 : var opcode
& asp,asp1 : var aspect
& adr,adr1 : var address
& pc,pc1,pc2 : var address
& i : var aspect ff := 0
& nos,k : var int ff
& sp,sp1,sp2,sp3 : var stackrange
& j : var stackrange ff := 1
& stack : ram array stackrange of address
& InstrROM : rom array [0..32767] of instruction := file("in.rom")

& pcadr: proc(). pc:=pc2+adr
& romread: func(p?var address). InstrROM[p]

| /* initialize processor */
for 128 do StatesFile?k ; q[i]:=(k=1) ; i:=i+1 od

; StatesFile?k ; pc:=k fit address
; StatesFile?nos
; StatesFile?k ; sp:=k fit stackrange
; do -(j=sp) then StatesFile?k ; stack[j]:=k fit address ; j:=j+1 od

/* main loop */
do -done then

<<oc,asp,adr>> := if ok then <<oc1,asp1,adr1>> else romread (pc) fi
|| pc1:=pc+1 || pc2:=pc || sp1:=sp+1 || sp2:=sp-1 || sp3:=sp

; case oc
is 7 then {IfFree}

if q[asp] then q[asp]:=false || pc:=pc1 || ok:=true
else pcadr() || ok:=false
fi

or 6 then {MakeFree}
q[asp]:=true || pc:=pc1 || ok:=true

or 5 then {RecurseBegin}
stack[sp3]:=pc1 || sp:=sp1 || pcadr() || ok:=false

or 1 then {RecurseEnd}
sp:=sp2 || pc:=stack[sp2] || done:=(sp2=0) || ok:=false

or 0 then {Print}
nos:=nos+1 || pc:=pc1 || ok:=true

si
|| <<oc1,asp1,adr1>> := romread (pc1) /* prefetch */

od
/* output result */

; STACKout!nos
end

c©Koninklijke Philips Electronics N.V. 2001 35

NL-UR 2000/828 Unclassified Report

36 c©Koninklijke Philips Electronics N.V. 2001

Unclassified Report NL-UR 2000/828

Author(s) Erik van der Tol and Tom Verhoeff

Title The Puzzle Processor Project
Towards an Implementation

Distribution

Nat.Lab./PI WB-5
PRL Redhill, UK
PRB Briarcliff Manor, USA
LEP Limeil–Brévannes, France
PFL Aachen, BRD
CIP WAH

Director: P.E. Wierenga WB-57
E.P.C. van Utteren WDC-01

Department Head: G.F.G. Depovere WO-01
E. Dijkstra WDC-01

Abstract

– – –

Full report

Lex Augusteijn Nat.Lab. WDC-01
Dennis Alders Nat.Lab. WDC-11
Jan van Amstel Nat.Lab. WDC-01
Kees van Berkel Nat.Lab. WDC-31
Martijn van Balen Nat.Lab. WO-01
Ralph Braspenning Nat.Lab. WO-01
Richard Doornbos Nat.Lab. WY-21
Jos van Eijndhoven Nat.Lab. WDC-01
Hans van Gageldonk Nat.Lab. WDC-01
Gerben Hekstra Nat.Lab. WO-01
Christian Hentschel Nat.Lab. WO-01
Paul Hoogendijk Nat.Lab. WDC-01
Egbert Jaspers Nat.Lab. WO-01
Roos Joordens Nat.Lab. WY-01
Piërre van der Laar Nat.Lab. WDC-21
Joep Kessels Nat.Lab. WDC-31
Willem Mallon Nat.Lab. WDC-01
Ad Peeters Nat.Lab. WDC-31
Clara Otero-Perez Nat.Lab. WDC-31
Marc Peters Nat.Lab. WY-03
Evert-Jan Pol Nat.Lab. WAY-21
Bram Riemens Nat.Lab. WO-01

c©Koninklijke Philips Electronics N.V. 2001 37

NL-UR 2000/828 Unclassified Report

Martijn Rutten Nat.Lab. WDC-31
David Simons Nat.Lab. WDC-11
Erik van der Tol Nat.Lab. WO-01
Ramses van der Toorn Nat.Lab. WAY-41
Joachim Trescher Nat.Lab. WDC-01
René v.d. Vleuten Nat.Lab. WO-01
Bernard van Vlimmeren Nat.Lab. WDC-21
Rik Willems Nat.Lab. WDC-11
Pieter van der Wolf Nat.Lab. WDC-31
Clemens W¨ust Nat.Lab. WY-21

Frits Schalij ED&T WAY-3
Rik van de Wiel ED&T WAY-31

Rob Zijlstra CIP WAH-1

Pieter van Dam ASA Lab. SFJ-5
Eric Körber ASA Lab. SFJ-4
Erik Mallens ASA Lab. SFJ-5

Peter Lambooij TASS HCZ-1
Marc Willekens TASS HCZ-1

Abdelhamid Ualit PMS QR

38 c©Koninklijke Philips Electronics N.V. 2001

	Introduction
	Puzzle descriptions
	Cells and pieces
	Generalization to aspects
	Abstract puzzles

	Solving abstract puzzles
	Transforming the basic procedure
	Introducing an extra parameter for the set of free aspects
	Converting parameters into global variables
	Refining the choice of free aspect by introducing a parameter
	Eliminating a parameter by instantiation for all relevant values
	Simplifying the iteration by partitioning its domain
	Unrolling the for-loops
	Eliminating a global variable
	Expanding the embeddings
	Exploiting overlap among embeddings
	Representing a set by a boolean array
	Example

	Refinement toward hardware
	Instruction set
	Encoding instructions
	Encoding sets of aspects
	VLSI Programming

	Tangram Designs
	Straightforward implementation
	Procedures and precomputed values
	Prefetching

	Conclusion
	Program in C for Simple Puzzle
	Puzzle-Processor `Assembly Listing' for Simple Puzzle
	Puzzle-Processor `Machine Code' for Simple Puzzle
	Puzzle-Processor Interpeter in C
	Straigthforward design with minimal parallelism
	Design with procedures and precomputed values
	Design with prefetching

